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Abstract This paper investigates the ability of the largest producer in an elec-
tricity market to manipulate both the electricity and emission allowances mar-
kets to its advantage. A Stackelberg game to analyze this situation is constructed
in which the largest firm plays the role of the leader, while the medium-sized
firms are treated as Cournot followers with price-taking fringes that behave
competitively in both markets. Since there is no explicit representation of the
best-reply function for each follower, this Stackelberg game is formulated as
a large-scale mathematical program with equilibrium constraints. The best-
reply functions are implicitly represented by a set of nonlinear complementar-
ity conditions. Analysis of the computed solution for the Pennsylvania–New
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Jersey–Maryland electricity market shows that the leader can gain substantial
profits by withholding allowances and driving up NOx allowance costs for rival
producers. The allowances price is higher than the corresponding price in the
Nash–Cournot case, although the electricity prices are essentially the same.

Keywords Mathematical programs with equilibrium constraints (MPEC) ·
Game theory (Stackelberg game) · Economic market modelling · Optimization
algorithm · Electric power
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1 Introduction

Market power is defined as the ability of players in a market – producers and
consumers, for example – to unilaterally or collectively maintain prices above
the competitive level. The exercise of market power can result in price distor-
tions, production inefficiencies, and a redistribution of income among consum-
ers and producers. The electricity market is especially vulnerable to the exercise
of market power by the producers for three reasons. First, short-term demands
for electricity are very inelastic, largely because consumers are shielded from
fluctuations in real-time prices. Second, network limitations lead to market sep-
aration if transmission lines are congested. Third, supply curves steepen when
output is near capacity, implying that the marginal cost increases drastically in
segments where the electricity price is determined during peak periods.

Pollution control regulation can significantly increase production costs in
electricity markets. The NOx allowances program in the eastern United States,
for example, is a cap-and-trade program administered by the US. Environ-
mental Protection Agency (USEPA). The amount of NOx released into the
atmosphere under this program is controlled by distributing allowances to the
producers that must be redeemed to cover actual emissions. These allowances
can be traded in a secondary market or banked for future use. The theoretical
efficiency of cap-and-trade programs is well documented in the economics lit-
erature. Under certain assumptions, the absence of market power, for example,
the programs achieve predetermined emission reductions at least cost (Newell
and Stavins 2003; Stavins 1995; Tietenberg 2003). However, market power can
interfere with the promised efficiency, yielding higher costs for both emission
control and commodity production. An example of such market power would be
the ability of producers to use allowances as a vehicle to affect the costs of rivals.
The consequences of exercising market power can be complicated because of
the interaction between the electricity and allowances markets. Empirical anal-
ysis of the 2000–2001 California power crisis, for example, suggests that in
addition to demand growth, a shortage of hydropower, and excessive reliance
on spot markets, some price increases were caused by a large producer that
intentionally consumed more allowances than necessary, raising the costs for
rival producers that were short of allowances (Kolstad and Wolak 2003).
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Sartzetakis (1997) investigated the incentive for a producer to raise the
costs of its rivals by withholding allowances in a simple market model. The
conclusion reached was that competition in the commodity market can be
weakened. In a more recent analysis of a large-scale market with thousands
of variables, Chen and Hobbs (2005) used a heuristic solution algorithm to
explore the profitability of a dominant producer that expands generation,
overconsumes allowances, and suppresses the output of the other producers,
where the producers were assumed to follow a Cournot strategy in the energy
market. The analysis failed to identify the optimal joint emissions and electricity
strategy for the dominant producer, possibly underestimating the magnitude of
its market power. In this paper, we formulate a Stackelberg game to investigate
the consequences of exercising market power in an electricity market with a
secondary emissions market.

The Stackelberg game was first proposed in 1934, and the formulation is
especially appropriate for studying a game with a sequential move or a leader-
follower relationship. Examples can be found in Fudenberg and Tirole (1991);
Gibbson (1992); Tirole (1998). The standard backward induction procedure to
solve such games initially fixes the decisions made by the leader in the first stage
and then derives the best response of each follower. The optimal decisions for
the leader are then found by solving an optimization problem with constraints
for the derived response of the followers. For applications with capacity con-
straints, the optimality conditions for the followers must be written as a system
of complementarity conditions, leading to a mathematical program with equi-
librium constraints (MPEC).

A number of practical Stackelberg problems, including discrete transit plan-
ning and facility location and production, have been modeled as MPECs (Luo
et al. 1997). In particular, examples of MPEC formulations of such games in
energy markets include Entriken and Wan (2003a,b), Hobbs et al. (2000), Hu
et al. (2004), Pepermans and Willems (2005), Shanbhag et al. (2004), Yao et al.
(2005), and Wolf and Smeers (1997). Since the feasible region is nonconvex,
a guaranteed global solution cannot be found by standard algorithms even if
the objective function is strongly convex. Moreover, solving MPECs is difficult
because any smooth reformulation of the complementarity constraints violates
the Mangasarian-Fromovitz constraint qualification, a key ingredient for sta-
bility. Nevertheless, recent developments indicate that the sequential quadratic
programming approach can compute local stationary points to MPECs when
using a smooth reformulation of the complementarity constraints with only
mild assumptions (Fletcher et al. 2002; Fletcher and Leyffer 2004; Leyffer 2003
a,b). These developments suggest that an MPEC can be a numerically tractable
tool to solve large-scale Stackelberg games. This approach is taken here.

