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ABSTRACT

Those who conduct integrated assessments (IAs) are aware of the need to explicitly consider multiple criteria and
uncertainties when evaluating policies for preventing global warming. MCDM methods are potentially useful for
understanding tradeoffs and evaluating risks associated with climate policy alternatives. A difficulty facing potential
MCDM users is the wide range of different techniques that have been proposed, each with distinct advantages.
Methods differ in terms of validity, ease of use, and appropriateness to the problem. Alternative methods also can
yield strikingly different rankings of alternatives. A workshop was held in which climate change experts and policy-
makers evaluated the usefulness of MCDM for IA. Participants applied several methods in the context of a
hypothetical greenhouse gas policy decision. Methods compared include value and utility functions, goal
programming, ELECTRE, fuzzy sets, stochastic dominance, min max regret, and several weight selection methods.
Ranges, rather than point estimates, were provided for some questions to incorporate imprecision regarding weights.
Additionally, several visualization methods for both deterministic and uncertain cases were used and evaluated.
Analysis of method results and participant feedback through questionnaires and discussion provide the basis for
conclusions regarding the use of MCDM methods for climate change policy and IA analyses. Hypotheses are
examined concerning predictive and convergent validity of methods, existence of splitting bias among experts,
perceived ability of methods to aid decision-making, and whether expressing imprecision can change ranking results.
Because participants gained from viewing a problem from several perspectives and results from different methods
often significantly differed, it appears worthwhile to apply several MCDM methods to increase user confidence and
insight. The participants themselves recommended such multimethod approaches for policymaking. Yet they
preferred the freedom of unaided decision-making most of all, challenging the MCDM community to create
transparent methods that permit maximum user control. Copyright # 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

‘‘Greenhouse gases,’’ such as carbon dioxide,
methane, nitrous oxide, and water vapor, raise
the earth’s temperature by altering the planet’s
radiation balance. Anthropogenic emissions of
greenhouse gases have increased significantly since
the industrial revolution and may enhance the
greenhouse effect. If such global warming occurs,
grave ecological, social, and economic conse-

quences could result. Impacts could include sea-
level rise, changed crop yields, stressed ecosystems,
and water shortages. Human health may be
affected due to heat-related mortality and changes
in air pollution and infectious disease patterns.

Predicting such impacts involves consideration
of interactions between terrestrial, atmospheric,
and hydrologic systems, as well as social, political,
and economic systems. However, climate change
experts are faced with numerous uncertainties and
disagree on the magnitude, distribution, and
timeframe of global warming impacts (IPCC,
1995; Morgan and Keith, 1995). The possibility
of global warming has generated much research
and political interest. In 1988, the Intergovern-
mental Panel on Climate Change (IPCC), com-
prised of 2500 leading climate scientists, was
established to assess scientific, technical, and
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socioeconomic information relating to climate
change. At a December 1997 conference in Kyoto,
Japan, parties to the United Nations Framework
Convention on Climate Change agreed to limit
greenhouse gas emissions to below 1990 levels;
but the US subsequently announced its withdrawal
from the agreement, citing economic impacts
and scientific uncertainty. Given the importance
and complexity of the issues, climate change
policy evaluation may benefit from the applica-
tion of multi-criteria decision-making (MCDM)
methods.

Integrated assessment (IA) aids the understand-
ing of climate change consequences by using
comprehensive models with interrelationships
and feedbacks among system components (Dow-
latabadi and Morgan, 1993; Parson and Fisher-
Vanden, 1995; Shlyakhter et al., 1995). The basic
function of most IAs is system modelling, the
simulation of the response of physical, biological,
and/or social systems to changes in inputs,
assumptions, and policies. The ultimate purpose
of such efforts is to provide policy-makers with
understanding of how assumptions and policies
affect system behaviour and associated impacts
(Gardiner and Ford, 1980). Some IAs also
incorporate decision evaluation, the comparison
of options in terms of their risks and performance
on important criteria and the application of value
judgments to rank or screen alternatives (Rotmans
and Dowlatabadi, 1998).

IAs are most useful to policy makers if they are
explicitly linked to decision-making (Bernabo and
Eglinton, 1992; NAPAP, 1991). This linkage can
be accomplished by building formal decision
analytic capabilities into models, such as multi-
objective tradeoff displays or decision trees. Alter-
natively, ‘‘policy-oriented assessments’’ can
provide information on the performance and risks
of policy options for use in decision processes
taking place outside the IA system (Meo, 1991). A
central aim of the workshop and the focus of this
article is to help bridge the gap between IA system
modeling and policy evaluation.

Climate change policy-makers face unique
challenges, such as the lack of a single decision-
maker, uncertainties, long time horizons, and the
irreversibility of effects. Structured numerical
analysis can aid understanding by managing and
analyzing information and alternatives (Arrow
et al., 1996a). The use of MCDM methods has
the potential to improve the quality of decision by
providing information on tradeoffs, increasing

confidence in the decision, and documenting the
process. MCDM can thereby function as one of
the mediums through which decision-makers use
and process IA information. Stewart (2000)
identifies three distinct roles for decision analysis
in such public sector problems: (1) initial impact
assessment and screening; (2) ‘‘within interest’’
structuring and evaluation; and (3) ‘‘between
interest’’ negotiation and decision-making.
MCDM can play each of these roles in IA. This
paper explores the use of MCDM methods in IA
to aid policy-oriented impact assessment.

Decision analysis has been used previously to
compare climate policies under uncertainty (Peck
and Teisberg, 1996), address tradeoffs involved in
assigning relative responsibility for greenhouse gas
reduction (Ridgley, 1996), and evaluate sequential
decision strategies for abating climate change
(Hammitt et al., 1992; Valverde et al., 1999). For
instance, Manne and Richels (1992) compared the
economic impacts under uncertainty of three
forms of greenhouse ‘‘insurance’’: (1) intensive
research to reduce climate and impact uncertain-
ties; (2) development of new energy supply and
conservation technologies to reduce greenhouse
gas abatement costs; and (3) immediate reductions
in emissions to slow climate warming. In this
paper, we systematically compare the results of a
range of MCDM methods and their potential
usefulness based upon a workshop in which
climate experts and IA practitioners applied
several MCDM methods in the context of IA.

The MCDM methods are summarized in
Appendix A. The experiments conducted in the
workshop are unusual in that MCDM methods
were applied and assessed by climate change
experts, rather than less experienced subjects, such
as students. The specific purposes of the workshop
were to: (1) compare method results and predictive
validity; (2) evaluate each method’s appropriate-
ness and ease of use for climate change policy-
making; (3) evaluate multiple visualization techni-
ques for displaying tradeoffs for both deterministic
and uncertain scenarios; and (4) expose workshop
participants to MCDM methods and their appli-
cation. This paper presents results from the
workshop and discusses their potential implica-
tions for the decision analysis community.

Both user evaluations and analysis of method
results are necessary to evaluate decision support
systems (Evans and Riha, 1989; Gunderson et al.,
1995; Hobbs et al., 1992). Therefore, method
performance, appropriateness, and ease of use
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were assessed through participant feedback (ques-
tionnaires and structured discussions), while
method results and validity were compared by
statistical analysis of weights and policy rankings.
Several limitations of the experiments, such as
small sample size, prevent definitive conclusions
regarding the relative merits of the methods.
Nonetheless, such case studies or quasi-experi-
ments can provide useful information (Adelman,
1991). For instance, such studies often possess an
ecological validity (realism of problem setting and
sophistication of participants) lacked by better
controlled experiments, such as those involving
large numbers of undergraduates (e.g., Corner and
Buchanan, 1997; Le !oon, 1997; Stillwell et al., 1987).
Results of quasi-experiments with real practi-
tioners and those from controlled experiments
with less experienced subjects can yield more
definitive conclusions than each type of study
alone (Elmes et al., 1995). Many similar field
studies have been conducted with useful results
(see reviews in Hobbs, 1986; Huber, 1974; John
and Edwards, 1978; Leung, 1978; von Winterfeldt
and Edwards, 1986).

The following section describes the experimental
design and process, including the climate change
policies considered, the MCDM approaches ex-
plored, and experimental design limitations. Then
we describe the testing of several hypotheses and
our conclusions.

2. EXPERIMENTAL DESIGN AND PROCESS

2.1. Climate policies considered
The workshop explored the following policies for
limiting greenhouse gas emissions and impacts:
base case (no new emissions limits); globally

applied tax of $75, $150, or $300 per ton of
carbon dioxide (CO2) emitted; relaxed sulfur
dioxide (SO2) emission standards (which can have
a cooling effect); promotion of nuclear power
through subsidies for nuclear fuel; and promotion
of biomass energy. The policies were compared
relative to six attributes, which were chosen prior
to the workshop to represent key features of the
problem. Although many more attributes would
be used in practice, the number was limited to six
so that the problem would be manageable given
the workshop’s time limitations. The attributes
considered are temperature increase (from 1990 to
2050), ecosystem stress (in 2050), sea-level rise
(from 1990 to 2050), annualized SO2 emissions
(from 1990 to 2050), annualized nuclear waste
generation (from 1990 to 2050), and annualized
control cost compared to the base case (in 2050)).
Some exercises used four attributes for simplicity
(temperature increase, SO2 emissions, nuclear
waste, and cost). Attribute values were global
aggregate estimates obtained from an IA model
(Holmes and Ellis, 1996, 1997).

