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Abstract. If global warming occurs, it could significantly affect water resource distribution 
and availability. Yet it is unclear whether the prospect of such change is relevant to water 
resources management decisions being made today. We model a shoreline protection 
decision problem with a stochastic dynamic program (SDP) to determine whether 
consideration of the possibility of climate change would alter the decision. Three questions 
are addressed with the SDP: (1) How important is climate change compared to other 
uncertainties?, (2) What is the econonfic loss if climate change uncertainty is ignored?, 
and (3) How does belief in climate change affect the timing of the decision? In the case 
study, sensitivity analysis shows that uncertainty in real discount rates has a stronger effect 
upon the decision than belief in climate change. Nevertheless, a strong belief in climate 
change makes the shoreline protection project less attractive and often alters the decision 
to build it. 

1. Introduction 

The magnitude of climate change due to increasing concen- 
trations of greenhouse gases could be larg•, but it is difficult to 
predict. General circulation models (GCMs) project tempera- 
ture changes of + iøC to +4øC under a doubled CO2 concen- 
tration scenario [Intergovernmental Panel on Climate Change 
(IPCC), 1992]. Furthermore, regional temperature projections 
are more uncertain in that different GCMs show contradictory. 
results for the same region. This is because GCMs differ in 
their methods of parameterizations of regional features and 
because "downscaling" GCM results to the regional level is 
difficult and arbitrary [Paoli, 1994]. 

The projected changes in temperature, and the more uncer- 
tain changes in precipitation, could significantly affect stream- 
flows [Leavesley, 1994]. For the Laurentian Great Lakes, with 
their large surface areas, increased evapotranspiration is likely 
with higher temperatures. As a result, lower lake levels are pro- 
jected under climate change, even though most GCM scenarios 
indicate an increase in precipitation in the region [Croley, 1990]. 

However, it is argued that (1) because climate change's 
hydrologic impacts would not be significant for decades and (2) 
because water resources decisions are often incremental (ad- 
justed as system changes occur), the prospect of elimate 
change is of little relevance to water resource decisions being 
made now [Stakhiv, 1991; Rogers, 1994]. Yet climate change is 
relevant to some water project decisions because they are long 
lived, irreversible, indivisible, and have benefits or costs that are 
affected by climate-influenced variables [Hobbs et al., 1997]. 

Analyzing the impact of climate change uncei'tainty upon 
water resource planning requires an integrated set of models 
which include (1) climate change scenarios, (2) a hydrologic 
model, and (3) socioeconomic and environmental impact mod- 
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els. Several researchers have put together such studies for the 
Great Lakes [Hartmann, 1990; Rogers and Harshadeep, 1993; 
P. T. Chao et al., unpublished report, 1996]. While such inte- 
grated system models offer insight into the magnitude of im- 
pacts under particular scenarios, decisions concerning the sys- 
tem should be addressed by risk or decision analysis. Decision 
analysis can identify the sensitivity of decisions to different 
climate assumptions, the flexibility of policy options, the value 
of including climate change uncettainty in the decision process, 
and the relative importance of climate change uncertainty 
compared to other uncertainties [Fiering and Rogers, 1989; 
Fiering and Matalas, 1990]. We use this methodology to revisit 
the 1986 decision by the U.S. Army Corps of Engineers 
(Corps) to build breakwaters at Presque Isle, Pennsylvania, on 
the coast of Lake Erie. 

Decision analysis has been aPPlied to water resource deci- 
sions under climate change uncertainty. Davis et al. [1972] 
applied Bayesian decision theory to levee design given uncer- 
tainty in flood frequency parameters. Fiering and Rogers [1989] 
laid out a sequential decision tree framework for evaluating 
water resource projects with Bayesian updating of the proba- 
bility of climate change. A. Patwardhan and M. J. Small (un- 
published paper, 1993) looked at a one-time decision concern- 
ing the construction of bulkheads versus beach replenishment 
under sea level rise uncertainty. Yohe [1991], recognizing the 
importance of identifying the optimal timing of investment 
decisions, developed a sequential decision framework for an 
ocean shoreline protection problem. The decision in his study 
hinged upon when the state of the system crosses a threshold, 
past which the system can no longer operate properly. He 
suggested that contingency planning should recognize that 
there is no need to respond to sea level rise until a certain time, 
and at that time a specific discrete plan should be imple- 
mented. His framework is not applicable to the problem at 
Presque Isle, because no obvious threshold for making a deci- 
sion exists. 
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Figure 1. Stochastic dynamic program (SDP) structure. 

A more general sequential decision framework is defined by 
Krzysztofowicz [1994] and is used in this paper. He outlines a 
stopping-control paradigm to determine when to invest ("stop- 
ping") as well as how to operate the system ("control"). He 
decomposes a planning problem under uncertainty into mod- 
eling (1) the uncertainty of the environment's future state 
using probability distributions that are updated over time as 
new information is gained, (2) social preferences through a 
multiattribute utility function, and (3) the sequential decision 
process through a decision tree or a stochastic dynamic pro- 
gram (SDP). This SDP can be viewed as a partially observable 
Markov decision process (POMDP) (see work by Monahan 
[1982] and White [1991] for surveys and Ellis et al. [1995] for an 
example). A POMDP assumes that the underlying state of 
nature (here, the magnitude of climate change) is not com- 
pletely observable but that there is an observable Markovian 
variable (in our case, water levels) whose distribution is con- 
ditioned on the state of nature. In each period the posterior 
distribution of the state of nature can be updated according to 
Bayes' law given new observations. The distribution of the state 
of nature is then used to determine the probability transition 
matrix of the SDP. 

The parpose of this paper is to investigate whether long-run 
clima te change uncertainties could affect the decision to invest 
in a long-lived, irreversible project today. The decision for the 
erosion control project at Presque Isle was to build segmented 
breakwaters to protect recreational beaches [U.S. Army Corps 
of Engineers (USACE), 1986]. Erosion of the lakeside beaches 
of the sand spit caused the Corps to begin sand nourishment in 
the 1950s. By the 1980s, owing to the expense of sand nour- 
ishment plus the cost of dredging in the harbor channel be- 
cause of littoral drift of the sand, the Corps investigated 
whether segmented breakwaters would be a cheaper, more 
effective alternative. A benefit-cost analysis conducted in 1986 
by the Corps justified the construction of 52 segmented break- 
waters, which were subsequently built by 1993. The benefit-cost 
analysis assumed a one-time decision and no climate change 

uncertainty. Climate warming would lower lake levels, leading 
to wider beaches and less need for sand nourishment and 

lowering the value of the breakwaters. 
The decision to build breakwaters at Presque Isle is reeval- 

uated with a SDP. The SDP redefines the decision by consid- 
ering (1) whether to build or to delay construction of the 
breakwaters and (2) changes over time in the subjective like- 
lihood of a decrease in average lake levels due to climate 
change as information is obtained in the form of observed lake 
levels. The trend in long-term mean water levels of Lake Erie 
is the state of nature. For simplicity, this variable is assumed to 
have two possible values: no change in mean levels (no climate 
change) and a linear decrease of 0.015 m/yr (climate warming). 
The observational variable is the annual mean water level of 

Lake Erie. Lake Erie water levels are modeled as a lag-1 
Markov process conditioned upon the long-term mean sce- 
nario. The cost model is also a function of sand nourishment 

and dredging expenses, although uncertainties in shore pro- 
cesses (such as littoral drift) are not considered. 