Specifically, we construct a Stackelberg game for the Pennsylvania–New
Jersey–Maryland Interconnection (PJM) electricity market. This model dif-
fers from other oligopolistic models in the following ways. First, interaction
between the emissions and electricity markets is explicitly represented in the
model. In particular, the allowances price is endogenously determined, as op-
posed to being an exogenous quantity as in other models. Second, the model
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is developed from the bottom up and is based on detailed engineering data
for a power system with 14 nodes, 18 arcs, and 5 periods. The data incorpo-
rated in the model includes heat rates, emission rates, fuel costs, location, and
ownership for each generator. This approach allows for a more realistic esti-
mation of the market power associated with the location of a generator in the
network. Moreover, the power flow in the network is represented by a linear-
ized direct-current (DC) load flow model in which the Kirchhoff current and
voltage laws account for quadratic transmission losses. Although some small
alternating-current oligopolistic models have been formulated with transmis-
sion losses, quadratic transmission losses have not been previously considered
in large-scale oligopolistic models.

The remainder of this paper is organized as follows. Section 2 provides a brief
background regarding the PJM power market and the USEPA NOx budget pro-
gram. Section 3 presents the mathematical formulation of the Stackelberg game
as an MPEC. Section 4 describes a two-phase strategy used to solve the result-
ing large-scale MPEC. Section 5 analyzes the solutions found for the model.
Section 6 summarizes our work and briefly discusses future research.

2 Background

The PJM began operating as an independent system operator (ISO) in 1998. It
runs day-ahead, hourly-ahead, and spot energy markets with an hourly load that
ranged from 20,000 to 49,000 MW in 2000. Nuclear and coal plants served this
base load, accounting for 57.9% of the total generation capacity. The capacity
shares of oil, gas, and hydro plants were 20.8, 18, and 3.3%, respectively. Six
large generating companies each own between 6 and 19% of the generating
capacity.

The market is moderately concentrated, with an average hourly Hirschman–
Herfindahl Index (HHI) of 0.154 (PJM Market Monitoring Unit 2001). The
HHI is the sum of the squared market shares. A market with an HHI over 0.18
is considered concentrated by US. antitrust authorities (Viscusi et al. 1995).
Although the PJM market monitor reports that prices have generally been
near competitive levels, some market power has apparently been experienced
in the installed capacity market. Furthermore, other studies indicate that the
market concentration is high enough to present a risk of market power being
exercised (Hobbs et al. 2000; Mansur 2001).

The PJM transmission network used in the model is spatially represented
by 14 nodes, each representing one power control area or portion thereof, and
18 transmission lines. The network topology is shown in Figure 1. The highest
average load among the nodes is 5,300 MW for Public Service Electric and Gas
Company (PSEG), and the lowest is 1,310 MW for Atlantic Electric Company
(AE). Net imports from other regions averaged 800 MW during the ozone sea-
son of 2000. For simplicity, imports are fixed in the model. Power transmission
among the nodes in the network is represented by a DC load flow with quadratic
transmission losses.
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Fig. 1 Network topology of model

The Ozone Transport Commission (OTC) NOx budget program introduced
in 1999 is in effect from May 1 to September 30 of every year. The goal of this
program is to reduce summer NOx emissions throughout the region in order to
help the northeastern states attain the National Ambient Air Quality Standard
for ground-level ozone. The program has evolved to encompass a larger geo-
graphic scope, from an initial 9 states to 19 states in 2004 (Farrel et al. 1999).
The mandated NOx reductions took effect in two phases. The first phase began
May 1, 1999, when the program required affected facilities to cut total emission
to 219,000 tons, less than half of the 1990 baseline emission of 490,000 tons.
The emissions cap was tightened to 143,000 tons in 2003 for the second phase,
a reduction of 70%.

The OTC NOx program is a cap-and-trade program. Every electric generat-
ing unit with a rated capacity higher than 25 MW and large industrial process
boilers and refineries are subject to this program. The tradable NOx emission
allowances are initially allocated to affected facility owners according to their
historical seasonal heat inputs multiplied by a target NOx emission rate. The
participants in the program show compliance by redeeming enough allowances
to cover their emissions. The allowance owners can sell excess allowances or
bank them for future use. A total of 470 individual sources affiliated with 112
distinct organizations were in the program in 1999. Approximately 90% of
NOx emissions covered by the program are from power generators. More than
70% of generator summer capacity for the PJM market comes under the NOx
budget program, including 422 generators. Non-power sources of NOx emission
are not included in the model because of their small size and because the power
industry is the focus of this paper.

The power generators are also subject to the national Clean Air Act SO2
cap-and-trade program. Because the national market is so large, these costs
are treated exogenously by including a SO2 allowances price of $140/ton in the
production costs.
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Even though the NOx budget program covers a region larger than the PJM
market, the use and sales of allowances are modelled only within the PJM mar-
ket. Therefore, the results may overstate the extent to which market power can
be exercised in the NOx market because the model disregards trading outside
the PJM market. Furthermore, concentration in the NOx market may also be
overstated. However, the results illustrate the potential interactions between
electricity and allowances markets in the presence of market power.

3 Model statement

The PJM electricity market model builds on the transmission-constrained Cour-
not models of Hobbs (2001) and Chen and Hobbs (2005). These models are
generalized to allow for Stackelberg leader-follower relationships. The sets and
indices, parameters, and variables used in the model are given in Tables 1,
2, 3, respectively. Parameters are denoted by capital letters, and variables and
multipliers are denoted by lower-case letters throughout. Complementarity is
indicated by a ⊥ sign between two quantities; 0 ≤ x ⊥ y ≥ 0 means that x ≥ 0,
y ≥ 0, and xTy = 0.

The leader in the Stackelberg game, usually the largest producer, maximizes
its profit subject to capacity constraints and subject to the condition that the
followers act optimally given the strategy chosen by the leader. In this way, the
Stackelberg game can be viewed as a general bilevel optimization problem. If
the lower-level optimization problems are convex and satisfy a constraint qual-
ification, then the optimization problems can be replaced by their first-order
optimality conditions. This substitution leads to an MPEC.