The attribute scores for each alternative along
with ranges (minimum, maximum) were given to
participants in each MCDM exercise. Uncertainty
scenarios were generated with Monte Carlo
simulation using probabilistic inputs for climate
sensitivity, SO2 cooling effect, energy efficiency,
labor productivity, natural gas reserves, and
population growth. The hypothetical climate
change scenarios were constructed to provide
plausible attribute values for each policy alter-
native for the purpose of evaluating MCDM
methods, not to provide definitive values. Mean
attribute values for each of the non-dominated
alternatives from results using the uncertain inputs
are provided in Table I.

Table I. Attribute values for climate policy alternatives

Attribute x1: Global

Temperature

Increase

[oC]

x2: Annualized

SO2 Emissions

[106 tons/yr]

x3: Annualized

Nuclear

Waste

[103tons/yr]

x4: Annualized

Cost

[109$/yr]

x5: Sea-Level

Rise

[cm]

x6: Ecosystem

Stress

[106 hectares]

Base Case 1.35 159.5 11.7 0.0 26.2 3229

$75/ton CO2 Tax 1.33 136.8 15.4 37.0 25.9 3190

$150/ton CO2 Tax 1.29 118.8 19.3 142.7 24.2 3095

$300/ton CO2 Tax 1.15 93.5 26.0 519.8 22.4 2740

Nuclear Promotion 1.24 149.9 22.2 62.1 24.3 2977

Relaxed SO2 Standards 1.25 189.9 10.9 �3.6 24.4 3002

Biomass Promotion 1.30 153.4 11.6 7.1 25.4 3121
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While climate change is a dynamic problem,
attribute values were calculated for a specific time
(2050) or time interval (change between 1990 and
2050). This approach provided a manageable set of
information that we hoped would be familiar and
easily understood, as it is comparable to other
analyses of climate change impacts (e.g., IPCC
estimates of temperature increase). Values for
some attributes were discounted so that impacts
in the distant future received less emphasis than
those in the near future. Issues involved in this
crucial weighting judgment are reviewed in Arrow
et al. (1996b) and Schubert (1994).

We explained the attribute definitions and
discounting procedure to the workshop partici-
pants. Although no participants questioned the
use of a 1990 baseline or the discounting process,
our decision to use these metrics affected the
attribute values and therefor the value judgments.
We do not know how participants’ value judg-
ments would differ had we, say, modeled impacts
to 2100, used a different discounting procedure, or
provided a full time series for each attribute rather
than just means (e.g., temperature in each year).

2.2. MCDM methods
The MCDM methods compared in this workshop
fall into three groups: weighting methods, deter-
ministic ranking methods, and uncertainty ranking
methods. The weighting methods address user
preferences among the attributes (i.e., which
attributes are more important to the user and by
how much?). Deterministic and uncertainty rank-
ing methods combine those preferences in order to
rank or screen alternatives. Each method is defined
briefly in Appendix A.

The methods selected are useful for evaluating
discrete alternatives, can be conveyed to those
unfamiliar with decision analysis, and in most
cases have been widely applied elsewhere. They
represent a range of divergent philosophies regard-
ing decision-making. (For an in-depth discussion
of conceptual differences among MCDMmethods,
see Stewart, 1992). For example, in direct assess-
ments of importance weights, weighting values are
transparent and under control of the decision-
maker, whereas with the traditional AHP weight-
ing method, weights are inferred from pairwise
ratio comparisons of attributes (e.g., attribute i is
twice as important as attribute j). However, it is
widely argued (e.g., Belton, 1986; Schoemaker,
1981) that the notion of attribute ‘‘importance’’ is
vaguely defined in both direct and AHP assess-

ments, and may diverge greatly from the rates at
which users are willing to tradeoff one attribute for
another. The latter is the precise definition of
importance required by value and utility theory
methods, and is what swing and tradeoff weighting
methods attempt to capture. In this study, a hybrid
swing/AHP method is tested that attempts to
combine AHP’s ease of use with swing weighting’s
more precise notion of attribute importance.

Several approaches to combining attributes and
ranking alternatives also were compared by the
workshop participants. Value or utility methods
use each alternative’s performance on each attri-
bute along with attribute weights to create a
performance score for each option. Goal program-
ming methods require the user to set a target value
for each attribute and minimize deviations, in one
or both directions, from that target. Outranking
methods, such as ELECTRE, do not necessarily
generate a complete ranking of alternatives as they
allow two alternatives to be ‘incomparable’ (i.e.,
neither alternative outranks the other). These
methods define a kernel or set of non-dominated
alternatives.

2.3. The experiment
The workshop was held June 1–2, 1998, at The
Johns Hopkins University. The participants in-
cluded twenty climate change experts, policy-
makers, and IA practitioners, from a range of
private and public institutions including academic,
governmental, national laboratory, and corporate
organizations (Appendix B). Of the 16 participants
who filled out the questionnaire regarding pre-
vious use of MCDM, 44% either had used
MCDM before or were familiar with the use of
MCDM by their organization, and 19% had
experience using MCDM in IA.

Before the formal MCDM methods were
introduced, participants completed a holistic
assessment of the policy options (ranks of 1–7
and ratings of 0–100). Although time limits
presented a challenge, each method was then
explained to provide participants with the con-
ceptual understanding necessary to answer the
questionnaires that we used to elicit information
needed to apply the methods. Additionally, work-
shop organizers were available to answer questions
individually throughout the process to help
ameliorate any confusion about the methods or
evaluations. After completion of the method
questionnaires, MCDM results were calculated
and returned to the participants for each group of
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methods (weighting, deterministic ranking, uncer-
tainty ranking). Participants then reviewed and
revised their weights for the four attribute case
(revised weights). They also compared the original
holistic assessment to the MCDM method ranks
for the deterministic and uncertain cases. The
elicitation portion of the workshop then concluded
by asking participants to provide revised holistic
ranks for the policies (final holistic assessment).

In addition to elicitations, round robin or
‘‘nominal group’’ discussions (Delbecq et al.,
1975) were held to record participant views on
the methods and their application to IA and to
gain insight into the thought processes behind
their answers to the questionnaires. In the nominal
group discussions, each participant was able to
express his/her views for a limited time. After all
participants had a turn, each person was given
another opportunity to speak. This continued until
all views were expressed or time limitations
prevented further discussion. At the close of the
workshop, participants were asked to complete an
evaluation questionnaire in which they rated each
method on a scale of 1 (worst) to 5 (best) for a
variety of criteria (e.g., ease of use, ability of each
method to increase confidence in decision), and to
provide suggestions for potential uses for the
methods. Similar questionnaires have been used
previously to evaluate MCDM methods (e.g.,
Hobbs and Meier, 2000; Le !oon, 1997; Zapatero
et al., 1997).

2.4. Limitations of experimental design
This results of this experiment must be viewed in
light of its limitations. In particular, the internal
validity of the results may suffer from limitations
(e.g., small sample size) that preclude the control
for alternate hypotheses (Adelman, 1991). We
hypothesize that differences in method results can
occur because of the fundamental differences in the
types of responses each method elicits from
the participants. However, it is also possible that
the exact wording of questions or even misunder-
standing by the participants may have affected our
results. As another example, variations in method
results also may have been due to an order effect
(e.g., simpler methods were presented before more
advanced ones). Order effects can arise because the
process of completing MCDM exercises, and
related discussions can provide insights to the
participants. Therefore, the results of methods
may diverge due to participants learning and
changing their opinions about alternatives or

attributes, rather than because of a true difference
in methods.

Although a rigorous experimental design was
not possible due to sample size and time limits, the
results can nevertheless be helpful to those who
would apply MCDM to IA. The experiment’s
external validity was increased by the use of
participants who may actually use MCDM meth-
ods to analyze IA results for climate change policy.
An identification of differences in method results
and appropriateness is useful to potential users by
documenting possible method advantages and
disadvantages and alerting them to the possibility
that different techniques can lead to divergent
conclusions. Finally, general insights voiced by the
experts regarding how MCDM could be used in
IA are an important outcome of this research, and
are not subject to these limitations.

3. HYPOTHESES, RESULTS, AND
DISCUSSION

This section presents hypotheses tested by the
experiment and the associated results. Each of the
hypotheses was formulated to illuminate differ-
ences among the methods (e.g., perceived ease of
use and appropriateness, validity, and results).

Hypothesis 1.
MCDM methods differ in their ease of use and in
their ability to aid decision-making in integrated
assessment.

This hypothesis addresses the ‘‘user-
friendliness’’ of different MCDM methods and
whether the methods are appropriate for actual
climate change decision-making. After all methods
had been applied and results distributed to the
participants, evaluation questionnaires asked par-
ticipants to rate each method from 1 (worst) to 5
(best) for a variety of questions. Figures 1a and b
provide the average participant evaluation of each
method for these categories.

For the deterministic methods (Figure 1a),
holistic assessment was rated higher than all other
methods in all categories for which it was
evaluated. Holistic assessment was rated signifi-
cantly higher than other methods for ‘‘ease of
understanding concepts’’ (Wilcoxon matched-
pairs signed rank test p-values 50.03), ‘‘makes
sense’’ (p50.03), ‘‘skills reasonably acquired’’
(p50.05), and ‘‘amount of effort required
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reasonable’’ (p50.03). In contrast, goal program-
ming and ELECTRE received poor evaluations
across all categories. However the participants
suggested that ELECTRE could facilitate consen-
sus among groups better than some other meth-
ods. This is likely because the method produces a
kernel, rather than definitive ranking, and the
kernel can include a diversity of options.