The SDP is analyzed to answer three questions: (1) Does 
climate change uncertainty have more influence upon the de- 
cisio n than other do parameter uncertainties? (2) What is the 
economic value of including climate change uncertainty in the 
decision process? (3) Does climate change uncertainty change 
the timing on the decision to build? 

In the next section the SDP model is presented. In subse- 
quent sections the numerical experiments (sensitivity analysis, 
quantification of the value of information, and timing analysis) 
are discussed. 

2. SDP Model 

Figure 1 shows the structure of the SDP. Given an initial 
state (specific discrete value for each of the three state vari- 
ables defined below), there is a decision (shown by boxes with 
heavy outlines) to either (1) commence construction, "build", 
or (2) postpone the decision 1 year, "wait." After a decision is 
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made, the system incurs the appropriate arc costs, consisting of 
sand nourishment costs, C, plus the capital cost of the break- 
waters, if the decision to build is chosen. The system then 
transitions into a new state for the next year. If the decision is 
to wait, then another decision to wait or build is made in the 
following year. If, however, the decision is to build at time t, 
then the SDP enters a Markov chain, shown in the lower half 
of Figure 1, that simply calculates the expected sand nourish- 
ment cost over the project life. Note also that the decision to 
build breakwaters is irreversible and indivisible; thus there are 
no more decision nodes once a decision to build is made. 

A SDP is essentially defined by four components, each of which 
will be described below: (1) state variables, (2) a probability tran- 
sition matrix, (3) a cost function, and (4) a decision rule. 

State Variables 

The state variables, which must account for all factors that 
affect the cost function, are belief in climate change, PCCt; 
annual average Lake Erie water level, L t; and years since 
construction began, Yt. PCCt actually represents the belief in a 
specific climate change scenario in which the long-term mean 
water level decreases and is expressed as a subjective proba- 
bility. The long-term mean water level change under climate 
change is assumed to be -0.015 m/yr. This value is based on 
the Intergovernmental Panel on Climate Change (IPCC) con- 
clusion that temperatures in transient scenarios of climate 
change will lag temperatures in steady state scenarios [IPCC, 
1990]. The reason for this lag is that the global climate system 
would take time to reach an equilibrium temperature. On the 
basis of IPCC guidelines we translated a 1.5-m drop under a 
steady state scenario [Lee and Quinn, 1992] into a transient 
scenario of -0.015 m/yr. 

L t is the annual mean level of Lake Erie (meters). L t and Yt 
determine the amount of sand nourishment necessary to main- 
tain sutficient beach width for recreational purposes and 
dredge volumes from the harbor channel. The transition prob- 
abilities for L t are conditioned on PCCt. 

Yt is a state variable because it is assumed that during con- 
struction the breakwaters are only partially effective in reduc- 
ing erosion. Yt (years) is the number of years since construc- 
tion began. Y' is the full construction period. Therefore Yt/Y' 
represents the fraction of breakwater segments that have been 
constructed. The model assumes nourishment requirements 
will decrease linearly during construction from 100% of pre- 
construction requirements to 25%. After construction is com- 
pleted, sand nourishment requirements are assumed to be 25 % 
of preconstruction requirements. 

Markov Transition Probabilities 

Each element of the probability transition matrix, P(ia)(ih), 
is the product of the transition probabilities of the three 
state variables: 

h 
P(i#)(jh)-- P(Lt+l, PCC•+i, Yt+llLt a, PCC'i, Yt) 

_ p(L,h+llPCC,•, Lt •) x PCC•+l(Lta, h PCCtl) -- Lt+l, 

X P(Yt+llYt) 

The subscripts (i#)(jh) denote that the system transitions 
from an initial state with discrete values of PCC'• and Lt a to the 
next state of PCC•+ • and Lh t+l. 

p h PCCt•, L t a) is the transition probability of the mean (Lt+l 

annual water level, which is defined by applying the law of total 
probability: 

h 
P(Lt+llPCC'i, Et a) = P(Lth+llrC, Et a) x PCC'i 

q-P(mth+l noCC, Lt •) x (1 - PCC') (2) 

p h (Lt+•lCC, Lt a) and P(L h InoCC, Lt a) are the water level t+l 

likelihoods given climate change and no climate change, re- 
spectively. The terms are derived from a lag-1 autoregressive 
Markov model [Loucks et al., 1981]: 

h 

Lt+ 1 = (1 -- •)(/--'0 q- Trend X t) + •bLt a + e (3) 

where L o is the present long-term mean (equal to 174.13 m), (k is 
the lag-1 correlation coetficient, and e is the error term (equal to 
Vto,(1 - (k) •/2, where Vt is a standard normal random variable and 
o' is the standard deviation). Several researchers have shown that 
higher order autoregressive models of annual water levels for any 
of the Great Lakes are more appropriate [Slivitzky and Mathier, 
1993; Mathier et al., 1992]. But to maintain simplicity within the 
SDP, a lag-1 Markov model was fit. The model statistics were (k 
= 0.8784, L o = 174.13 m, 0 '2 = 0.1759 m, and adjustedR 2 = 0.77. 
The effect of using this model rather than a higher order model is 
to lessen the range of water levels and also to alter the interannual 
pattern. A higher order regression model would make the SDP 
more complicated, because the state space would have to be 
expanded to include not just last year's level, but also those of 
previous years. Future work will address the use of more complex 
models. 

If the error term of (3) is dropped, the equation gives the 
expected annual level for the subsequent year, or L* t+l' To 
calculate the Markov transition probabilities, P(L th+ •IcC, L t a) 

L h and P( t+•lnoCC, Lt a) between the predefined discrete lake 
levels, the following standard normal variates, h Zlowe r and 

h 

Zuppcr, are first calculated for the lower and upper bounds of 
state h (i.e., L h t+• + 0.5AL andL h - 0.5AL)' t+l 

Z h 
upper 

h 
Z lower = 

(L h t+l q- 0.5AL - L T+i) 
e(1 - qb2) 1/2 

h 
(Lt+ 1 - 0.5AL - L* t+l) 

e(1 - qb2) 1/2 

(4) 

AL is the water level increment (set at 0.2 m). Since the error 
term, e, is assumed normal, the probability of attaining state h 
in t + 1 is then obtained as follows: 

cI) h 
(Zupper) 

P(mth+ll m,•) cI) h *, = (Zupper) - (I)(Z•ower) 
1 - (I)(Zlhower) 

h=l 

l<h<n 

h=n 
(5) 

where cI) is the cumulative distribution for standardized normal 

variates and n is the number of discrete states of Lt. Equations 
(4) and (5) are calculated for both conditional water level 
likelihoods required by (2). 