The remainder of this section is organized as follows. We first develop a col-
lection of optimization problems and market-clearing conditions for a Nash–
Cournot game for the electricity market with a fixed amount of NOx emissions

Table 1 Sets and indices

f , g ∈ F Generating firm
Fc(or Fp) ⊂ F Set of Cournot (or pricing-taking) firms, Fc ∩ Fp = ∅

f s ∈ F Stackelberg leader firm, f s ∩ Fc = ∅, f s ∩ Fp = ∅,
and f s ∪ Fc ∪ Fp = F

h ∈ H Generating unit
h ∈ HOTC Generating unit subject to NOx cap
H(i, f ) ⊂ H Set of units at node i owned by firm f
HOTC(i, f ) ⊂ H Set of units at node i owned by firm f subject to NOx cap
i, j ∈ I Nodes in the network
j ∈ J(i) Node j adjacent to node i (connected via a single arc)
k ∈ K Loop for Kirchhoff voltage law in linearized DC model
t ∈ T Period
(i, j) ∈ v(k) Set of arcs associated with loop k. These are ordered: for

instance, if loop k = 1 connects nodes 3 → 7 → 4 → 3 in
that order, then v(k = 1) � {(3, 7); (7, 4); (4, 3)}.
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allowances withheld. We then give the Stackelberg game as an MPEC and
derive important theoretical properties of this MPEC.

3.1 The Nash–Cournot game

The Nash–Cournot game has four types of players: generating firms that decide
the amount of power produced; an independent service operator that decides
how the power is routed through the transmission network; an arbitrager that
exploits price inconsistencies to make a profit; and markets that determine the
power price, allowances price, and transmission charges. The power price is
a function of the quantity consumed and is derived from the inverse demand

Table 2 Parameters

Bt Block width of load duration curve in period t (h/year)
Cfih Marginal cost for unit h of firm f at node i ($/MWh)
Efih Emission rate for unit h of firm f at node i (tons/MWh)
Lij Resistant loss coefficient associated with arc (i, j)
Nf Number of allowances initially owned by firm f (tons/year)

P0
it Vertical intercept of demand curve at node i in period t ($/MWh)

Q0
it Horizontal intercept of demand curve at node i in period t (MW)

Rij Reactance associated with arc (i, j)
Tij Thermal limit of transmission arc (i, j) (MW)
Xfih Derated production capacity of plant h of firm f at node i (MW)

Table 3 Variables

ait Power purchased(-), sold(+) by arbitrager at node i in period t (MW)
nW Number of allowances withheld and consumed or sold by leader (tons)
oit Power consumed by consumers at node i in period t (MW)

pE
it Power price at node i in period t ($/MWh)

pH
t Power price at arbitrary hub (node PENEC) ($/MWh)

pN NOx allowances price ($/ton)
qit ISO power purchase at node i in period t for resistant losses (MW)
sfit Power sold by firm f at node i in period t (MW)
tijt Power flow from node i to node j in period t (MW)
wit Wheeling charges for delivering power from hub to node i ($/MWh)
xfiht Power output by unit h of firm f at node i in period t (MW)
yit Power delivered from hub to node i in period t (MW)
ρfiht Dual variable associated with capacity constraints for generators
θft Dual variable associated with energy sale/generation balance
γit Dual variable associated with Kirchhoff current law
τkt Dual variable associated with Kirchhoff voltage law
δt Dual variable associated with net flow balance
λkt Dual variable associated with upper limit on power flow
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curve:

pE
it = P 0

it − P 0
it

Q0
it

oit ∀i, t.

A sales balance must be maintained at each node in each period, so the energy
sold by the producers and arbitragers equals the energy purchased by the ISO
and consumers:

∑

f

sfit + ait = qit + oit ∀i, t. (1)

Therefore, oit can be eliminated to yield the inverse demand curve used in the
model:

pE
it = P 0

it − P 0
it

Q0
it

⎛

⎝
∑

g

sgit − qit + ait

⎞

⎠ ∀i, t. (2)

We next describe the optimization problems solved by each player and the
first-order optimality conditions. The variables in parentheses to the right of
each constraint are the dual multipliers used when constructing the first-order
conditions.

3.1.1 Power generators

Each generating firm maximizes its individual profit, revenue minus costs, by
choosing sales sfit and output levels xfiht in each period subject to capacity
and energy balance constraints. The generators are divided into two groups:
first, Cournot players that can influence the power prices and, indirectly, the
NOx allowances prices and, second, the price-taking fringe players that view
the power prices as exogenous quantities. The large producers in the model
are designated as Cournot players, while the small producers are price-taking
players.

Each Cournot generator f ∈ Fc solves the following optimization problem:

max
sfit≥0, xfiht≥0

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∑
i,t

Bt

(
P 0

it − P 0
it

Q0
it

(
∑
g

sgit − qit + ait

)
− wit

)
sfit

− ∑
i,h∈H(i,f ),t

Bt
(
Cfih − wit

)
xfiht

− pN

(
∑

i,h∈HOTC(i,f ),t
BtEfihxfiht − Nf

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

subject to
∑

i
Btsfit = ∑

i,h∈H(i,f )
Btxfiht ∀t (θft)

xfiht ≤ Xfih ∀i, h ∈ H(i, f ), t (ρfiht),

(3)
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where the allowances price pN , the sales levels s−f for the other generators, and
the transmission charges wit are treated as exogenous quantities by firm f .

The revenue per megawatt–hour for providing electricity to consumers at
node i is

P0
it − P0

it

Q0
it

⎛

⎝
∑

g

sgit − qit + ait

⎞

⎠ − wit. (4)

This quantity includes the price the customers are willing to pay for the energy
supplied minus the transmission charges paid to the ISO for sending the energy
from the hub to the customers. A price-taking firm replaces (4) with pE

it − wit.
That is, the prices pE

it are exogenously determined by (2) for the price-taking
fringe. The cost of producing electricity per megawatt-hour for unit i is Cfit −wit,
where –wit is the price charged by the ISO to send the power from the genera-
tor to the hub. The number of tradable allowances purchased (positive) or sold
(negative) over the compliance period is

∑

i,h∈HOTC(i,f ),t

BtEfihxfiht − Nf .