Overall, participants did not believe that the
analytical methods had much potential for im-
proving consistency or confidence, as evidenced by
the low ratings for these categories. However, this
does not indicate that MCDM methods are useless
for climate change policy. The primary benefits of
MCDM include structuring the problem so that

large amounts of information become manageable,
helping users learn how they think about the
decision, and exploring value judgements. Partici-
pants stated that they gained insights from using
the methods, nonetheless they did not believe the
methods would help improve consistency or
confidence. This raises questions about the benefits
of MCDM in IA and suggests that MCDM may
be better for helping users think about the decision
(e.g., exploring tradeoffs) rather than in forming
their actual choice (e.g., improving consistency in
decisions).

Holistic assessment also rated highly among the
uncertainty methods, receiving the highest rating
for most categories for which it was evaluated

1 2 3 4 5

Ease of Understanding 
Concepts

Makes Sense 

Ease of Providing 
Inputs 

Skills Reasonably 
Acquired 

Amount of Effort
Required Reasonable 

Potential for Increasing 
Confidence

Recommended for 
Actual Climate Change

Decision-Making 

Focuses on 
Important Issues

Could Facilitate
Consensus Among 

Groups

Potential for Improving 
Consistency 

Does Not Hinder Free 
and Creative Judgement

BestAverage EvaluationWorst 

Holistic Assessment
Non-Linear Value 
  Function

ELECTRE 
Goal Programming
Revision of Alternative 
  Rankings

Linear Value Function: 
 Point Allocation Weights 
 Swing Weighting / AHP
 Tradeoff Weights 
 Revised Weights 

Recommended for 
Actual Climate Change

Decision-Making

Potential for 
Increasing 
Confidence

Ease of
Understanding 

Concepts

Makes Sense 

Ease of
Providing Inputs 

Skills Reasonably 
Acquired 

Amount of Effort
Required 

Reasonable 

Focuses on 
Important Issues

Could Facilitate
Consensus Among 

Groups

BestAverage Evaluation

1 2 3 4 5 

Worst 

Holistic Assessment
Utility Function 
Stochastic Dominance 

Min Max Regret 
Revision of Alternative 
Rankings

(a) (b)

Figure 1. (a) Participant evaluation of certainty ranking methods; (b) participant evaluation of uncertainty ranking
methods.
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(Figure 1b). It rated significantly better than other
methods for the ‘‘ease of understanding concepts’’
(p50.04) and ‘‘makes sense’’ categories (p50.03,
except for the comparison with utility functions).
Stochastic dominance had the lowest evaluation
for almost all questions. On average, participants
felt that all methods had approximately the same
potential for increasing confidence.

MCDM methods may be able to facilitate
consensus among groups by moving the discussion
from alternatives to fundamental objectives and
their tradeoffs (Keeney and Raiffa, 1976). By
highlighting common interests, the methods dis-
courage focusing on a preferred alternative (Raif-
fa, 1982). Consistent with this notion, participants
believed that the utility function ‘‘could facilitate
consensus among groups’’ better than all other
uncertainty methods, but not significantly so.
However, this method had only the third highest
score for ‘‘recommended for greenhouse gas
evaluation’’ (out of five methods). This suggests
that the ability of an MCDM method to help
people better understand their own preferences
may be more important than its ability to facilitate
negotiation and group consensus.

For the ‘‘recommended for actual climate
change decision-making’’ question, holistic assess-
ment received the top average rating for both
deterministic and uncertainty methods. The high
rating of holistic assessment may indicate the
desire of the users to retain control of the decision
process. For uncertainty methods, the second
highest rated method was reconciliation of alter-
native rankings, in which users consider and
resolve the results of two or more methods. For
deterministic methods, the second highest evalua-
tion was a tie between linear value function with
revised weights and, again, reconciliation of
alternative rankings. This supports the concept
that use of multiple methods is beneficial, because
participants recommend both use of revised
weights (reconciliation of results from several
weighting methods) and reconciliation of ranking
results from several methods.

Also supporting the use of multiple methods is
the fact that except for stochastic dominance, each
MCDM method was most highly recommended
for decision-making by at least one person. No
method dominated the others. For instance, of the
14 people who recommended at least one determi-
nistic approach over the others, 9 rated holistic
rating most highly, while 3, 3, and 8 persons gave
their highest recommendation to ELECTRE, Goal

Programming, and some version of additive value
functions, respectively (some persons used ties,
giving more than one method the highest recom-
mendation). Meanwhile, each of these four
approaches was also given the lowest recommen-
dation by at least one person. Only one participant
strictly perferred holistic assessment to all other
approaches.

Participants also ranked three weighting meth-
ods (1 for most preferred, 3 for least preferred). All
three procedures had roughly the same mean rank:
2.04 for swing weighting/AHP, 2.07 for tradeoff
weighting, and 1.89 for direct point allocation.
This contrasts with earlier studies where the
tradeoff method was relatively disliked (e.g.,
Hobbs and Horn, 1997).

Hypothesis 2.
MCDM methods have different predictive
validities.

MCDM results should be valid (i.e., they should
reflect decision-makers’ actual preferences). Be-
cause preferences are fundamentally subjective and
often imprecise, there exists no universally ac-
cepted objective measure of validity (Hobbs, 1986;
Larichev, 1992). One type of validity is ‘‘predictive
validity’’} defined here as a method’s ability to
predict the final holistic (unaided) ranking of
alternatives after an iterative process of applying
several MCDM methods and reviewing results
(e.g., Corner and Buchanan, 1997; Hadley et al.,
1997; Hobbs and Horn, 1997; Lai and Hopkins,
1995). By this definition, a method has a high
validity if its results correctly anticipate the user’s
final (and presumably most informed) preferences,
perhaps because it has helped the user construct
them. Note, however, that this does not suggest
that methods with poor predictive validity are
ineffective at providing insights into the problem.

To evaluate the hypothesis that some methods
have higher predictive validity than others, we
examined Spearman’s correlations between each
method’s policy rankings (1–7) and the final
holistic rankings. Such an ‘‘intermethod
correlation’’ is defined as the correlation between
two methods’ results for a specific user, averaged
across all users: ð1=W

PW
a¼1 covðrsa; rtaÞ=srsasrta

where rsa and rta are the participant a’s rankings
for methods s and t, respectively; cov( ) is the
covariance; and W the number of users (Figure 2).

The deterministic methods differ in their ability
to predict the final holistic assessment, sometimes
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significantly so. Additive value functions with
revised weights and linear single attribute value
functions performed best, with swing weighting/
AHP and goal programming (exponent=2) being
close behind. However, no method’s ranks are
highly correlated with holistic assessment’s ranks
(highest value=0.58), consistent with previous
research (Edwards, 1977; Hobbs, 1986; Hobbs
et al., 1992), von Winterfeldt and Edwards, 1986).
Possible explanations are that the methods over-
simplify sophisticated subjective decision processes
or, alternatively, that methods result in more
systematic, balanced assessments; of course, Fig-
ure 2 cannot distinguish between these hypotheses.
Meanwhile, predictive correlations for the linear
value function with tradeoff weights are signifi-
cantly lower than for the linear value functions
with point allocation weights, swing weighting/
AHP weights, or revised weights (p50.0013).
Surprisingly, the predictive validities for the two
non-linear single attribute value function methods
(mid-value splitting and hand-drawn value func-

tions) are statistically less than linear single
attribute value functions (all with revised weights)
(p50.006).

For uncertainty methods, however, all methods
have approximately equal predictive validity
(Figure 2). The correlation for all uncertainty
methods is 0.52–0.53, and none are statistically
different. Thus, our hypothesis, that MCDM
methods have different predictive validity, holds
for the deterministic methods but not for the
uncertainty methods. Assumptions of risk prefer-
ence differ for each uncertainty method. Min max
regret avoids extreme negative outcomes and
thereby assumes risk aversion, maximize expected
utility assumes risk neutrality when a linear utility
function is used, and first-order stochastic dom-
inance makes no risk preference assumptions.
Figure 2 indicates that no one representation of
risk attitudes did a better job of predicting holistic
evaluations than another, and that choice of
weighting method affects predictive validity more
than choice of risk attitude. However, risk

Intermethod Correlation with Final Holistic Assessment

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Min Max Regret

Non-Linear U(X)

Linear U(X)

Fuzzy Sets

Goal Programming (p =      )

Goal Programming (p = 2)

Non-Linear V(X) (hand-drawn)

Non-Linear V(X) (mid-value splitting)

Linear V(X) - Revised Weights

Linear V(X) - Swing Weighting / AHP

Linear V(X) - Tradeoff Weighting (cost)

Linear V(X) - Point Allocation Weights

Deterministic Ranking Methods

Uncertainty Ranking Methods

∞

Figure 2. Predictive validity analysis: correlations of method results with final holistic assessment (Note:
Deterministic and uncertainty methods were correlated with the deterministic and uncertainty final holistic
assessments, respectively. Revised weights used except where specified.).
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attitudes should increase in importance if the
degree of uncertainty is increased.

The predictive validity of the ELECTRE and
stochastic dominance methods cannot be com-
pared in the above manner because they do not
yield a full ranking of alternatives. However, we
examined their predictive validity by comparing
their incomplete rankings to those of holistic
assessment. ELECTRE I provides information
about whether one alternative ‘‘outranks’’ an-
other. We compared the ‘‘kernel’’ (set of non-
outranked alternatives out of the original 7
policies) to the final holistic assessment rankings.
The average kernel size for ELECTRE was 3.3.
The final holistic assessment’s highest rank (1) was
in the ELECTRE kernel for only 50% of the
participants, and 50% of the ELECTRE kernels
contained the holistic assessment’s lowest ranked
alternative (7). This unpromising result could have
occurred by chance. One-third of the kernels
contained both the highest and lowest ranked
alternatives.