The transition probability for the belief state, PCC•+ •(Lt a, 
L h PCCtj) is derived by first applying Bayes' law to calcu- t+l, , 

p * . late the exact posterior probability, CCt+ • 

P(CCT+lIeC% mt mth+l) [p h : (Lt+ 1 CC, Lt •) 

x PCC';]/[P(mth+llCC, mt •) X PCC'; + P(Lth+, noCC, Lt •) 

x (1 - ecc')] (6) 
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Table 1. Transition Probabilities for P(Yt + l I Y t) for Two 
Decisions, at 

Yt+l 

Yt 0 I Yt+l 

Sand Nourishment 
0 1 0 0 

Breakwater 
0 0 1 0 
1 to Y' - 2 0 0 1 

Y' - 1 and Y' 0 0 0 

Decision Rule 

The available actions are to continue sand nourishment or to 

begin constructing breakwaters. The expected cost from time t 
onward, V(Lt a, PCG, Yt), for a given state, (Lt a, PCG, Yt), 

Yt is calculated using Bellman's equations: 

: (mt+l, 1) 0 Vt(Lt •, PCC'i, Yt) min FC + • • P(ig)(jh)X [C h 
j h 

0 -{- Vt+l(mth+l, PCC{+i, 1)]/[1 + a] • • P(ig)(jh) 
0 j h 
1 h 

X [C(Lt+l, O) n t- Vt+l(L h PCC•+i, 0)]/[1 + a] (10a) t+l, 

Since PCC t has been discretized, the state PCCt*+ 1 is unlikely 
to exist; because of this, we instead assume that the transition 
occurs to one or the other belief states adjacent to PCCt*+ 1 
according to the following interpolation rule: 

0 j<k,j>k+l PCC•+i(Lt •, Lth+l, PCC') = 1 - r j = k 
r j=k+l 

(7) 

+1 k is the state in which PCCt•+ 1 < PCCt*+ 1 < PCC•t+ 1' The 
ratio r is defined as 

(PCC* - PCCt•+i) t+l 

F '-- k+l (PCCt+ 1 _ PCCt•+i) (8) 
The last probability used in (1) is P(Yt+ 11Yt) ß P(Yt+ 11Yt) is 
defined in Table 1. The decision, at, is determined in Bellman's 
equation, (10a) and (10b). Essentially, Table i says that if 
breakwaters construction has begun, then Yt increases by 1 up 
until project completion, Y'. 

Cost Function 

The cost function, which was obtained by statistical analysis 
of sand nourishment and dredge cost records, is [USACE, 
1980; Gorecki and Pope, 1993] 

C(Lt h, Yt) = i8.4 x (1 + •)t 5.18 ] (1 + a) 4 + (1 •- a) 8 x 0.371 
ß max (0, -21,700,000 + 125,000 x Lt h) 

y, 0 75 0.251 (9) 
where a (equal to 8.625%) is the real discount rate and ad- 
justed R 2 = 0.68. The assumed costs per ton for sand nour- 
ishment and dredge volume removed (1986 dollars) are $8.40 
and $5.18, The discount terms reflect that water levels affect 

sand nourishment and dredge volumes after lags of approxi- 
mately 4 and 8 years, respectively. Since the littoral drift of 
nourished sand takes 2 or more years to travel around the 
peninsula to the channel entrance, dredge volume costs are 
lagged longer than sand nourishment costs. The factor 0.371 is 
the ratio of dredge volume to previous sand nourishment vol- 
ume. The value/3 is the real escalation rate for the cost of sand 
nourishment, which is positive because sources of sand are 
limited. The effect of/3 is to make the breakwater alternative 
look more attractive in the future because sand nourishment 

costs increase exponentially. Last, the maximum operator re- 
flects that below a certain water level, there is no need for sand 
nourishment because the beaches are wide enough. 

Vt(Lt a, PeG'i, Yt)= • • P(i#)(jh)X [c(g h Yt+l) t+l, 

i h 

+ Vt+l(Lth+l, PCG+i, Yt+l)]/[1 + a] Yt> 0 (10b) 

Bellman's equations include the cost of sand nourishment, C, 
and the fixed cost of building the breakwaters, FC, and reflects 
the irreversibility of the decision. The Corps found significant 
construction cost savings would occur if construction were to 
take place over a longer period and therefore examined three 
construction period alternatives: 2, 12, and 24. FC takes values 
of $21.3 million, $13 million, and $8.8 million for Y' = 2, 12, 
and 24, respectively. The tradeoff of longer construction peri- 
ods is that benefits are not accrued as quickly, which is re- 
flected in the cost function (9). At t = T (the last period of the 
SDP) we assume that V(L•, PCC'•, Yt) -- 0. We assume the 
end effects are negligible given T - 80 and a > 0.05. 

By solving Bellman's equations for all states in each period 
t starting at the last period t - T the optimal action in each 

ia is then a state can be determined. The output of the SDP, a t , 
matrix of binary decisions, 0 to continue sand nourishment and 1 
to build breakwaters, one for each system state (PC•, Lt a, Yt = 0). 

3. Experiment and Results 
The three questions posed at the end of the introduction 

were addressed in numerical experiments with the SDP. The 
experimental methodology and results for the three questions 
are discussed in this section. 

Does Climate Change Uncertainty Have More Influence 
Upon the Decision Than Other Parameter Uncertainties? 

A factorial experiment of several uncertain model parame- 
ters was done to determine how each influenced the decision 

policy determined by the SDP. Table 2 shows the model pa- 
rameters examined and the values they took. 

The SDP was run for all the permutations of the values in 
the table, 108 times, and the decision policy for each run was 
examined to see if there was a difference in the pattern of 
decisions between PCC• = 0 and PCC• = 1. For example, 
assume the SDP was run with m = 4 discrete values of PCC'• 
and n = 10 discrete values of L t • (the actual run dimensions 
were m = 9 and n = 19); then the decision matrix for t = 0 
of a run could be 

PCCXL [172 ... 175.6] 
0.00 0 0 0 0 0 1 1 1 1 1 

0.33 0 0 0 0 0 0 i 1 1 1 

0.67 0 0 0 0 0 0 0 i 1 1 

1.00 0 0 0 0 0 0 0 0 1 1 
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Table 2. Parameters Varied in the Factorial Analysis and 
Their Values 

Parameter Low Medium High 

Water level trend,* "Trend," m/yr 0.0075 0.015 0.030 
Real discount rate,•' a, % 5 8.625 ..' 
FC, as percentage of nominal values 75 100 125 
Real escalation of sand nourishment 0 2 ... 

cost,$/3, % 
Construction period,? Y', years 2 12 24 

*Equation (3). 
?Equations (9), (10a), and (10b). 
$Equations (10a) and (10b). 