In addition to nonnegativity constraints, the total power generation and sales
have to balance in each period, and the output level for each generator can be
no more than the derated capacity.

Lemma 3.1. The optimization problem (3) solved by each generator has the
following properties:

1. If producer f is a price taker, then the optimization problem has a linear
objective function in the decision variables and linear constraints.

2. If producer f is a Cournot player and P0
it, Q0

it and Bt are positive, then the opti-
mization problem has a concave quadratic objective function in the decision
variables and linear constraints.

Proof. Property 1 follows from the fact that (4) is replaced by exogenous pE
it −wit

for price takers.
Property 2 follows from writing the first term in the objective function as

∑

i,t

⎛

⎝P0
itsfit − P0

it

Q0
it

⎛

⎝s2
fit +

⎛

⎝
∑

g 
=f

sgit − qit + ait

⎞

⎠ sfit

⎞

⎠ − witsfit

⎞

⎠ Bt,

which is a concave quadratic function in sfit for positive P0
it, Q0

it and Bt. ��
Lemma 3.1 implies that the first-order optimality conditions for (3) are nec-

essary and sufficient. These conditions are simplified to produce the equilibrium
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constraints for each generator as follows. The first condition states that power
is generated only if the marginal revenue equals marginal cost:

0 ≤ sfit ⊥ −pE
it + P0

it
Q0

it
sijt + wit + θft ≥ 0 ∀f ∈ Fc, i, t

0 ≤ sfit ⊥ −pE
it + wit + θft ≥ 0 ∀f ∈ Fp, i, t.

(5)

The first-order conditions associated with xfiht take the form

0 ≤ xfiht ⊥ Cfih − wit + pNEfih − θft + ρfiht ≥ 0,
0 ≤ xfiht ⊥ Cfih − wit − θft + ρfiht

Bt
≥ 0,

∀f 
= f s, ∀i, h ∈ HOTC(i, f ), ∀.
(6)

The next constraint states that power generation and sales must balance. The
constraint can be written equivalently as

∑
i,h∈H(i,f )

xfiht = ∑
i

sfit ∀f 
= f s, t (7)

because Bt > 0 for each t. The final constraint is that generation must not
exceed capacity:

0 ≤ ρfiht ⊥ −xfiht + Xfih ≥ 0 ∀f 
= f s, i, h ∈ H(i, f ), t. (8)

3.1.2 Independent system operator

The independent system operator determines the flows in the network to maxi-
mize the value received by the users of the network. Because transmission losses
represent a significant cost to the overall system, the ISO chooses services that
maximize the value provided minus the cost to make up power for losses:

max
yit , qit≥0, tijt≥0

∑
i,t

Bt
(
wityit − pE

it qit
)

subject to yit + ∑
j∈J(i)

(
tijt − tjit + Ljit2jit

)
≤ qit ∀i, t (γit)

∑
(i,j)∈v(k)

Rij(tijt − tjit) = 0 ∀k, (i, j) ∈ v(k), t (τkt)

tijt ≤ Tij ∀i, j ∈ J(i), t (λijt)∑
i

yit = 0 ∀t (δt),

(9)

where the transmission price wit and the energy price pE
it are exogenous quan-

tities from the point of view of the ISO. The analogues to the Kirchhoff cur-
rent and voltage laws are explicitly expressed in the first two constraints (see
Schweppe et al (1988), Appendix A), as opposed to using power transfer and
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distribution factors in the no-loss case (Chen and Hobbs 2005). The third con-
straint accounts for capacities on the transmission lines. The final constraint
states that the total amount of power delivered by the hub (yit positive) equals
the amount of power received by the hub (yit negative).

Lemma 3.2. For nonnegative Lij, the optimization problem (9) has a linear objec-
tive function and convex constraints.

Proof. The only nonlinear expression in the optimization problem is the term

∑

j∈J(i)

Ljit2jit

in the Kirchhoff current law. Since this expression is convex for nonnegative
Lji, it follows that the constraints form a convex set. ��

The first-order conditions for (9) are sufficient by Lemma 3.2. After simpli-
fication, these conditions for the power transferred from the hub to node i and
the power purchased from node i are

−Btwit + γit + δt = 0 ∀i, t
0 ≤ qit ⊥ BtpE

it − γit ≥ 0 ∀i, t.
(10)

The conditions for the transmission variables state that if flow is positive, then
the difference between the power prices at two connected nodes adjusted for
losses, equals the sum of the relevant dual variables:

0 ≤ tijt ⊥ γit + (
2Lijtijt − 1

)
γjt

+ ∑
k|(i,j)∈v(k)

Rijτkt − ∑
k|(j,i)∈v(k)

Rjiτkt + λijt ≥ 0 ∀i, j ∈ J(i), t. (11)

The notation k|(i, j) ∈ v(k) indicates the set of loops in which arc (i, j) is a
member.

The next constraints are the linearized DC analogue to the Kirchhoff current
and voltage laws:

0 ≤ γit ⊥ qit − yit − ∑
j∈J(i)

(
tijt − tjit + Ljit2jit

)
≥ 0 ∀i, t

∑
(i,j)∈v(k) Rij(tjit − tijt) = 0 ∀k, t.

(12)

Capacity constraints are imposed with the condition

0 ≤ λijt ⊥ −tijt + Tij ≥ 0 ∀i, j ∈ J(i), t. (13)

The final constraint is the conservation of the power received and delivered:

−∑
i

yit = 0 ∀t. (14)
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3.1.3 Arbitrager

The arbitrager exploits price differentials among different nodes to buy power
from low-price nodes and sell it at high-price nodes to make a profit. This player
is assumed to have perfect knowledge of the equilibrium power prices. An exog-
enous arbitrager formulation is adopted in which an aggregated price-taking
agent represents the multiple arbitragers in the market (Metzler et al 2003).
Therefore, the arbitrager solves the optimization problem

max
ait

∑
i,t

Bt(pE
it − wit)ait

subject to
∑

i
Btait = 0 ∀t (pH

t ),
(15)

where the transmission price wit and the energy price pE
it are exogenous quan-

tities.