Meanwhile, stochastic dominance also does
not provide a ranking of alternatives, but
shows whether an alternative dominates another.
Figure 3 depicts the cumulative distributions for
one participant’s utility functions for each policy.
In this case, stochastic dominance is evident. For
instance, the policy of relaxed SO2 standards is
first-order stochastically dominated by the bio-
mass promotion policy. For this participant, five
alternatives are first-order stochastically domi-
nated, therefore the kernel size is two (the $150
and $300/ton CO2 tax policies). The average kernel
size for all participants was 3.2 for first-order
stochastic dominance and 1.7 for second-order
stochastic dominance. Results from this method
differed from those of the final holistic assessment.
The final holistic assessment’s top ranked alter-
native was non-dominated for only 28% of the
participants, which could have occurred by
chance. Meanwhile, the nuclear alternative had
an average holistic assessment rank of 5.2 (out of
7), but was non-dominated in 72% of the
stochastic dominance results. The results of the
last two paragraphs demonstrate that ELECTRE
and stochastic dominance produce results that are
distinctly different from holistic assessment (i.e.,
neither has high predictive validity).

In sum, none of the MCDM methods had high
predictive validity. It may appear that the methods
are not useful if they do not match the user’s final
holistic preferences. Nevertheless, insights gained

from using MCDM methods were evidenced by
differences between holistic rankings completed
before and after applying the MCDM methods
and reviewing the results. Initial and final deter-
ministic holistic assessment differed for 94% of
participants and were not highly correlated (aver-
age correlation of 0.55 between each person’s pair
of rank sets), with 53% of participants choosing a
different top-ranked alternative. However, these
differences between participants’ initial and final
holistic assessments also could have occurred by
chance (i.e., holistic assessments made one day
apart without intervening MCDM assessments
might differ just as much); our experiment was not
designed to control for this alternative explana-
tion. Meanwhile, holistic rankings of uncertain
alternatives taken before and after uncertainty
MCDM methods differed for 68% of participants.
Yet most differences between participant’s two sets
of uncertain holistic evaluations were small (mean
correlation of 0.81), so we cannot claim that much
learning took part as a result of the uncertainty
MCDM exercises.

As we noted previously, the numerical analyses
of method results must be viewed in terms of the
experiment’s limitations. However, the use of
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several methods can help people focus on their
objectives and provides an opportunity to think
about the problem in different ways (Hobbs and
Horn, 1997). This implication for MCDM use is
applicable regardless of whether inconsistencies
between methods arise from order effects or
inherent differences in the methods. In this sense,
the use of several MCDM approaches can aid
decision-making more than a single approach
(Corner and Buchanan, 1997; Simpson, 1996).

Hypothesis 3.
Methods will differ in the convergence of different
peoples’ results.

We hypothesize that some methods will produce
more similar results across all persons than other
approaches. Such methods might be interpreted as
promoting consensus, or alternatively, as obscur-
ing genuine differences of opinions. In order to test
this hypothesis and identify such methods, inter-
person correlations were compared for different
methods. We define ‘‘interperson correlation’’ to
be the correlation between policy rankings for a
given method for a pair of users, averaged across
all pairs of users:

1

W

2

 !XW
a¼1

XW
b>a

covðrsa; rsbÞ
srsasrsb

where rsa and rsb are the vectors of policy ranks
from method s for participants a and b, respec-
tively. Interperson correlations can be calculated
for weight sets as well.

Formal MCDM methods generally have higher
convergence of different persons’ results than do
holistic evaluations (Edwards, 1977; Hobbs and
Meier, 2000; von Winterfeldt and Edwards, 1986),
perhaps because participants simplify the problem
in holistic assessments by focusing on a few
criteria. Surprisingly, this was not the case with
our experiment, as holistic assessment had a higher
interperson correlation than most other methods.
Interperson correlations ranged from 0.02 (linear
utility function) to 0.79 (linear value function with
tradeoff weighting) (Figure 4). The correlation of
tradeoff weighting results was high because most
participants had similar weights for this method,
with most placing a high weight on cost (average
weight on cost 53%). This correlation is signifi-
cantly higher than those of other deterministic
methods except fuzzy sets (p50.001). In contrast,

interperson correlations for the goal programming
methods (exponent p=2 and N) are statistically
lower than correlations for holistic assessment and
the linear value function with point allocation
weights, tradeoff weights, or revised weights
(p50.03).

The fuzzy set method chooses the policy that has
the highest degree of membership in the set ‘‘good
decision,’’ as measured by a multivariate fuzzy set
membership function. Because of its ‘‘min max’’
operator (see Appendix A), this method tends to
choose alternatives that perform moderately well
on all alternatives; consequently, the interperson
correlation (0.73) was the highest of all methods
except the linear value function with tradeoff
weights. For all persons, the fuzzy set method
showed that the $75/ton CO2 tax, $150/ton CO2

tax, and nuclear power promotion policies (none
of which had the worst attribute value for any
attribute) performed better than the base case,
$300/ton CO2 tax, and biomass promotion options
(each of which had the worst possible value for
some attribute).

For uncertainty methods, the linear utility
function and min max regret methods’ interperson
correlations are statistically different from the
other methods’ interperson correlations
(p50.001), with the linear U(X) resulting in the
least consensus and min max regret achieving the
most. Such differences in interperson correlations
have implications for decision-making, as differ-
ences of opinion among users present opportu-
nities for discussion and learning.

Hypothesis 4.
Climate change experts are subject to classic
weighting biases.

The specific bias addressed in this section
(‘‘splitting bias’’) has been previously identified
as a problem for directly assessed weights, such as
point allocation (von Winterfeldt and Edwards,
1986). (Another bias associated with tradeoff
weighting is mentioned under Hypothesis 5.) The
splitting bias occurs when more aggregate weight
is given to an attribute when it is ‘‘split’’ into
several attributes (e.g., dividing ‘‘environment’’
into SO2 emissions, nuclear waste, and climate)
than when it is categorized as a single attribute
(e.g., a single weight is assessed for
‘‘environment’’). This bias can be tested if weights
are chosen by both hierarchical and non-hierarch-
ical methods. In hierarchical point allocation, the
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user first assigns weights to broad categories, then
allocates each category’s weight among subcate-
gories. In contrast, the non-hierarchical point
allocation method presents all attributes simulta-
neously, without categorization. Criterion infor-
mation is processed differently when presented in
parallel than in sequence (Korhonen et al., 1997).
Experiments have found that a hierarchical
approach results in less weight for attributes that
belong to categories with many attributes than
does a non-hierarchical approach (e.g., Eppel,
1992; Hobbs and Meier, 2000; Stillwell et al.,
1987).

Most previous experiments that demonstrated
splitting bias involved inexperienced subjects (e.g.,
students). We hypothesize that this bias applies
even to the experts in this experiment, and
therefore would occur in the actual application
of the methods. Although weighting biases are
widely recognized from experimental evidence,
they are rarely addressed in applications
(P .ooyh .oonen and H.aam.aal.aainen, 2000).

The participants were divided into two groups,
each using a different value tree (Figure 5). Half of
the participants applied the non-hierarchical ap-
proach by allocating 100 points among the six
attributes, with more points indicating a higher
significance. The other half applied the hierarch-
ical approach by first allocating 100 points
between cost (x1) and the environmental category;
then allocating 100 points among the environ-
mental categories of SO2 emissions (x2), nuclear
waste (x3), and climate; and finally allocating 100
points among the climate attributes of temperature
increase (x4), sea-level rise (x5), and ecosystem
stress (x6). The weight of an attribute on the lower
level of the hierarchy was then calculated using the
point allocations for each higher level (e.g., weight
on sea-level rise=(points for sea-level rise)�
(points for climate)/100� (points for environ-
ment)/100).

The splitting bias would predict that the sum of
weights for x4, x5, and x6 would be higher for the
non-hierarchical point allocation than for hier-
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Figure 4. Interperson correlations for MCDM methods.
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archical approach. Indeed, the average total
weight for attributes x4, x5, and x6 for the non-
hierarchical method (42%) is significantly higher
than that for hierarchical approach (21%) (Mann–
Whitney test p-value 50.008). Thus, we have
confirmed that climate change experts are subject
to the classic ‘‘splitting bias.’’

Hypothesis 5.
Weights chosen by different methods differ sig-
nificantly.

Previous experiments have compared various
weighting methods (e.g., Belton, 1986; Hobbs et al.,
1992; P .ooyh .oonen and H.aam.aal.aainen, 2001). We
hypothesize that how weights are chosen (the
method used) can be as important as who chooses
the weights, because different methods use differ-
ent operational meanings of attribute importance.
If this is true, the choice of methods is important,
as is the issue of validity. If, on the other hand,
intermethod correlations are higher than interper-
son correlations, who performs the assessment
matters more than which method is used.

Intermethod correlations between weight sets
from various weighting methods show that differ-
ent approaches did in fact yield different results
(Table II). The tradeoff weighting method almost
uniformly produced a higher weight for cost
(average weight on cost 53%). Earlier experiments
have shown that in tradeoff questions, the
attribute users are asked to adjust tends to receive
higher weight (the scale compatability bias; e.g.,
Borcherding et al., 1991), and our result is
consistent with that conclusion. The high weight
on cost causes tradeoff weights to have low
correlations with other methods and also to have
the highest interperson correlation (0.46 among
weight sets chosen by different people, statistically
higher than other interperson correlations, Wil-
coxon signed-rank test p-values50.001). In con-
trast, interperson correlations for weights from
other weighting methods were essentially zero.
Point allocation, swing weighting/AHP, and the
final choice of weights (revised weights) yield
similar weights: intermethod correlations between
each pair of these three methods (0.78, 0.88, 0.89)
are statistically higher than intermethod correla-
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Figure 5. Alternative value trees for splitting bias analysis of point allocation weights.
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tions between tradeoff weights and any of these
methods (0.39, 0.49, 0.58) (p50.04). This indicates
that tradeoff weighting elicits very different
weights.