The columns are for water levels from 172 to 175.6 m (0.4-m 
increments), and the rows are for belief in climate change from 
0 to 1. In this case, for no belief in climate change (the first 
row), there are decisions to build for L • -> L t 6 = 173.6 m. For 
a high belief in climate change (PCCo = 1.0), there are deci- 
sions to build only at the very highest water levels (L t --> 174.8 
m). Since high belief in climate change implies that construc- 
tion is less attractive, one can conclude that belief in climate 
change makes a difference in this case. 

On the other hand, if the results are, for example, 

0 0 0 0 0 1 1 1 1 1 

0 0 0 0 0 1 1 1 1 1 

0 0 0 0 0 1 1 1 1 1 

0 0 0 0 0 1 1 1 1 1 

or 

or 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

then belief in climate change has no effect on the decision 
policy. 

To be consistent in examining the results of the 108 runs, a 
nonparametric method was developed in which we counted the 
number of changes in decision policies between the first row of 
the matrix, PCCo = 0, and the last row, PCCo = 1, for all the 
runs with a given value of one parameter while all the other 
parameter values varied. More specifically, we categorized the 
runs as likely to have the decision to act, if the run had at least 
one "1" within the 95% confidence interval of water levels, 
173.4-174.8 m (which correspond to states between L t 7 and 
Lt • 4). Consider, for example, a run in which the parameter/3 = 

0%. If ao(PCC/o = O, Lg) = 1 for at least one of 7 -< # -< 14, 
then we would mark that run as a run in which building is likely 
given no belief in climate change. If, however, for the same run 
that there is never a decision to build given 100% belief in 
climate change (i.e., ao(PCC•o = 1, Lg) = 0 for all 7 -< # -< 
14), then the run was classified as a run in which climate 
change makes a difference in the decision. We continued to 
examine all 54 runs in which/3 = 0%. Out of the 54 runs, only 
6 showed changes in the likelihood to build. 

Table 3 shows the results of this analysis, where "fraction" is 
the number of runs with differences in decision policy divided 
by the total runs for those values and "percent" is their respec- 
tive percentages. 

The primary insights from this analysis are the following: 
1. At the lower discount rate, 5%, belief in climate change 

can matter, since 30% of the decision policies change from 
likely to build to unlikely to build. Essentially, the model shows 
that below approximately 5%, climate change belief is a factor 
in the decision. At 8.625%, the full decision matrix was all 
zeros; that is, building the breakwaters was not recommended 
regardless of belief in climate change and water level. 

2. Similarly, belief in climate change affects scenarios in 
which FC -< 75%,/3 -> 2%, or Y' -> 24. The number of runs 
with changes in decisions due to belief in climate change were, 
however, less than those for discount rates. 

3. That the number of changes in decision policy was 4, 6, 
and 6, respectively, for the three levels of water level trend 
shows that belief in climate change is more important than the 
magnitude of climate change in the decision. In other words, 
for some cases it is not what one believes (the trend magni- 
tude), but rather how much one believes (PCCo). The lowest 
trend of 0.007 m/yr, which corresponds to a drop of 0.45 m in 
60 years, is well within the natural variability of the system. 

Last, since Table 3 shows that a and FC have a strong 
influence upon the decision policy, it is interesting to see how 
these two factors interact with each other. We used the same 

sensitivity analysis approach, but trend, escalation, and con- 
struction period were fixed at 0.015 m/yr, 0.02%, and 12 years, 
respectively. We varied first cost from $6 million to $17 million 
by $1 million increments and discount rate from 2% to 11% by 
1% increments. In total, there were 120 runs. The decision 
matrices from t = 0 to t = 10 were recorded. The decisions 

were classified as (1) build now (a(PCC•, Lg = 174.2) = 1, 
a decision to build at or above the mean water level), (2) wait 
and possibly build later within 10 years (a (PCCg, Lg = 
174.2) = 0 and a(PCC•, Lt a) = 1, for any # such that 
173.4 -< Lt a -< 174.8 and 0 < t < 10), or (3) wait at least 
10 years (a(PCC•, Lt a) = 0, for all # such that 173.4 -< Lt a -< 
174.8 and t -> 10). 

Figure 2 shows two plots for this sensitivity test. The left- 
hand plot is for PCC•o - 0, and the right-hand plot is for PCCg 
= 1. For extremely low discount rates, regardless of cost and 
climate belief, the decision was to always build, because the 

Table 3. Nonparametric Measure of Influence of Climate Change 

Percent of First Construction 

Interest, % Trend Cost Escalation Period, years 

Value All Runs 5 8.6 0.007 0.015 0.030 75 100 125 0 2 2 12 24 

Fraction 16/108 
Percent 15 

16/54 0/54 4/36 6/36 6/36 8/36 5/36 3/36 6/54 10/54 3/36 5/36 8/36 
30 0 11 17 17 22 14 8 11 19 8 14 22 
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Figure 2. Sensitivity analysis of interest rate versus construction cost. 

extra cost of paying for sand nourishment over time becomes 
too large. The effect of climate change belief was to make the 
decision to wait more favorable for all scenarios, which is seen 

by a leftward shifting of the "wait" band. 

What is the Economic Value of Including Climate Change 
Uncertainty in the Decision Process? 

Two measures were developed to assess the value of infor- 
mation concerning climate change: expected value of including 
uncertainty given perfect information about climate change 
(EVIUPI) and expected value of including uncertainty given 
imperfect information (EVIUII). These two measures differ 
from the traditional definition of EVPI and EVIl in that prior 
analysis is based on ignoring climate change uncertainty rather 
than starting with an initial belief in climate change and not 
updating it. A general description is given of both, followed by 
more rigorous mathematical descriptions. 

EVIUPI can be explained as follows. Suppose a planner 
makes a decision ignoring uncertainty about climate change 
(i.e., assuming PCCo = 0.0 for all ! in the SDP). The resulting 
naive decision policy can then be evaluated using other beliefs 
by imposing that policy within an SDP with PCCo > 0. If 
instead someone provided the planner with perfect knowledge 
about the future climate, that planner could make a perfect 
decision using the SDP by setting PCCo = 0 (if no climate 
change will occur) or PCCo = 1 (if climate change is known to 
occur). We denote the difference in expected cost between the 
perfect knowledge and naive strategies as the expected value of 
perfect information. Of course, obtaining perfect information 
is not possible, but by taking the difference between the ex- 
pected value of a naive decision and that of a perfect knowl- 
edge decision, one can find an upper bound of the value of 
information. A planner would not pay more than EVIUPI to a 
researcher to gather information about climate change. 