Lemma 3.3. The optimization problem (15) is a linear program.

After simplification, the optimality conditions for this problem state that the
difference in power price between node i and the hub is the wheeling charge of
delivering power from the hub to node i:

−pE
it + wit + pH

t = 0 ∀i, t, (16)

and the condition that the power bought equals the power sold:

−∑
i

ait = 0 ∀t. (17)

3.1.4 Market-clearing conditions

The model includes two sets of market-clearing conditions. The first is a power
balance condition at each node stating that the power delivered by the ISO to a
node equals the physical consumption, including losses, minus the generation:

yit = qit + oit − ∑
f ,i,h∈H(i,f )

xfiht ∀i, t.

Using (1), we can restate this equation as follows: the physical power deliv-
ered to a node by the ISO equals the sales by the firms and arbitragers minus
generation,

yit = ∑
f

sfit + ait − ∑
f ,i,h∈H(i,f )

xfiht ∀i, t. (18)

The second set is a complementarity condition for the NOx allowances prices.
If the demand for allowances equals the available supply, then the price can be
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positive; otherwise, the price is zero:

0 ≤ pN ⊥ ∑
f

Nf − ∑

f ,i,h∈HOTC(i,f ),t
BtxfihtEfih − nW ≥ 0 ∀i, t, (19)

where nW is an exogenous quantity for the amount of allowances withheld from
the emissions market by the Stackelberg leader.

3.1.5 Model degeneracy

The Nash–Cournot model obtained by combining all the optimality conditions,
market clearing conditions, and energy price constraints is degenerate because
(7), (17), and (18) imply that (14) is always satisfied at any feasible point. Hence,
constraint (14) is dropped from the model, and one additional condition is added
to set the power price at the hub node, PENEC:

pH
t = pE

PENEC,t ∀t. (20)

The Nash–Cournot game then consists of the conditions (2 ), (5)–(8), (10)–(13),
and (16)–(20). This model has the same number of variables as equations and
complementarity conditions.

3.2 The Stackelberg model

The Stackelberg leader maximizes profit, revenue minus costs, from its partic-
ipation in the power and NOx allowances markets by selecting an output level
and the number of allowances to withhold given the responses of the followers:

max
sfit≥0, xfiht≥0, nW≥0

⎛

⎜⎜⎝

∑
i,t

Bt
(
pE

it − wit
)

sfit − ∑
i,h∈H(i,f ),t

Bt
(
Cfih − wit

)
xfiht

− pN

(
∑

i,h∈HOTC(i,f ),t
BtEfihxfiht − Nf + nW

)

⎞

⎟⎟⎠

subject to
∑

i,h∈H(i,f )
xfiht = ∑

i
sfit ∀t

xfiht ≤ Xfih ∀i, h ∈ H(i, f ), t,

(21)

along with the solution of the Nash-Cournot game for the rest of the market,
including constraints for the price of energy (2); the responses of the genera-
tors (5)–(8), independent service operator (10)–(13), and arbitrager (16)–(17);
the market clearing conditions (18)–(19); and the price constraint for the hub
(20). This MPEC model is summarized in Table 4. From Lemmas 3.1–3.3, the
following important result is obtained.

Theorem 3.4. At any feasible point of the MPEC defined in Table 4, the response
of each follower is a global optimum to its optimization problem.
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Table 4 Summary of stackelberg game MPEC model

Type Description Equation

Objective Leader problem (21)
Constraints energy prices (2)

Follower generators (5)–(8)
Follower ISO (10)–(13)
Follower arbitrager (16)–(17)
Market clearing (18)–(19)
Hub prices (20)

Proof. The proof follows from the convexity of the optimization problems
solved by each of the followers. Therefore, the first-order optimality conditions
are sufficient for each of the followers. ��

The resulting large-scale MPEC was implemented in the AMPL modeling
language (Fourer et al. 2003), which provides access to a variety of solvers
and has facilities for exchanging information between solvers. The model has
approximately 20,000 variables and 10,000 constraints, is highly nonlinear, and
is relatively unstructured, with many different types of complementarity con-
straints. The complete AMPL model is available at http://www.mcs.anl.
gov/∼tmunson/models/electric-mpec.zip.

4 Solution methodology

The generic MPEC is to compute a solution to the optimization problem

min
x

f (x)

subject to g(x) ≤ 0
h(x) = 0
0 ≤ x1 ⊥ x2 ≥ 0,

(22)

where x = (x0, x1, x2) is a decomposition of the problem variables and slacks.
This problem is reformulated as a nonlinear program by converting the com-
plementarity condition into a nonlinear inequality. The reformulation leads to
the optimization problem

min
x

f (x)

subject to g(x) ≤ 0
h(x) = 0
xT

1 x2 ≤ 0
x1, x2 ≥ 0.

(23)
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The nonlinear program (23) violates the Mangasarian–Fromovitz constraint
qualification at any feasible point for the optimization problem (Scheel and
Scholtes 2000). The failure of this constraint qualification has important neg-
ative numerical implications: the multiplier set is unbounded, the active con-
straint normals are linearly dependent, and a linearization of (23) can become
inconsistent arbitrarily close to a solution to the optimization problem (Fletcher
et al. 2002).