Comparison of intermethod correlations (range:
0.39–0.89) and interperson correlations (range:
0.03–0.46) indicates that who assesses the weights
and which method is used both have a significant
impact on weights. This conclusion is subject to
the experiment design limitations discussed earlier.
We cannot determine the specific cause of varia-
tions in weights. However, we do venture to
conclude that using more than one weighting
method is preferred to a single approach, because
methods frame the problem differently, and thus
yield different results and provide opportunities
for reflection and learning.

Hypothesis 6.
Ranks resulting from different methods differ
significantly.

Similar to the weighting results just described
(Hypothesis 5), we hypothesize that which ranking
method is used is as important as who performs
the method. We tested this hypothesis by
comparing the intermethod and interperson
correlations for different ranking methods
(Table III). If which method is used is as important
as who performs the method, the intermethod and
interperson correlations will be of the same
magnitude.

The differences among deterministic policy
ranks in Table III are the result of the following
choices of who or how to rank (in decreasing order
of importance):

* choice of person (interperson correlations
range: 0.17–0.79, all but two being 40.34);

* choice between goal programming, value
function, or fuzzy sets (intermethod correla-
tions range: �0.11 to 0.56);

* choice between holistic assessment or MCDM
method (intermethod correlations range:
0.14–0.58);

* choice between tradeoff weights or more
direct weighting methods (intermethod corre-
lations range: 0.51–0.57);

* choice between linear or non-linear value
function (intermethod correlation: 0.66);

* choice between AHP or point allocation
weights (intermethod correlation: 0.73); and

* choice of exponent ( p) in goal programming
(intermethod correlation: 0.85).

Factors that affect ranks under uncertainty, in
decreasing order of importance, are (Table III):

* choice of person (interperson correlations
range: 0.02–0.59);

* choice between holistic or analytical method
(intermethod correlations range: 0.52–0.53);

* choice between regret or utility function
(intermethod correlations range: 0.74–0.79);
and

* choice between linear or non-linear utility
function (intermethod correlation: 0.93).

The results show that both choice of method
and person are very important. The intermethod
correlations for deterministic ranking methods
vary from �0.11 to 0.85, indicating that various
methods produce different results. Comparison of
those correlations to interperson correlations
(range: 0.13–0.79) indicate that both who applies

Table II. Intermethod and interperson correlations of weights from weighting methods

Weighting

method

Point

allocation

Swing

weighting/AHP

Tradeoff

weighting

Final choice

of weights (revision of

weights)

Average intermethod correlations of weights chosen by the same person

Point allocation } 0.78 0.58 0.89

Swing weighting/AHP } 0.39 0.88

Tradeoff weighting } 0.49

Average interperson correlations of weights for the same method

0.05 0.03 0.46 0.06
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Table III.

Intermethod and interperson correlations of policy ranks for deterministic methodsa

Deterministic

ranking

method:

Final

holistic

assessment

Linear V(X) Non-linear

V(X)

Goal

programming

Fuzzy

sets

Weighting Method Mid-

value

splitting

Hand-

drawn

p ¼ 2 p ¼ N

Point

allocation

Tradeoff Swing/

AHP

Revised

Average intermethod correlations of ranks chosen by the same person

Holistic

assessment

} 0.50 0.14 0.57 0.58 0.37 0.25 0.56 0.45 0.42

Linear V(X):

point allocation

weights

} 0.57 0.73 0.80 } } } } }

Linear V(X):

tradeoff weights

} 0.51 0.54 } } } } }

Linear V(X):

swing

weighting/AHP

} 0.85 } } } } }

Linear V(X):

revised weights

} 0.66 0.63 0.45 0.48 0.21

Non-linear

V(X): mid-value

splitting

} 0.72 0.17 0.17 �0.11

Non-linear

V(X): hand-

drawn

} 0.27 0.24 0.00

Goal programming:

p ¼ 2

} 0.85 0.56

Goal programming:

p ¼ N

} 0.53

Average interperson correlations of ranks for the same method

0.32 0.34 0.79 0.17 0.27 0.21 0.18 0.20 0.13 0.73

Intermethod and interperson correlations for uncertainty methods

Uncertainty

ranking

method:

Holistic

assessment

Linear

utility

function

Non-linear

utility

function

Min Max

regret

Average intermethod correlations of ranks chosen by the same person

Holistic assessment } 0.53 0.52 0.53

Linear U(X) } 0.93 0.79

Non-linear U(X) } 0.74

Average interperson correlation of ranks for the same method

0.37 0.02 0.32 0.59

aNote: All methods used revised weights except where noted
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the method and which method is used both can
strongly impact results. Similarly, for uncertainty
ranking methods, the intermethod correlations
(range: 0.52–0.93) and interperson correlations
(range: 0.02–0.59) imply that both the user and
the choice of method can significantly influence
results, with higher variability among people than
among methods.

Fuzzy sets, goal programming, and value func-
tions differ greatly in philosophy and assumptions;
as a result, the ranks they select diverge strongly
from each other (Table III). Which method is
more appropriate depends on which set of
assumptions seems most valid for a given situation
and person. In general, we believe that multiple
methods result in better representations of values
because they allow people to compare results and
resolve differences.

To further explore some method differences,
consider the two methods for eliciting non-linear
single attribute value functions. These methods
also had different results, although their predictive
validities are not statistically different. For the
mid-value splitting method, the user specifies an
attribute value ðxi0:5Þ. that is halfway in desirability
between the best and worst values ðx��i and x�i Þ for
each of four criteria. A linear or exponential value
function was then fit to the three points. The other
method asks the user to directly draw a value
function on a graph for each of the criteria. Seven
percent of the hand-drawn graphs were shapes that
were neither linear nor exponential (e.g., S-shaped)
which implies that assumptions of linear or
exponential value functions may not be valid. An
additional 36% of the graphs were linear or
exponential but diverged from the value functions
implied by the mid-value splitting method, in that
the mid-value points ðxi0:5Þ of the hand drawn and
mid-value splitting graphs differed by more than
10% of the potential range. For example, one
value function might be concave and the other
convex, or one value function slightly concave and
the other very concave. The average intermethod
correlation between the ranking results of the mid-
value splitting method and direct hand-drawn
method is 0.72. Seventy-one percent of these
intermethod correlations were above 0.8. Consid-
ering just the participants whose correlations fell
below 0.8, one-fifth of those users’ hand-drawn
value functions did not fit the assumption of linear
or exponential value functions. Thus, different
results arise both from the assumption of linear or
exponential value functions used in the mid-value

splitting method and from inconsistent participant
responses.

Hypothesis 7.
Visualization methods differ in their ability to aid
the decision-making process.

Visualization aids can help users better under-
stand the results of an MCDM analysis, such as
tradeoffs among alternatives and how changes in
weights affect results. Our experiment explored
several standard visualization methods for both
deterministic and uncertain results. For determi-
nistic exercises, participants were given a table of
attribute values and several visualization aids (bar
graphs of attribute values for each policy, Carte-
sian (XY) plots showing how each policy performs
on two attributes at a time, and value path plots).
A value path plot is created by normalizing values
for each attribute for each alternative, in which the
worst value for a given attribute has a normalized
value of 0 and the best value has a normalized
value of 1. For other values, the normalized value
is as follows: viðxijÞ ¼ ðxij � x�i Þ=ðx

* *
i � x�i Þ, where

x��i and x�i are the best and worst values,
respectively, for attribute i among all alternatives,
and xij is the value for attribute i for alternative j.
This allows the viewer to determine the relative
performance of each alternative for each attribute.
A value path plot is provided in Figure 6 for four
of the attributes. It shows, for example, that the
$300/ton CO2 tax policy performs better than all
other alternatives for global temperature change
and SO2 emissions, but performs worse than all
others for nuclear waste generation and control cost.

For the uncertainty exercises, participants were
given a table of attribute distributions for each
option (mean, standard deviation, minimum,
maximum), a table of regret values (mean,
standard deviation, minimum, maximum), and
other visualization aids (Cartesian plots for each
pair of attributes that show how each alternative
performed under each of the simulations, and box
plots). The box plots created for this exercise
consist of a central box extending from the 25th
percentile (‘‘lower hinge’’) to the 75th percentile
(‘‘upper hinge’’); a horizontal line in the box
representing the median; ‘‘whiskers’’ which extend
from the box to the ‘‘lower fence’’ (equal to the
smallest observed value that exceeds X=lower
hinge - 1.5[upper hinge�lower hinge]) and the
‘‘upper fence’’ (the largest observed value that is
no greater than Y=upper hinge + 1.5[upper

INTEGRATED ASSESSMENT OF CLIMATE POLICY 243

Copyright # 2002 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 10: 229–256 (2001)



hinge�lower hinge]); and circles representing out-
liers (values>upper fence, or 5lower fence).
Example boxplots are shown in Figure 7.

Participants rated each visualization method (on
a scale of 1–5) on several criteria including ease of
understanding, whether the participant used the
information in completing the exercises, and
whether the participant would recommend the
visualization method or table for actual decision-
making. A score of 5 represented the best possible
evaluation, whereas 1 is the worst possible.
Means for the visualization methods are shown
in Figures 8a and b.