Now consider EVIUII. EVIUII is the difference between the 

expected value of the naive decision, and the expected value of 
making a decision with imperfect information on climate. Im- 
perfect information refers to taking the decision maker's initial 
belief in climate change, say PCCo = 0.5, and deriving a deci- 
sion policy given information for updating PCCt using (10). 
EVIUII is the expected improvement in the present worth of 
net benefits that results from making a decision using the 
planner's actual beliefs (PCCo = 0.5) rather than using the 
naive decision policy (from PCCo - 0 for all t). EVIUPI and 

EVIUII show the value of resolving or optimal consideration 
of the uncertainty in climate change and in the decision pro- 
cess. 

Mathematically, we define EVIUPI as 

EVIUPI ig = EV/g[naive] - EVe[perfect] (11) 

The superscripts refer to the initial states of water level, L g, 
and of belief in climate change, PCC{). EVIUPI is solved for all 
initial (t = 0) states i and #. The two terms of (11) are defined 
in (12) and (14): 

EV/a[naive] = I/naive{l!7 PCC•, Y0 = 0) (12) r 0 x,J-, 0, 

V• 'aive, calculated recursively from (13a) and (13b), is the value 
function when climate change is ignored. 

[/, ffaive(m•, PCC'•, Yt) = FC + • • P(i#)(jh) 
j=• 

ß [c(L h Yt+0 q- I?naive[/h PCQ+ Yt+0]/[1 + a] t+l, r t+l /•-'t+l, 1, (13a) 

at•(naive) = 1, Yt= 0 

v?aive(mt g, PCC'•, Yt) = • • P(i#)(jh) 
j=l h=l 

[C h ,/naive{lh PCCS•+i, Yt+O]/[1 + a] ' (Lt+i, Yt+l) q- r t+l kL't+l, (13b) 

otherwise 

Equations (13a) and (13b) are identical to (10a) and (10b) 
except ata(naive), the naive decision array, determines the form 
of the value function; ata(naive) is generated for all ! by pre- 
viously solving the SDP for only the states in which i = 1, that 
is, PCCo = 0. Equations (13a) and (13b) state that ata(naive) is 
imposed on the $DP (10a) and (10b) for all the combinations 
of i and #. Therefore a naive decision based on no climate 
change is applied even when PCCo 4: 0. 

We define the second term of (11), the value under perfect 
information, as 

EV/a[perfect] = PCC• x v0Perfect(mg, PCC0 = 1, Y0) 

-- I/perfect//a PCC0 = 0 Y0) + (1 PCC•) X , 0 •0, , (14) 
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Vo perfect[l# PCCo, Yo) is the value function given perfect •,•-' O, 

information, which is solved recursively: 

m 

[/perfect{/.g PCC0, Yt) = min FC + • P(ig)(ih) ß t \"--' t, 

h=l 

m 

ß [C( Lh Yt+l) -Jr- [/perfect{lh PCC0, Yt+l)]/(1 q- c•) Z P(ig)(ih) t+l, r t+l kx-•t+ 1, 

h=l 

ß [C( Lh Yt+l) q- l'?perfect{lh PCC0, Yt+l)]/(1 + a) (15a) t+l, ß t+l kx-' t+l, 

m 

[/perfect{/g PCCo, Yt)= • P(ig)(ih) ß t \•-•t • 

h=l 

ß [C( Lh Yt+l) q- vperfect{lh PCC0, Yt+l)]/(1 q- t+l, ß t+l kx-• t+l, (Sb) 

Yt> O 

Equations (15a) and (15b) are similar to (10a) and (10b) ex- 
cept that the summation is taken only over h, not j and h, so 
that the transition probability matrix has the form P(ia)(ih), 
where i = 1 or rn (PCCo = 0 or 1, respectively). 

EX•?[perfect] indicates the value if one knew immediately 
and perfectly what the future state of nature would be: either 
climate change, CC, or basis of comparison (present) climate, 
BOC. Information on water levels is not used to update the 
probability of CC or BOC. 

EVIUII is a more representative measure of expected value 
of information than EVIUPI, because it measures the value of 
the actual information that will be gathered through Bayesian 
analysis. EVIUII is defined as 

EVIUIIig = EVig[naive]- EVia[Bayes] (16) 

Equation (16) represents the increase in expected value of 
the analysis, if the decision policy is based upon Bayesian 
updating of the belief in climate change (given information on 
water levels) over that of a decision policy based on zero belief 
in climate change. EVia[naive] is as defined in (12). The ex- 
pected value of the Bayes analysis, EVia[Bayes], is 

EV'a[Bayes] = Vo(Lo •, PCC•o, Yo) (17) 

Vt(Lt a, PC•, Yt) is solved recursively from (10a) and (10b). 
Four of the 108 sensitivity scenarios were chosen for 

EVIUPI and EVIUII analysis. The scenarios differ in construc- 
tion period and first cost, while trend (0.015), discount rate 
(5%), and sand cost escalation (2%) were constant. These runs 
were chosen because they exhibit significant differences in the 
decision arrays between PCCo = 0 and PCCo = 1, showing that 
belief in climate change influences the decision policy. 

Figure 3 shows the EVIUPI results for the four scenarios. 
Since the decision array is identical for the naive analysis and 
for perfect information when PCCo = 0, EVIUPI equals zero 
at all water levels for that probability. But since at•(naive) is 
being applied across all values of PCCo, EVIUPI increases 
with PCCo at all water levels. This result shows that if the initial 
belief in climate change is high, but one ignores climate change 
uncertainty, there is a loss in the expected value of the deci- 
sion. The peak for PCCo = 1 shown on all four graphs corre- 
sponds to the water level state where the decisions in 
ata=o(naive) change from sand nourishment to breakwaters. 

The right-hand-side graphs, which correspond to the 75% 
first cost scenarios, show zero EVIUPI for the highest water 
levels. The reason for this result is that regardless of the initial 
belief in climate change, the SDP model recommends building 
immediately at the highest water levels. Therefore the decision 
is the same under perfect information and under ignoring 
climate change. The 75% cost scenarios also lead to lower 
EVIUPI over the whole range of water levels and PCCo. This 
result makes intuitive sense, because the lower cost means 
lower risk of regretting that the breakwaters were constructed. 
Likewise, the 24-year construction period scenarios result in 
lower EVIUPI than the 12-year scenarios. Again, the lower 
cost of the 24-year construction period alternative makes it a 
less risky proposition. 

To put the magnitude of EVIUPI in perspective, the cost- 
benefit analysis of the Corps yielded a net present worth of 
$11.6 million (based on an annual benefit of $635,000 for 50 
years at a 5% discount rate) for the 12-year construction al- 
ternative over continued sand nourishment. EVIUPI ranges 
from zero to approximately $5 million and is strongly depen- 
dent on PCCo. Somebody with a strong initial belief in climate 
change will value information concerning climate change since 
its worth is as high as one third of the net project benefit. 

Figure 4 shows the ratio of EVIUII to EVIUPI. This per- 
centage represents the "efficiency" of the Bayesian inference 
process relative to perfect information. For example, although 
EVIUII matches EVIUPI when PCCo = 0, there is no effi- 
ciency in information value because EVIUPI equals zero when 
PCCo -- 0. On the other hand, when PCCo = 1, EVIUII is 
100% efficient, because EVIUII is identical to EVIUPI when 
PCCo = 1. 