Recent theoretical developments and numerical experience have shown that
MPECs can be solved using standard nonlinear solvers. These developments
build upon the seminal work on stationarity conditions for MPECs by Scheel
and Scholtes (Scheel and Scholtes 2000), which we review next: Strong sta-
tionarity is equivalent to the existence of multipliers of (23), see Fletcher et
al. (2002). A point x∗ is called B-stationarity if it is a solution of the linearized
MPEC obtained by linearizing the functions f (x), g(x), and h(x) in (22) about
x∗. It can be shown that strong stationarity implies B-stationarity, but not vice-
versa. Anitescu (2000) builds on (Scheel and Scholtes 2000) and shows that a
sequential quadratic programming method with an �1 penalty formulation of
the complementarity error xT

1 x2 converges locally. Fletcher et al. (2002) prove
that a sequential quadratic programming method converges quadratically near
strongly stationary points. This quadratic rate of convergence is also observed
in practice (Fletcher and Leyffer 2004).

Two sequential quadratic programming algorithms, SNOPT (Gill et al. 2002)
and FILTER (Fletcher and Leyffer 2002), were applied to the reformulated
nonlinear program for the PJM model. These solvers were unable to obtain a
feasible solution and instead converged to a local minimum of the constraint
violation. This negative result motivated a two-phase solution methodology.

The first phase solves a square nonlinear complementarity problem to com-
pute a feasible point for the MPEC constraints. This complementarity problem
is constructed from the Stackelberg game of section 3 by recasting the leader
as a Cournot follower and fixing the NOx withholding by setting nW = 0.
The nonlinear complementarity problem is solved by applying the PATH algo-
rithm (Dirkse and Ferris 1995; Ferris and Munson 2000), a generalized Newton
method that solves a linear complementarity problem to compute the direction.

The second phase supplies this feasible starting point to one of the nonlin-
ear programming solvers, which computes an optimal solution to the original
MPEC. The reformulation of the MPEC used does not lump all complemen-
tarity constraints together as in (23). Rather, groups of complementarity con-
straints corresponding to the different equations are combined. This approach
improves the scaling of the model because unbounded multipliers affect fewer
variables and constraints.

No single nonlinear programming solver could solve the Stackelberg game
even from the feasible starting point provided by the feasibility phase. Instead,
the solvers converged to infeasible points and to limit points where the algo-
rithms could not make any progress because of numerical difficulties. These
results illustrate the difficulty of the Stackelberg game for the PJM market.
The PJM market model was eventually solved by applying the SNOPT and
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FILTER algorithms in sequence. SNOPT was used to obtain a solution to the
Stackelberg game starting from the initial feasible point provided by PATH for
a fixed amount of withholding. The problem was then re-solved by applying the
FILTER algorithm for variable withholding nW .

5 Numerical results and economic analysis

In this section, we state the scenario assumptions, analyse the numerical per-
formance and provide an interpretation of the economic implications of our
results.

5.1 Scenario assumptions

Four scenarios – perfect competition, Nash–Cournot oligopolistic competition,
and two Stackelberg scenarios – were constructed to quantify the impact of
interactions between the energy and allowances markets. In the perfect com-
petition case, all players in the market are assumed to behave competitively.
In contrast, in the Nash–Cournot oligopolistic models (Chen and Hobbs 2005;
Hobbs 2001), large producers with a capacity share between 6 and 19% are
exercising Cournot strategies. The Stackelberg model represents a situation
in which a leader exists in energy and emission markets and the remaining
suppliers are either Cournot or price-taking followers. The four scenarios are
illustrated in Table 5.

The leader in the Stackelberg game is selected based on market share. The
underlying assumptions are that a large supplier has an advantage in retaining
market-related information and taking early action and that the markup of each
supplier, the amount by which a supplier increases its bids over its marginal cost,
is monotonic in market share, with the largest firm having the greatest incen-
tive to manipulate prices (Tirole 1998). Two different Stackelberg leaders were
used for this study: PECO and PSEG. PECO is the generator with the longest
position in the allowances market in the perfect competition case. Therefore, it
has an incentive to drive up allowances prices by either overconsuming or with-

Table 5 Scenario assumptions

generators Perfect Cournot Leader Stackelberg Competition
conjecture target competition competition Cournot Price-taking

followers followers

Energy prices/sales Bertrand Cournot Actual Cournot Bertrand
by rivals response
Transmission Bertrand Bertrand Actual Bertrand Bertrand
prices response
Emission allowance Bertrand Bertrand Actual Bertrand Bertrand
prices response
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holding allowances if allowed to do so. In contrast, the designation of PSEG as a
leader serves as a reference case to determine whether a supplier in a relatively
weak position in the NOx allowances market is profitable enough to under-
take a withholding strategy. The followers are the remaining generators, the
arbitrager and the ISO. There are three smaller price-taking followers, namely,
Conectiv, Allegheny and Others, a collected entity representing the set of all
small generating firms. All other generators are intermediate in size and are
treated as Cournot players in the energy market.

5.2 Algorithm performance

All experiments on the PJM model were performed on a Linux workstation
with a 2.5 GHz Intel Pentium 4 processor with a 512 KB cache. The run times
and iteration counts reported are intended only to illustrate the level of diffi-
culty of this model. The Nash–Cournot feasibility problem was solved by PATH
in 13.2 s. The calculation required a total of 25 major iterations involving the
solution of a linear complementarity problem and 13 crash iterations involving
the solution of a system of equations. Results for the nonlinear programming
algorithms applied to the Stackelberg game during the optimization phase are
displayed in Table 6 for the two Stackelberg scenarios considered.

The three solvers have a significant difference in cost per minor iteration,
although all three are essentially pivoting algorithms. This difference can be
explained by the fact that PATH factors or updates only a single sparse matrix
per minor iteration, while SNOPT and FILTER, in addition, update a dense
factorization of the reduced Hessian matrix. Moreover, FILTER uses a less
efficient linear algebra package than does SNOPT, explaining the order of
magnitude performance difference.

The maximum multiplier value in the two Stackelberg scenarios is 3.2 × 109

and 2.9 × 109, respectively. These large values indicate that the computed solu-
tion is probably not strongly stationary because the multipliers do not appear
to be bounded. The solutions are likely B-stationary, but to test this conjecture
is not practical given the size of the problem. Note that the objective value
increases from the first nonlinear programming solve with fixed withholding to
the second solve with variable withholding (Table 6).