Figure 8a shows that of the deterministic
approaches, the table of criteria values performed
best on the ‘‘ease of understanding’’ and ‘‘reliance
of information presented’’ (meaning more used
by participants in the exercises) categories. Inter-
estingly, tables were not the participants’ first or
even second highest choice for actual climate
change decision-making. The more difficult to
understand value path plots were more highly
recommended, although their evaluation is sig-
nificantly better only compared to the XY plots
(p50.04).

For the uncertainty visualization methods’
evaluations (Figure 8b), the XY plots and table
of regret values were significantly easier to under-
stand than the table of criteria distributions or box
plots (p50.03). Nevertheless, the participants
relied more heavily on the latter two method
(p 5 0.04). Those two approaches were also more
highly recommended for use in actual decision-
making than the XY plots and tables of regret
values (p50.05).

Hypothesis 8.
Users may be more confident about some
value judgments than others, and incorpo-
rating precision information can change ranking
results.

Although all value judgments are subjective,
users may be more sure of some value judgments
than others. Yet most MCDM methods require
the user to input precise point values (e.g., ‘‘How
many more times important is criterion i than
criterion j?’’). Responses to such questions do not
reflect how confident the user is about his/her
answers.
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As an alternative to the point estimates tradi-
tionally used, we asked the participants to provide
a range for answers to some exercises in addition
to point values. For example, one tradeoff-
weighting question asked: ‘‘How much would
you be willing to spend to lower the year 2050
temperature by 0.18C? Please provide a range for
the answer you provided.’’ A narrow range
indicates that the user is confident about his/her
answer.

The point estimates, used alone, provide precise
weights for the attributes. The ranges, in contrast,
define constraints that the weights must satisfy
(e.g., criterion i is two to five times as important as
criterion j). Such ranges could be analyzed in
variety of ways. We choose to analyze results as
follows: if alternative A cannot be better than
alternative B for any weights that satisfy the
ranges provided, than alternative B is said to
outrank alternative A (Sarin, 1977). To determine
the outranking relationships, m(m�1) linear pro-
grams (LPs) were solved for each person where m
is the number of alternatives. Each LP determined
whether a given alternative B outranks another
given alternative A. In the LP, linear single
attribute value functions were assumed, although
the method could be applied to non-linear value
functions or utility functions. The linear program
is as follows:

maximize CAB ¼ VðAÞ � VðBÞ

s.t. 1)
Pn

i¼1 wi ¼ 1, where wi=weight for attribute i,
n=number of attributes

2) wi 50 8i

3) weighting relationships implied by the ranges
provided (e.g., if attribute i is 3–5 times as
important as attribute j, then 3wj4wi45wjÞ

If CAB50, alternative B is better than alter-
native A under any feasible weights, so B outranks
A. For further discussion of decision-making with
incomplete information, see Park et al. (1996) and
Weber (1987).

This approach can be used to define a kernel of
alternatives that are not eliminated by any other
alternative. This kernel can be viewed as analo-
gous to the ELECTRE I kernels. By calculating
the number of alternatives that outrank a given
alternative and the number of alternatives out-
ranked by the given alternative, we can determine
the possible ranks (1–7) for each alternative. For
example, if policy A outranks two other alter-
natives but is outranked by one other alternative,
the feasible ranks for policy A range from 2 to 5.
Examples of outranking relationships are provided
in Figure 9. An arrow indicates that one alter-
native always outranks another. (Note that we
have not shown all arrows; if A outranks B, and B
outranks C, we omit the arrow from A to C, since
it can be proven that A must also outrank C.) For
instance, in Figure 9, Example 1, the SO2

emissions alternative always outranks nuclear
promotion and the $75, $150, and $300/ton CO2

tax alternatives. The SO2 emissions, biomass, and
base case alternatives are incomparable (none
outrank another). Similarly, the outranking results
from ELECTRE I can be used to determine a
range of possible ranks for each alternative.
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Figure 7. Boxplot examples.
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Kernel sizes and ranges of ranks from ELECTRE
I and tradeoff questions with ranges are compared
in Table IV.

The average kernel sizes from the tradeoff
weighting method with ranges and the ELECTRE
method are not statistically different. The tradeoff
method with ranges reduced the set of non-
dominated alternatives by more than half, while
allowing the decision-maker to express their im-
precision as well as point estimates. This outcome
implies that results from point estimates of weights

(yielding a complete ranking of alternatives) may
inspire a false sense of precision in the rankings. In
other words, our participants were not certain
enough of their answers (did not have sufficiently
narrow weighting relationships) to yield complete
rankings of alternatives in all cases, although use of
a point estimate forces this complete ranking.
Advantages of explicit consideration of imprecision
include: (1) a more accurate reflection of the state of
mind of users, and (2) a screening out of a
significant number of alternatives.
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Figure 8. (a) Participant evaluation of deterministic visualization methods; (b) participant evaluation of uncertainty
visualization methods.
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4. INSIGHTS INTO THE APPLICATION OF
MCDM TO CLIMATE CHANGE AND

INTEGRATED ASSESSMENT

The workshop provided an opportunity for
climate change experts to state how MCDM
methods could be applied to climate change policy
and IA, and what the obstacles to such applica-
tions might be. Many of their comments are
applicable to a wide range of decisions beyond
climate change policy. The following conclusions
were synthesized from comments written on
questionnaires and offered during the formal

discussions. The first conclusion focuses on the
formidable task of addressing expert disagreement
with respect to climate change impacts, and
suggests how MCDM could be used to help
identify where such disagreement affects policy
choice. The second highlights the challenges facing
climate change experts who want to use methods
that require decomposition of the problem (i.e.,
methods that require the user to think of
interrelated attributes as independent).

4.1. To apply MCDM methods, decision-makers
must have confidence in attribute values, which can
be especially challenging in the uncertain realm of
climate change
The attribute values we provided were for the
purpose of workshop exercises and were not
intended to be definitive. However, whether such
estimates were to be believed was crucial for some
participants, even though several workshop ex-
ercises explicitly incorporated uncertainty. For
example, one participant was skeptical of model
results because climate change models oversimpli-
fy the complex reality, while another person
stressed disbelief about estimates beyond the
immediate future, such as predictions of conse-
quences in the year 2100. The consequences of

Example 1 Example 2 

Biomass 
Promotion 

feasible rank 1 to 4 

SO2

Emissions

rank 1 to 3 

$75 
CO2 Tax

 rank 3 to 5 

$150 
CO2 Tax

rank 4 to 6 

$300
CO2 Tax

rank 7 

Base Case

rank 1 to 6 Nuclear
Promotion

rank 2 to 6 

SO2

Emissions

rank 1 to 3 

Base Case

rank 1 to 3 

$75 
CO2 Tax

    rank 4 

$150
CO2 Tax

   rank 5 

$300
CO2 Tax

rank 7 

Biomass 
Promotion

rank 1 to 3 

Nuclear
Promotion

   rank 6 

Figure 9. Example outranking relationships resulting from LP analysis of tradeoff questions with ranges.

Table IV. Results from linear value function using
tradeoff weighting methods with ranges and
ELECTRE I

Analysis of 7 alternatives: Tradeoff

Weighting

(linear value

function)

ELECTRE I

Kernel size: average

(standard deviation)

2.8 (1.7) 3.3 (2.0)

Number of possible ranks

for a given alternative:

average (standard deviation)

3.2 (2.1) 4.6 (2.0)
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particular policies are uncertain, as can be seen
from present debates on climate change science.
Uncertainty results in disagreement among models
and experts with respect to the nature, distribu-
tion, and timeframe of impacts (Morgan and
Keith, 1995). This can be problematic for the use
of MCDM with integrated assessment, as the
methods require some measure of how each
alternative will perform on selected attributes.

Although decision-makers may not agree on the
outcomes of alternative scenarios, each person or
decision-making entity must have some assump-
tions concerning what will or might happen if a
certain action is taken in order to compare
alternatives. Otherwise, the comparison of alter-
natives becomes difficult or impossible. Incorpor-
ating uncertainty can help address this issue, but
still experts may disagree on the uncertain impact
(e.g., probability distribution for an impact) for a
given policy. In other words, including uncertainty
in the manner we used (i.e., defining a single
probability distribution for each attribute for each
policy) is not enough to address expert disagree-
ment in climate change policy.

MCDM could be used to explore how expert
disagreement affects the choice of alternative in
several ways. Users’ value judgments could be
applied multiple times, once to each set of
attribute values or distributions derived from
various IA models or expert opinions, representing
a range of possibilities. A comparison of the
resulting rankings would identify where model or
expert disagreements affect choice of policy.
Another approach is to allow users to specify
attribute values and distributions according to
their own beliefs, and then apply the MCDM
methods. Although this may introduce bias, it
would do so in a documentable way, and would
help reveal how different expert opinions affect the
rankings. For example, each user may have
different value paths (Figure 6) because they
disagree on the impacts, yet their policy ranks
may or may not differ.