Does Climate Change Uncertainty Change 
the Timing on the Decision to Build? 

Actually, two timing questions were examined: When will 
climate change be detected given information on water levels? 
and When will a decision to build breakwaters be made? 

When will climate change be detected? The decision model 
was tested to see how fast PCCt would update toward either 0 
or 1 (weak or strong belief) given information on water levels. 
The test was a Monte Carlo simulation under three scenarios 

of water level trends, "Trend" = -0.0075, -0.015, and -0.030 
m/yr. PCCt was updated according to (6), (7), and (8), given 
water levels which were generated stochastically from (3). The 
rate at which climate change could be detected depended 
strongly on Trend. Figure 5 shows results in which PCCo = 0.5. 
For Trend = -0.015 m/yr, the model tended to PCCt = 1 
within 25 years. A limitation of the model is that the observed 
water levels were generated from the same lag-1 autoregressive 
model used in the updating equation. In reality, observed wa- 
ter levels do not fit a lag-1 autoregressive model, and therefore 
it might take longer to tend to PCCt = 1. Furthermore, events 
outside the basin (e.g., a major climate study) could change 
PCCt as well. External changes in knowledge could be modeled 
in a more general SDP as random events that could be in- 
cluded in Bayes' law. In that case, both lake levels and external 
events would affect PCCt. 

When will a decision to build breakwaters be made? We 

developed two measures for the timing of the decision: (1) the 
probability of making the decision to build at time t given initial 
water levels and initial climate change beliefs, P?(build), and 
(2) the expected time until a decision is made to build break- 
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Figure 3. EVIUPI results. 
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waters, given initial water levels and initial climate change 
beliefs, Eia[Tbuild]. Since the initial state (water levels and 
belief in dimate change) affects the decision policy, these mea- 
sures Show whether initial states have a long-term influence on 
the subsequent decision policies. For example, if the SDP 
yields a decision to continue sand nourishment for stage 0 and 
water level 172.5 m, the planner may want to know whether the 
decision to build is likely to occur any time soon. 

The probability of a breakwater decision is similar to a 
geometric probability distribution in which there are t straight 
years of sand nourishment decisions (success) until a decision 
to build (failure): 

n m 

p?Uh)(build ) • • (ig)(.fk) II •(f•)(Jn) ' = P notbu t 0(,-,) ( ' ) X X a•h_, •t-1 

.f=] k=• 

(18) 

(fk) and (jh) denote the states at time t - 1 and t, respec- 
tively. The double summation over f and k adds up the prob- 
abilities of entering state (jh) at time t given a previous state 
Of (f k). Pt(_fk? © is the one-step transition probability matrix 
at time t - 1; jh is the decision array at time t - 1 which at-1 

is based on the decisions defined by (10a) and (10b). 
P(o/(gt)_({•)(notbuilt) denotes the (t - 1)-step transition proba- 
bility matrix in which the decision to build has yet to be made 
since t = 0. This term is calculated recursively from 

n m 

(tg)(jh) ' (notbuilt)= • • r(•g)(m(notbuilt) J- O("r-1) 

f=l k=l 

p(fk)(jh) X (1 jh --a(._•)) 7=2,3,''' t X --(?-1) , (19) 

Equation (19) actually denotes the probability of deciding to 
build given the initial state (ig) and the final state (jh). Sum- 
ming over (jh) gives the marginal probability of having de- 
cided to build by time t given the initial state (i g), regardless 
of the final state: 

n m 

P•?(build) = • • P•?Uh)(build) (20) 
h=l /=1 

We calculate (20) for the two scenarios used for EVIUPI 
and EVIUII which had a 24-year construction period (Figure 
6). Figure 6 is arranged sequentially for values of t = 1, 5, and 
20. For t = 1, there is a high probability of deciding to build 
for high water levels and low PCCo. The two scenarios shown 
have different decision patterns at high values of PCCo which 
result in different probabilities of building at t = 1. The plots 
for subsequent time periods start shifting until, for t = 20, it 
is quite clear that the probability of having built varies primar- 
ily with PCCo and not with L o- The reason for this behavior is 
that for low values of PCCo even if the initial water level is low, 
it is likely that the water levels will rise to the point where the 
decision to build will be made. At higher values of PCCo it 
becomes less likely high water levels will be reached. This 
result is useful for planning because it shows over the long run 
that given these two scenarios, regardless of the initial water 
level, belief in dimate change will be a major determinant of 
whether the breakwaters should be built. 
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Equation (21) is the expected time to build: 

Eig[ rbuild] = E tP?(build) (21) 
t=l 

which is in a form similar to the expected value for the geo- 
metric distribution. For computing purposes, it is not possible 
to sum to infinity, so there is a truncation error in calculating 
Eia[ Tbuild]. We define a lower bound on E'a[ Tbuild] as follows: 

T-1 

Eia[ Tbuild ] __> Eia[ LB - rbuild] = E tP(?(build) + TP{o?)(notbuIlt) 
t=l 

(22) 

Eia[ LB Tbuild] is calculated (in Figure 7) for the same two sce- 
narios used in Figure 6. The plots show that if the decision is 
to build in year 1 (high initial water levels and low belief in 
climate change) then Eig[ LB , Tbuild] = 1. The lower plot shows 
Eia[ LB rbuild] = 1 at high water levels even for higher beliefs in 
climate change. This result shows that under these circum- 
stances belief in climate change is not a factor in the decision. 
But for lower water levels, the plots show that Eia[ i.B rbuild] 
increases significantly with increasing PCCo, indicating that 
climate change beliefs can matter. 

4. Discussion and Conclusion 

The objective of this research was to demonstrate how risk 
analysis, specifically SDPs, can be applied to understand the 
effect of climate change uncertainty upon water resource plan- 
ning. The case study was the erosion control project at Presque 
Isle, Pennsylvania, in which segmented breakwaters were built 

in 1992. While the benefits of building breakwaters seemed 
clear in the short term when the decision was made, in 1986, 
the long-term stream of benefits from the breakwaters is more 
difficult to predict because of the natural fluctuation of lake 
levels. Greenhouse gas-induced climate change, which may 
lower mean water levels, might significantly decrease the 
stream of benefits and result in economic regret, since break- 
waters are a long-term, irreversible investment. The uncertain 
nature of climate change makes it difficult to assess what the 
future stream of benefits may be. 

We applied decision analysis to the erosion control project 
by modeling the problem as a sequential decision process with 
a stochastic dynamic program. A SDP allows the decision 
maker to determine the optimal action given the state of the 
system and to determine the value of information that is gath- 
ered to reduce the amount of uncertainty in climate change or 
for any uncertain factor. 