Table 6 Statistics for the Nonlinear Solvers

Solver PECO Leader PSEG Leader

SNOPT CPU time 288 s 293 s
major/minor iter. 100/17996 153/9248
final objective 9.5325 × 108 5.7812 × 108

FILTER CPU time 831 s 1364 s
major/minor iter. 12/5763 43/11585
final objective 9.5327 × 108 5.7888 × 108



Y. Chen et al.

5.3 Economic analyses

Table 7 summarizes the comparative statics of the four different scenarios.
Tables 8–11 summarize the results of the four scenarios, including the over-
all market equilibrium and the profile for each individual producer. Negative
values in the “Allowance Traded” column refer to allowances sold.

In the following subsections, we contrast the Stackelberg solution with PECO
as the leader with the perfect and Nash–Cournot competition solutions. This
discussion initially concentrates on the market equilibrium and welfare anal-
ysis, equilibrium prices, consumer and producer surplus, and the NOx trading
volume. We then discuss the response of the followers to the strategy chosen
by the leader. We then compare the two Stackelberg scenarios.

5.3.1 Stackelberg (PECO) versus perfect and Nash–Cournot competition

The consumer surplus in the Stackelberg solution is only marginally different
from that of the Cournot case (Table 7). However, the consumer surplus exhib-
its a 10.2% decline, from $9,521M to $8,549M, when compared to the perfect
competition scenario (Tables 7, 8). The optimal strategy is for PECO to with-

Table 7 Summary of comparative statics

Competition: Leader:

Perfect Nash–Cournot PECO PSEG

Average power price ($/MWh) 31.3 39.8 39.6 39.6
Price of allowances ($/ton) 1,197 0 1,173 663.9
Allowances withheld (tons) N/A N/A 5,536 0
Importer revenue ($M) 99 130 128 129
ISO revenue ($M) 72 37 60 42
Transmission loss (106 MWh) 0.46 0.42 0.41 0.40
Consumer surplus ($M) 9,521 8,535 8,549 8,552
Social welfare ($M) 12,133 11,990 11,980 11,955

Table 8 Perfect competition: detailed results

Supplier Profit Allowance traded Total sales Var. gen. cost
($M) (tons) (106 MWh) ($M)

Conectiv 34.0 −1,436 2.0 36.7
Constellation 310.0 1,294 16.4 179.0
Mirant 133.7 0 10.7 202.1
PECO 752.9 −9,357 29.1 101.6
PPL 374.4 11,320 17.6 134.2
PSEG 451.9 3,320 18.4 126.2
Reliant 98.4 2,230 6.2 90.5
Allegheny 23.7 138 1.1 7.7
Others 262.1 −7,509 17.7 326.2
Total 2441.0 0 119.2 1,204.0
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Table 9 Cournot competition: dtailed results

Supplier Profit Allowance traded Total sales Var. gen. cost
($M) (tons) (106 MWh) ($M)

Conectiv 60.9 2,144 3.9 101.1
Constellation 418.8 1,451 12.9 100.6
Mirant 214.3 0 9.2 142.7
PECO 893.7 −15,108 24.6 41.2
PPL 503.4 7,511 15.5 103.6
PSEG 552.8 −1,402 15.9 69.9
Reliant 170.0 5,379 7.7 113.7
Allegheny 33.6 177 1.1 8.0
Others 440.3 −1,267 21.4 432.3
Total 3,287.6 −1,115 112.0 1,113.2

Table 10 Stackelberg Model with PECO Leader: Detailed Results

Supplier Profit Allowance traded Total sales Var. gen. cost
($M) (tons) (106 MWh) ($M)

Conectiv 56.9 1,686 3.6 88.6
Constellation 403.8 −296 12.3 98.6
Mirant 210.3 0.0 9.0 139.3
PECO 969.5 −4,527 28.7 94.0
PPL 457.9 5,747 14.5 101.7
PSEG 540.7 −3,457 15.1 58.2
Reliant 144.8 3,657 7.0 112.8
Allegheny 31.7 177 1.1 8.5
Others 427.3 −2,987 20.9 425.0
Total 3,242.9 0 112.2 1,126.8

hold 5,536 tons of NOx allowances, 7% of the total allowances available in the
market. By doing so, PECO is able to drive up the NOx allowances price to
$1,173/ton, almost as high as the perfect competition solution. The power prices
are maintained at the Cournot levels. Furthermore, the efficiency of the NOx
program in the Stackelberg case deteriorates as measured by the total NOx
trading volume: a drop of 38% compared with the perfect competition case.
Since the leader creates more congestion than in the Cournot competition case,
the ISO collects an additional $23M in revenue, even though the total power
sold is the same as in the Cournot case. The social welfare is slightly lower than
the Cournot level. One of the unique features of this model is the inclusion
of a quadratic transmission loss. The solutions show that the transmission loss
amounts to 0.4–0.5 ×106 MWh in all cases, about 0.4% of generation.