4.2. MCDM methods that involve decomposition of
the problem require the user to separate value
judgments from how the system functions, and may
be difficult for some users
Climate change decisions are complicated by
uncertainties, multiple decision-makers, and social
implications, which can be problematic for
conventional decision analysis tools that decom-
pose the decision problem into a simpler frame-

work (Jaeger et al., 1998). For instance, MCDM
methods often require the user to decompose the
problem by valuing a change in one or two
attributes while holding other attributes constant
(e.g., as in tradeoff weighting). For climate change
experts who are highly familiar with feedbacks
among attributes, such decomposition proved to
be a difficult cognitive task. Some participants felt
that the decomposition employed by such analy-
tical MCDM approaches is a serious weakness
because it treats problems in isolation, not in the
broader context of feedbacks and other decisions.
This difficulty may in part explain some of our
participants’ poor evaluations of the tradeoff
weighting method, and their preference for holistic
evaluation (Figure 1). One participant said, for
example, that he ‘‘couldn’t buy pair-wise [compar-
isons] with all else being equal because of [his]
preconceptions about how the world works.’’ This
suggests that such methods require more time than
others to allow the user to feel comfortable with a
process that separates value judgments of the
attributes from how the system functions.

However, users may gain some understanding
because decomposition would encourage them to
think about the problem differently, considering
the possibility of value independence (e.g., pre-
ference independence) where there may still be
physical dependence (the performance of attri-
butes are correlated). However, this requires a
willingness and ability on the part of the user to
think of the system in ways that may not be
possible in reality (e.g., increase in temperature
with no change in sea-level rise). Ironically, the
more knowledgeable a user is about the system,
the more challenging this will be. For some
decision-makers, methods that do not require
decomposition may be more appropriate.

5. RECOMMENDATIONS FOR MCDM
EXPERIMENTS

In retrospect, we can identify several ways in
which the workshop design can be improved. We
hope that future experiments involving MCDM
methods can learn from our experience.

5.1. Attributes and general objectives must be
clearly defined and encompass the decision-makers’
values
To allow greater flexibility, we did not specify the
general objectives of climate policy (e.g., to
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minimize the net global costs associated with
greenhouse gas emissions, to minimize just U.S.
costs, or to appease constituents); rather, we let
each participant choose weights consistent with
their view of the appropriate objectives. However,
some participants found the exercises hard to
complete without explicit statements about who is
the decision-maker (e.g., governmental agency)
and their objectives (e.g., individual versus societal
goals). In addition, the data presented to the
participants omitted information some workshop
participants considered valuable or necessary (e.g.,
distribution of costs, nuclear waste disposal
methods, fate of tax revenue). Naturally, these
participants found the MCDM exercises difficult.
This may explain why holistic rankings differed so
much from those of other methods (Figure 2); the
former may include unstated objectives, while the
later were based only on our IA model results.

In an actual policy-making, much effort would
go into determining what criteria are important to
each decision-maker. This was beyond the scope of
our experiment, therefore we were unable to
completely address concerns about attribute com-
pleteness and specificity. Participant feedback
stressed the importance of explicit and compre-
hensive sets of attributes. While this observation
may seem obvious, it demonstrates the need for
clearly determining early on what decision-makers
deem important. This may be especially challen-
ging in the realm of climate change, as decision-
makers’ goals are often divergent or unspecific,
and who the decision-makers themselves are might
not be obvious. In retrospect, participants might
have felt more comfortable with the process had
we spent time prior to the workshop identifying
what objectives were important to participants
rather than choosing what we believed to be
representative ones. Even though the workshop
involved a hypothetical decision and was focused
on MCDM methodology rather than the policy
decision, some participants found the application
of methods to be difficult because they did not
participate in the selection of attributes.

5.2. Anchoring, although a potential source of bias,
may be necessary or helpful for making decisions
People often provide numerical estimates by
modifying numbers that others have provided or
suggested, which is also known as the ‘‘anchor and
adjust’’ heuristic (Kahneman and Tversky, 1973).
For example, a survey which asks, ‘‘How much are
you willing to pay to eliminate 1 ton of CO2

emissions: less than $25, $25 to $50, or more than
$50?’’ will generally elicit lower numbers than a
question which uses ‘‘less than $100, $100 to $200,
or more than $200?’’ To prevent such bias, we
deliberately did not provide anchors (e.g., U.S.
gross national product as an anchor for annualized
cost). However, several workshop participants
commented that the exercises were difficult with-
out such reference points. For example, one said it
was ‘‘hard to relate to the numbers.’’ Therefore,
even though anchors are a known source of bias, it
may be necessary to provide them in order to help
participants understand the attributes of the
alternatives. If this is true with the knowledgeable
experts participating in our workshop, it will be
even more applicable if diverse stakeholders or the
public at large are involved. Offering a diverse
range of possible anchors may lessen the possible
bias. If sample sizes permit, offering different
groups different anchors could allow for control
of and testing for an anchoring effect.

5.3. The experiment’s schedule should be designed
so that it does not overburden participants
The two-day workshop included presentations of
methods, over a dozen MCDM exercises, group
discussions, completion of evaluation forms, and
breaks and meals. Although this ambitious sche-
dule allowed comparison and evaluation of many
methods, it had the drawback of fatiguing the
participants. In retrospect, the workshop might
have benefited from a less demanding schedule,
resulting either from a longer workshop or the
application of fewer methods. While this would
have resulted in less data or required more time, it
would help ensure that participants understood
the methods and had adequate time to complete
MCDM exercises and review results in a more
relaxed atmosphere.

6. SUMMARY AND DISCUSSION

A workshop with 20 climate change experts, IA
practitioners, and policy-makers explored the
application of MCDM methods to climate change
policy and IA. Participants applied various
MCDM methods (weighting, deterministic rank-
ing, and uncertainty ranking) to a hypothetical
climate policy decision. MCDM methods were
compared and evaluated through analysis of
method results, opinion questionnaires, and nom-
inal group discussions. A variety of conclusions
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can be drawn from the workshop results concern-
ing eight hypotheses about method validity,
appropriateness, and differences in choices. In
summary, our analysis shows that the methods
varied in their predictive validity and convergence
of different persons’ results. The weighting and
ranking methods were found to often yield
divergent results for attribute weights and policy
rankings, respectively. In particular, goal pro-
gramming, additive value functions, and fuzzy
set analysis often yielded very dissimilar policy
ranks, and tradeoff weights gave distinctly differ-
ent results than other weighting methods.
Although tradeoff weighting, in theory, should
be most valid (as it directly measures marginal
rates of substitution, as required by value and
utility theory methods), its weights had the lowest
predictive validity while the users preferred weight
sets chosen directly or via a hybrid swing weight-
ing/AHP procedure.

Another hypothesis considered whether climate
experts are subject to the classic splitting bias when
directly selecting weights. This hypothesis was
confirmed. Several techniques for visualizing
tradeoffs and uncertainties also were compared in
the workshop. For use in actual climate change
decision-making, participants recommended vi-
sualization methods that they also found were
harder to understand, suggesting that participants
believe the extra effort needed to comprehend
more complex visualizations is worthwhile. The
final hypothesis concerned the usefulness of
information on precision of weights. Participants
provided information about how confident they
were of their responses to tradeoff questions.
Linear programming-based methods used this
information to eliminate some alternatives but
generally did not provide a complete ranking of
policies. We conclude that this approach provides
a more realistic representation of the precision of
people’s preferences, and their implications for
policy ranks.

A recurring theme in these results is the benefit
of using multiple MCDM approaches. Low
predictive validities and intermethod correlations
indicated that no single method can be used to
identify the best alternative. The outcomes of the
various methods often conflicted because each
method frames the problem differently. Further,
the participants disagreed about which method is
preferred for policy making}every method (ex-
cept for stochastic dominance) had its advocate,
and no one method was favored by all.

In their evaluation of methods, many of the
participants advocated using several methods in
concert. By asking the participants to resolve
conflicts among multiple methods, they were
forced to reflect on the problem further and to
reconsider their judgments and the effects they
have on policy choices. Participants recommended
using revised weights (reconciliation of weights
from different techniques) more than any single
weighting method in actual climate change deci-
sion-making. Similarly, for deterministic ranking
methods, participants recommended reconciliation
of multiple methods (where the user reviews results
from several methods and selects a final set of
policy ranks) over any individual MCDM method.
Finally, reconciliation of multiple methods and
linear utility functions with revised weights were
tied for the most highly recommended uncertainty
ranking method.

Yet holistic assessment was, on average, more
highly recommended for actual policy making
than any MCDM method, including reconcilia-
tion, for the both the deterministic and uncertain
cases. In other words, participants slightly pre-
ferred that decision-makers examine attribute
values and decide policy rankings subjectively
instead of applying a formal MCDM method.
Several participants discussed the danger of using
a ‘‘black box’’ approach, and others were un-
comfortable with the process (e.g., ‘‘This frame-
work doesn’t tell me anything, because I don’t
view the world that way.’’). Participants stressed
the need for adequate time to understand and
incorporate all relevant alternatives and decision-
maker’s values, to complete MCDM exercises, and
to explore and discuss results. Approaches that
decompose the problem and evaluate attributes or
pairs of attributes independently were especially
problematic because the climate change experts
had difficulty separating value independence from
physical independence. In addition, participants
had other problems with the MCDM exercises
including missing attributes and lack of confidence
in the values of the attributes that were included.

Perhaps the biggest obstacle to use of formal
MCDMmethods in IA is expert disagreement with
respect to the performance of attributes for the
alternatives. Experts dispute the distribution,
nature, and magnitude of impacts and how much
uncertainty exists. Some participants disliked our
particular IA model and others argued that no
model could meaningfully estimate impacts in the
distant future, even if uncertainty is considered.
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This makes the application of MCDM to climate
policy extremely difficult, as all methods require
estimates of what will happen under different
alternatives. The workshop results suggest that
including distributions of impacts is insufficient to
address expert disagreement. MCDM often has
been used to explore how differences in value
judgments affect the choice of policy alternatives;
however, for climate policy, MCDM could make a
bigger contribution by identifying how policy
choices are affected by disagreements over the
attribute values for individual policies.