The process of developing the SDP for the case study was to 
(1) identify state variables, (2) develop a state transition prob- 
ability matrix, and (3) develop a cost function. The state vari- 
ables for the SDP were mean annual Lake Erie water level, Lt; 
belief in climate change, PCCt; and the year since construction 
began, Y,. The transition probability matrix was the product of 
the distributions of these three variables. We estimated a cost 

function which linked water levels to the two primary annual 
costs: sand nourishment and dredging. The SDP model, solved 
according to Bellman's equations, provided sequential decision 
policies over time as a function of two of the state variables, L, 
and PCCt. 

To assess the sensitivity of the sequential decision policy to 
various model parameters, we applied a factorial experiment 
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Figure 5. Monte Carlo simulation of Bayesian updating with trend in mean observed levels (i.e., with 
climate change) but starting at PCCo = 0.5. 

on the parameters in Bellman's equations. To measure the 
value of waiting to gather more information on climate change, 
we developed two measures: expected value of including un- 
certainty given perfect information, EVIUPI, and expected 

value of including uncertainty given imperfect information, 
EVIUII. We also developed two other measures to examine 
the timing of the decision: probability of building by time t, 
Pt(build), and expected time until construction, E[rbuild]. 
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The main conclusions derived from these numerical exper- 
iments are the following: 

1. Changes in discount rates have the most effect on the 
decision. In general, discount rates above 6%-7% make the 
breakwaters less attractive than sand nourishment, regardless 
of climate change belief. Belief in climate change is less im- 
portant but still makes a difference in 15% of the cases exam- 
ined. 

2. If a decline in water levels is certain, even with a shallow 
trend, then breakwaters should never be built. As a result, if 
there is a strong belief in climate change, there is value in 
waiting and gathering information. The value in waiting in- 
creases with the magnitude of the trend. 

EVIUPI and EVIUII put a value upon resolving the uncer- 
tainty, which can then be compared to the overall value of the 
decision. These values thus give a measure for the decision 
maker to determine whether there is significant value in de- 
laying a decision. These measures also provide a measure of 
regret, if the decision maker chooses to ignore climate change. 
For the scenarios examined, both EVIUPI and EVIUII in- 
crease with PCCt, growing to as much as $5 million. This value 

is significant since the first cost of construction is on the order 
of $10 million. However, it should be noted that while the 
results shown for EVIUPI and EVIUII are insightful, they are 
for only a select set of scenarios. EVIUPI and EVIUII are zero 
for the scenarios where belief in climate change does not alter 
the decision array. Therefore the results from the sensitivity 
analysis gives a better overall sense of the decision problem. 

The model is limited by data availability and the curse of 
dimensionality in the SDP. In particular, the SDP cost function 
is a function of only three state variables and is based on a 
yearly time step. We ignored or treated as constant other 
factors which may affect costs. For example, we did not account 
for possible changes in the frequency of events, such as storms, 
that occur on a smaller time interval. It is quite possible under 
climate change that the direction, distribution, and magnitude 
of storms may change, thereby altering erosion rates and thus 
the value of breakwaters. Since GCMs do not yield credible 
predictions of severe storm frequencies, it is difficult to assess 
potential changes to erosion rates. Furthermore, the presence 
of ice cover, which retards erosion during the colder months, is 
not modeled. The loss of ice cover under climate warming 
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would result in greater erosion rates, perhaps making the 
breakwaters more attractive. 

In deriving the cost functions, we assumed recreational 
beach and harbor demand would remain constant. Under cli- 

mate change, it is possible that recreation demand will increase 
because of the longer season and warmer temperatures. If this 
is the case, then there is more value in maintaining beach 
width. If warmer temperatures are accompanied by a drop in 
lake levels, then breakwaters would not be advantageous. If, 
however, warmer temperatures are accompanied by an in- 
crease in precipitation that maintains lake levels, then break- 
waters would be more favorable. It is also possible that future 
demand for the Port of Erie may decrease, either through 
market changes of goods shipped through the harbor or 
through increasingly high dredging costs due to lower water 
levels. If, for example, the harbor were to shut down, then the 
cost of dredging should be dropped from the cost function, 
with the result that breakwaters would become less favorable. 

The transition probability matrix is a critical part of the SDP. 
The results showed that water levels can be used to detect 

climate change through Bayesian updating. The weakness of 
the Bayesian updating model is that the stochastically gener- 
ated observed water levels come from the same lag-1 autore- 

gressive model that is used in the likelihood function. In real- 
ity, however, the observed water levels would come from a 
much more complex nonstationary distribution. The nonsta- 
tionarity of the distribution makes it difficult to assess the 
short-term benefits of breakwaters, which is critical with higher 
discount rates. The nonstationarity might also cause the Bayes- 
ian updating of PCCt to proceed at a slower pace since there 
would be more noise in the signal or in the wrong direction. A 
more sophisticated likelihood function, possibly involving a 
higher order autoregressive integrated moving average 
(ARIMA) time series model and shifting mean levels [Mathier 
et al., 1992], would provide better tracking of real observed 
levels. More sophisticated approaches could involve looking at 
more variables than just water levels to detect a dimate change 
scenario such as global temperature changes. 

The drawback of developing a more complex cost function 
or more sophisticated Bayesian updating model is that the 
number of states of the SDP would increase. Computer and 
memory speed limits the fineness of the discretization. Com- 
putational tests show that if the discretization of water level 
states is too coarse, then the water level trend may not be 
detected in the Bayesian updating [Chao, 1996]. 

One area that could be further investigated is different di- 
mate change scenarios. The SDP is limited to one scenario of 
decreasing linear trend in water levels. Other possible scenar- 
ios are shifting mean levels or increasing linear or nonlinear 
trends. The drawback of combining more than one scenario 
with the basis of comparison is that the number of states 
increases exponentially with the number of scenarios. For ex- 
ample, for a three-scenario SDP, rather than using just PCC t to 
define the state of nature, PCC1 t and PCC2 t would have to be 
defined instead. Alternative approaches to solving large SDPs, 
such as partially observable Markov decision process algo- 
rithms or discrete differential dynamic programs, might be 
used as means of dealing with models with more state vari- 
ables. 

The decision framework developed here also could be ap- 
plied to other Great Lakes management problems subject to 
climate change uncertainty, such as lake level regulation, water 
diversions, and wetland restoration. In addition, the SDP 
framework could be adopted for shoreline management under 
sea level rise uncertainty. 

We have demonstrated that beliefs in climate change can be 
addressed in water resources management problems through 
risk analysis. More generally, to assess whether climate change 
affects water resources management problems, Hobbs et al. 
[1997] propose that the decision maker should first apply de- 
terministic scenario analysis to assess whether climate change 
uncertainty affects system performance as much as other un- 
certainties. If climate change does matter, then risk analysis 
may be applied to analyze how belief in climate change affects 
decisions. 