We also ran a scenario in which the leader PECO did not have the ability to
withhold NOx permits. In this scenario, PECO’s profit drops from 969 M$ to
932 M$. This indicates to what extend the Stackelberg leader PECO can benefit
by withholding permits.
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Table 11 Stackelberg model with PSEG leader: detailed results

Supplier Profit Allowance Traded Total Sales Var. Gen. Cost
($M) (tons) (106 MWh) ($M)

Conectiv 58.0 1,686 3.6 88.6
Constellation 407.5 450 12.5 100.7
Mirant 212.4 0.0 9.1 141.5
PECO 888.1 −15,390 24.2 38.1
PPL 473.5 6,160 14.8 105.5
PSEG 578.9 4,163 18.7 132.4
Reliant 150.6 4,324 7.2 115.1
Allegheny 32.5 177 1.1 8.5
Others 430.1 −1,570 21.0 422.6
Total 3,231.6 0 112.2 1,153.2

Unlike the counterintuitive response of some Cournot producers in the pure
Cournot competition case, where they take advantage of the zero allowances
price and expand their output (Chen and Hobbs 2005), all other producers
contract their output by a total of 6.6 × 106 MWh compared to the perfect
competition case. The reason is that, on average, the action taken by the leader
raises their production cost by $2.60 per MWh, assuming the average emission
rate is 2.0 kg/MWh. The restriction of output by the following producers, in turn,
creates an upward pressure on power prices. PECO recognizes this opportunity
and expands its sale by 16.7% (4.1 × 106 MWh), increasing its market share
from 22% in the Cournot to 26% in the Stackelberg scenario. In comparison
with the pure Cournot solution, this strategy leads to an additional profit of
$75.8M for PECO, at the cost of other producers, whose profits fall by $120.7M.
Therefore, in contrast to a pure Cournot model, the dominant role of the leader
in a Stackelberg model allows one producer to extract more rent from the mar-
ket at the expense of other producers. However, consumers benefit only very
slightly, unlike the classic Stackelberg model without an allowances market, in
which commodity prices are generally significantly lower than in the Cournot
market (Gibbson 1992; Tirole 1998). The interactions of energy, allowances, and
transmission mean that other producers who are long in allowances do not nec-
essarily benefit from a higher NOx price. For example, the Others price-taking
producer sells 1,720 tons more NOx allowances in the Stackelberg case than in
the Cournot solution, thereby earning an extra $2.0M from the NOx allowances
market. However, the loss associated with the contraction of generation and the
higher charges for transmission service offset the additional profits of selling
allowances, resulting in a net decrease of $13M in its profit.

5.3.2 Comparison of stackelberg Scenarios

By comparing the two Stackelberg scenarios in Table 10 (PECO) and Table 11
(PSEG), we can explore the relationship between market power potential and
the net positions in the power and NOx allowances markets. In the perfect com-
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petition scenario, PSEG is the second largest producer in the power market and
has a short position in the NOx allowances market. In the Stackelberg scenario,
the solutions show that, as a leader, its optimal strategy is not to withhold any
NOx allowances at all, unlike PECO, but to acquire more allowances while
expanding its power output. This strategy benefits it by $127.0M, $26.1M, and
$38.2M relative to the perfect, Cournot, and Stackelberg (PECO) competition
solutions, respectively. PECO finds it optimal to sell 2.4 times more allowances
at the NOx allowances price level of $663.9/ton, with an additional gain of $4.9M
from the NOx allowances market. To sell NOx allowances, however, it produces
less output in the power market, since extra allowances are required to cover
the emissions. Consequently, the output for PECO shrinks by 4.5 × 106 MWh,
and its profit drops by $81.4M.

In summary, as long as there is market power in the markets, the overall
social welfare is less than its counterpart in the perfect competition scenario.
Because the difference in power prices is only marginal between the Cournot
and Stackelberg cases, the overall impact on consumers is essentially the same.
Thus, the effect of a firm taking a leadership role is to reshuffle the producer
surplus among the producers: that is, the leader gains at the expense of the
other producers. The comparison of two Stackelberg scenarios shows that the
appeal of withholding NOx allowances depends on the market share in the
power market of the leader and its net position in the NOx allowances markets.

6 Conclusions and future work

The solutions to the Stackelberg game for the PJM electricity market show that
the leader can gain substantial profit through the exercise of market power at
the expense of other producers. Whether the withholding allowances strategy
is profitable depends on, among other factors, the net position of the leader
in the NOx allowances market. According to this model, PECO may be in a
position to profit from withholding allowances; however, it is not optimal for
PSEG to undertake such practices. This computational experience is promis-
ing for policy modelers interested in investigating the complicated interactions
among imperfectly competitive markets.

The model in this paper of the PJM electricity market is subject to three
sets of simplifying assumptions that possibly overestimate the potential of mar-
ket power. First, the model assumes there is no vertical integration in the
power market and all energy transactions take place in the spot market. The
PJM power market was actually highly integrated or forward contracted during
2000. According to Mansur (2003), only 10–15% of power supply is from the
spot market; 30% is from short- or long-term bilateral contracts, 53–59% is self-
supplied, and the remaining 1–2% is imported. However, firm-level information
about forward contract data is generally proprietary and not publicly available.
Clearly, whether a supplier has an incentive to exercise market power depends
on its net position in the market. If it possesses significant excess capacity, the
incentive can be substantial. The current model can be expanded to represent
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this situation by explicitly introducing two additional fixed parameters (Green
1999): forward contracts (sF

fit), where positive (negative) value of sF
fit implies

sales (purchases) of contracts, and forward contract prices (pF
fit).

The second assumption that may overestimate the market power potential
in PJM is the fixing of imported power. If the supply of imported power is
price responsive, the quantity of imported power can increase in the face of
higher power prices, dampening market power. This can be represented using
price responsive demand curves for exports and/or supply curves for imports
(Bushnell et al. 2005). However, the best way in theory to handle this issue
is to expand the geographic scope of the model to include nearby markets.
For instance, given that substantial energy trading occurs between New York
ISO (NYISO) and PJM, including NYISO in the model will more correctly
represent price-responsiveness of energy imports from or exports to NYISO.

The third assumption is that, in effect, no allowances are imported or ex-
ported from outside PJM. Since the OTC NOx market is somewhat larger
than PJM, this assumption may overstate the amount of market power in the
NOx market. Similar to the power import/export issue, demand curves for
exports/supply curves for imports of allowances could be defined or, better yet,
the geographical scope of the market could be expanded. The residual demand
for permits could also account for opportunities to bank permits, a possibility
that a multiyear model would more realistically represent. Such formulations
could be used to explore the potential for allowance banking to enhance or
dampen market power.
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