In spite of the shortcomings they perceived in
MCDM methods, participants generally felt that
the process of working through MCDM proce-
dures and examining results helped them better
understand how they think about the problem
holistically. For example, one person said he
wanted to do the ‘‘right’’ thing when he completed
the holistic assessment, so he choose one of the
more costly alternatives, whereas with other
methods he placed higher weight on the cost
attribute. He said that examining results from

these methods caused him to reanalyze how he
thinks about the attributes. This further stresses
that use of multiple methods can enhance under-
standing (Brown and Lindley, 1986; Corner and
Buchanan, 1997; Simpson, 1996; Hobbs and Horn,
1997). In discussions, participants supported the
idea that MCDM provides insights, saying:
‘‘structured analysis can help educate [the users
about the decision]’’, ‘‘one useful aspect [of
MCDM is the] implications of doing things
different ways,’’ and ‘‘[We can] understand the
decision process better by looking at decisions with
different perspectives. . . That’s good.’’

Beyond a method’s numerical output, insight
gained from the process of working through
methods is a primary benefit of MCDM. This
sentiment was echoed in our workshop. Use of
multiple methods was supported by analysis of
method results, participant evaluations, and parti-
cipant discussion. However, the workshop also
highlighted several challenges that must be over-
come for the successful application of MCDM to
climate change policy.

APPENDIX A. SUMMARY OF MCDM METHODS COMPARED

All methods used four attributes (temperature increase, SO2 emissions, nuclear waste generation, and
control cost) except where indicated. Methods applied with six attributes also included ecosystem stress
and sea-level rise. All methods are defined in Goicoechea et al. (1982) unless other citations are given.

Method Description

Weight Selection Methods wi=weight for attribute i

xij=value for attribute i for alternative j

Point allocation Allocate 100 points among attributes. Performed twice: (a) 6 attributes, (b) 4

attributes

Hierarchical point allocation 6 attributes

Swing weighting/analytical hierarchy

process (AHP) hybrid (Hobbs and

Horn, 1997)

Used swing method to compare two attributes at a time, stating a ratio of

importance. Repeated for all possible pairs of attributes. Inconsistencies resolved via

AHP eigenvector method (Saaty, 1980).

Tradeoff weighting (Keeney and

Raiffa, 1976)

Users chose one of the following question formats:

(1) What value of xCA would make you indifferent between policies A and B? (xCA
and xCB =values for control cost for alternatives A and B, respectively. xiA and

xiB=values for attribute i for alternatives A and B, respectively. We supplied the user

the values for xiA, xCB, and xiB.)

Policy A: xCA, xiA

Policy B: xCB, xiB

(2) How much cost are you willing to incur for a (xiA –xiB) improvement in attribute

i ?
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Each question was asked three times to compare the cost attribute to the other three

attributes. Weights were calculated as follows:

wi

wC
¼

½xcA � xcB�=½x**
C � x�C�

½xiB � xiA�=½x**
i � x�i �

xi
** and xi

*=best and worst values, respectively, for attribute i, among all

alternatives. xC
** and xC

*=best and worst values, respectively, for cost among all

alternatives.

Revised weights (final revision

of weights)

Participants were given weights resulting from each of the above methods and asked

to provide a final set of weights.

Deterministic Ranking Methods n=number of attributes. Revised weights used except where specified.

Initial holistic assessment Alternatives ranked from most desirable (1) to least desirable (7), and then rated

from most desirable (100) to least desirable (0), using the information provided in

Table I. Performed twice: (a) 6 attributes, (b) 4 attributes

Additive linear value function MAX
j

VðXjÞ ¼
Xn
i¼1

wiviðxijÞ

V(Xj)=overall value of policy j

vi(xij)=single criterion value function that converts the criterion into a measure of

value of worth, vi(xi
**)=1, vi(xi

*)=0, with:

viðxijÞ ¼
ðxij � x�i Þ
ðx��i � x�i Þ

Additive value function applied using results of each weighting method.

Additive non-linear value function Two methods were used to generate viðxijÞ, which may be non-linear, for use in

additive value function:

(1) Mid-value splitting: xi0:5=user-specified value for attribute i that is halfway in

desirability between x��i and x�i ; viðxi0:5Þ ¼ 0:5. Linear value function used if

appropriate; otherwise, ai, bi, and ci found such that viðxiÞ ¼ ai þ bi expðci � xiÞ.
(2) Users drew a value function representing viðxiÞ. E.g.,

1
vi(xi)

0
xi

** xi
*

xi

Goal programminga (a) p=2, (b) p=N. gi=user-specified maximum acceptable value for attribute i.

MIN
j

Xn
i¼1

wi MAXð0; viðgiÞ � viðxijÞÞ
� �p

Thus, only undesirable deviations from goals are penalized.

ELECTRE Ia Alternative A is superior to B (A ‘‘outranks’’ B) if both of the following

(1) Concordance: C(A,B)>P

APPENDIX A. (Continued)

Method Description
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P=specified threshold (0.5 used in this experiment)

CðA;BÞ ¼
X
i2N

wi

.Xn
i¼1

wi

Ni=set of attributes for which xiA is better than xiB. If there is a tie, then half of the

weight is placed in the denominator.

(2) Discordance: D(A,B) 5 qi 8i
Di(A,B)=vi(xiB)�vi(xiA)

qi=user-specified threshold for tolerable dissent for attribute

ELECTRE does not yield a complete ranking of alternatives. The set of alternatives

that are not outranked defines a ‘‘kernel’’ of preferred options.

Fuzzy Sets (Bellman and Zadeh, 1970)b MAX
j

MIN
i

viðxijÞ
w;
i

w’i=weight for attribute i, rescaled so the highest weight for any attribute is 1.

vi(xij) is interpreted as a fuzzy set membership function describing the extent to which

j is a ‘‘good’’ solution in terms of attribute i. The above aggregation procedure is one

of many possible implementations of fuzzy sets and is often used in electrical

engineering applications.

Revision of Ranks and Ratings

(final holistic assessment)

Participants were given results for the deterministic ranking methods (except fuzzy

sets) and asked to provide a final set of ranks and ratings.

Uncertainty Ranking Methodsc xijk=value for attribute i for alternative j for simulation k

K=number of simulations

xi
** and xi

*=best and worst values, respectively, for attribute i among all alternatives

and simulations

Initial holistic assessment Alternatives ranked from most desirable (1) to least desirable (7), and rated from

most desirable (100) to least desirable (0), using the information provided regarding

possible outcomes.

Linear utility function U(Xj)=expected utility of alternative j

ui(xijk)=single criterion utility function, uiðx��i Þ ¼ 1; uiðx�i Þ ¼ 0

UðXjÞ ¼
XK
k¼1

Xn
i¼1

wiuiðxijkÞ=K

uiðxijkÞ ¼
ðxijk � x�i Þ
ðx**

i � x�i Þ

Non-linear utility function Gamble method: User specified a value ðxi0:5Þ for attribute i so that he/she is

indifferent between a deterministic alternative ðxi0:5Þ and a gamble (50/50 chance of

x��i orx�i ). Repeated for all attributes. Linear value function used if appropriate.

Otherwise, ai, bi, and ci found such that ui(xi) = ai+bi � exp(ci �xi)

xi0.5 (user-specified) 

xi
**

(prob. = 0.5)

xi
*

(prob. = 0.5)

APPENDIX A. (Continued)

Method Description
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Min Max Regret (Loomes and Sugden,

1982)

Rjk=regret; loss in utility under scenario k if policy j is chosen as opposed to the best

alternative under that scenario.

Rjk ¼ MAX
h

UðxhkÞ �UðxjkÞ; whereUðxjkÞ ¼
Xn
i¼1

wiuiðxijkÞ

This method chooses the alternative j that minimizes the maximum regret among all

scenarios k:

MIN
j

MAX
K

k¼1
Rjk

Stochastic Dominance (Becker

and Soloveitchik, 1998; Zeleny, 1982)

Let Fj(U)=cumulative probability distribution for U(xjk), where U(xjk) is estimated

using the K values of U(xjk) and xjk={xijk, 8i}. Alternative A first-order

stochastically dominates (fsd) alternative B if: (a) FA(U)4FB(U), 8UE[0,1]; and (b)

9UE[0,1] such that the inequality is strict.

First-order stochastic dominance makes no assumptions about risk preference; if A

fsd B, then any U( ) that is a positive monotonic transformation of the original U( )

will result in A having a higher expected utility than B.

Alternative A second-order stochastically dominates (ssd) alternative B if:

(a)
RU
0 FAðvÞ dv4

RU
0 FBðvÞ dv, 8UE[0,1]; and (b) 9UE[0,1] such that the inequality is

strict. Second-order stochastic dominance assumes the decision-maker is risk-averse

(i.e., if A ssd B, then any U( � ) that is a positive concave transformation of the

original U( � ) will result in A being preferred).

Revision of Ranks and Ratings

(final holistic assessment)

Participants were given results for the above uncertainty ranking methods and asked

to provide a final set of ranks and ratings.

aThese are variations of traditional goal programming and ELECTRE I procedures, which subjects preferred in previous

experiments (Hobbs et al., 1992; Hobbs and Meier 2000).
bParticipants did not review results for this method or evaluate its appropriateness or ease of use.
cTo simply the assessment, uncertainty methods considered only four alternatives (base case; $75, $150, and $300/ton CO2 tax).
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