Acknowledgments. The authors gratefully acknowledge the assis- 
tance of B. N. Venkatesh, Tom Bogart, Vira Chankong, Joseph 
Koonce, N. Sreenath, and the reviewers. We also thank the Institute 
for Water Resources of the U.S. Army Corps of Engineers and the 
National Science Foundation (grant SBR92-23780) for providing fi- 
nancial support. Philip Chao offers a million thanks to Benjamin 
Hobbs for being his Ph.D. advisor. 

References 

Chao, P. T., Analysis of the impact of climate change uncertainty upon 
shoreline management decisions, Ph.D. thesis, Dep. of Syst., Con- 



CHAO AND HOBBS: DECISION ANALYSIS 829 

trol, and Ind. Eng., Case West. Reserve Univ., Cleveland, Ohio, 
1996. 

Croley, T. E., Laurentian Great Lakes double-CO2 climate change 
hydrological impacts, Clim. Change, 17, 27-47, 1990. 

Davis, D. R., C. C. Kisiel, and L. Duckstein, Bayesian decision theory 
applied to design in hydrology, Water Resour. Res., 8(1), 33-41, 1972. 

Ellis, H., M. X. Jiang, and R. B. Corotis, Inspection, maintenance, and 
repair with partial observability, ASCE, J. Infrastructure Syst., 1(2), 
92-102, 1995. 

Fiering, M. B., and N. C. Matalas, Decision-making under uncertainty, 
in Climate Change and U.S. Water Resources, edited by P. E. Wag- 
goner, John Wiley, New York, 1990. 

Fiering, M. B., and P. Rogers, Climate change and water resources 
planning under uncertainty, Inst. for Water Resour., U.S. Army 
Corps of Eng., Alexandria, Va., 1989. 

Gorecki, R. J., and J. Pope, Coastal geologic and engineering history of 
Presque Isle Peninsula, Pennsylvania, Misc. Pap. CERC-93-8, Wa- 
terw. Exp. Stn., U.S. Army Corps of Eng., Vicksburg, Miss., 1993. 

Hartmann, H., Climate change impacts on Laurentian Great Lakes 
levels, Clim. Change, 17, 49-67, 1990. 

Hobbs, B. F., P. T. Chao, and B. N. Venkatesh, Using risk analysis to 
include climate change in water resources decision making, in Water 
Resources Planning Principles and Evaluation Criteria for Climate 
Change, edited by K. Frederick, D. Major, and E. Z. Stakhiv, Inst. 
for Water Resour., U.S. Army Corps of Eng., Albuquerque, N.M., 
in press, 1997. 

Intergovernmental Panel on Climate Change, Climate Change: The 
IPCC Scientific Assessment, edited by J. T. Houghton, G. J. Jenkins, 
and J. J. Ephraums, Cambridge Univ. Press, New York, 1990. 

Intergovernmental Panel on Climate Change, Climate Change 1992- 
the Supplementary Report to the IPCC Scientific Assessment, edited by 
J. T. Houghton, G. J. Jenkins, J. J. Ephraums, Cambridge Univ. 
Press, New York, 1992. 

Krzysztofowicz, R., Strategic decisions under nonstationary conditions: 
A stopping-control paradigm, in Engineering Risk and Reliability in 
Management of Natural Resources Under Physical Change; with Spe- 
cial Emphasis on Climate Change, edited by L. Duckstein and E. 
Parent, Kluwer Acad., Norwell, Mass., 1994. 

Leavesley, G. H., Modeling the effects of climate change on water 
resources--A review, Clim. Change, 28, 159-177, 1994. 

Lee, D. H., and F. H. Quinn, Climate change impacts on great lakes 
levels and flows, in Proceedings of the International Symposium on 
Managing Water Resources During Global Change, Am. Water Re- 
sour. Assoc., Bethesda, Md., 1992. 

Loucks, P., J. Stedinger, and D. A. Haith, Water Resource Systems 
Planning and Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1981. 

Mathier, L., L. D. Fagherazzi, J.-C. Rassam, and B. Bobfie, Great 
Lakes Net Basin Supply Simulation by a Stochastic Approach, Rapp. 
Sci. 362, INRS-Eau, Univ. du Quebec, Sainte-Foy, Quebec, Canada, 
1992. 

Monahan, G. E., A survey of partially observable Markov decision 
processes: Theory, models, and algorithms, Manage. Sci., 28(1), 
1-16, 1982. 

Paoli, G., (Ed.), Climate change, uncertainty and decision-making, 
International Geosphere-Biosphere Programme, Core project bio- 
spheric aspects of the hydrological cycle, Rep. 3, Inst. for Risk Anal., 
Univ. of Waterloo, Waterloo, Ontario, Canada, 1994. 

Rogers, P., Assessing the socioeconomic consequences of climate 
change on water resources, Clim. Change, 28, 179-208, 1994. 

Rogers, P., and N. R. Harshadeep, Water policy and management, 
paper presented at the Great Lakes Global Climate Change Work- 
shop, Great Lakes Commission, Natl. Oceanic. Atmos. Admin., 
Ypsilanti, Mich., Dec. 6-8, 1993. 

Slivitzky, M., and L. Mathier, Climate changes during the 20th century 
on the Laurentian Great Lakes and their impacts on hydrologic 
regime, in Proceedings of the NATO Advanced Study Institute on 
Engineering Risk in Natural Resources Management, NA TO ASI Ser., 
Ser. E, Kluwer Acad., Norwell, Mass., 1993. 

Stakhiv, E. Z., Considerations for long range water resources planning 
and management under climate uncertainty, Proceedings of the First 
National Conference on Climate Change and Water Resources Man- 
agement, edited by T. M. Ballantine and E. Z. Stakhiv, Inst. for 
Water Resour., U.S. Army Corps of Eng., Albuquerque, N.M., 
1991. 

U.S. Army Corps of Engineers, Presque Isle Peninsula, Erie, PA, 
shoreline erosion control project, phase I--General design memo- 
randum including environmental impact statement, Buffalo, N.Y., 
June, 1980. 

U.S. Army Corps of Engineers, Presque Isle Peninsula, Erie, PA, 
shoreline erosion control project, phase II--General design memo- 
randum--Detailed project design, Buffalo, N.Y., April, 1986. 

White, C. C., A survey of solution techniques for the partially observed 
Markov decision process, Ann. Oper. Res., 32, 215-230, 1991. 

Yohe, G., Uncertainty, Climate change and the economic value of 
information: An economic methodology for evaluating the timing 
and relative efficacy of alternative response to climate change with 
application to protecting developed property from greenhouse in- 
duced sea level rise, Policy Sci., 24, 245-269, 1991. 

P. T. Chao, Institute for Water Resources, U.S. Army Corps of 
Engineers, 7701 Telegraph Rd., Alexandria, VA 22315. (e-mail: philip. 
chaø@inet'hq'usace'army'mil) 

B. F. Hobbs, Department of Geography and Environmental Engi- 
neering, Johns Hopkins University, Baltimore, MD 21218. 

(Received January 26, 1996; revised November 1, 1996; 
accepted November 8, 1996.) 


