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ABSTRACT 21 

We consider the long-run effects of climate change on the spatial and temporal distribution of 22 

nitrogen oxide (NOx) emissions from the Mid-Atlantic power sector.  Elevated ground-level 23 

temperatures could increase electricity demand during the summer ozone season, altering the 24 

mix of generation types and ultimately changing emission rates.  A sequence of load forecasting, 25 

supply investment and operation, and power plant siting models are used to project spatial and 26 

temporal distributions of NOx emissions. The results indicate that even if total NOx is limited due 27 

to cap-and-trade policies, climate warming-induced changes in the timing of electric sector emis-28 

sions can be significant.  The increased frequency of high load conditions could lead to high lev-29 

els of tropospheric ozone occurring more often.  The downscaled emissions can be used in fate 30 

and transport models such as the Community Multiscale Air Quality (CMAQ) to project changes 31 

in tropospheric ozone due to climate change. 32 

IMPLICATIONS 33 

Climate-induced changes in the quantity and temporal distribution of electricity demand could 34 

modify the mix of generation capacity as well as the spatial and temporal distribution of pollu-35 

tion emissions in the long run, even in the presence of a seasonal emissions cap.  The analysis 36 

suggests that significantly higher emissions during peak demand hours will occur, possibly 37 

worsening regional air quality.  Hence, besides the current seasonal cap system, a separate cap or 38 

pollution tax that applies only under forecast extreme weather conditions may be needed to pre-39 

vent worsening air quality during such times. 40 

 41 

INTRODUCTION 42 

Climate change-induced increases in surface temperatures could influence human health in sev-43 

eral ways, such as increased number of heat-related deaths during heat-waves1, 2, widespread of 44 

certain diseases (e.g., malaria and dengue fever).3, 4  Warming could also enhance the formation 45 

of tropospheric ozone (O3) and other pollutants by changing the amounts and the distributions of 46 

anthropogenic and biogenic emissions, as well as mixing heights and winds which affect pollut-47 

ant transport.5, 6  48 
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Formation of ozone involves oxidation of organic compounds by NOx in the presence of 49 

sunlight. It is a highly nonlinear process which in part depends on the ratio of NOx and VOC  50 

(volatile organic compounds) concentrations that can vary greatly over time and space.7 Trop-51 

spheric ozone is subject to National Ambient Air Quality Standards (NAAQS) under the Clean 52 

Air Act8, and convincing evidence has been provided recently of mortality effects from short run 53 

ozone exposure.9   In the U.S., the primary sources of VOCs are biogenic sources with important 54 

anthropogenic contributions10, while NOx is mostly generated by combustion processes from 55 

mobile and stationary sources.  56 

A number of integrated assessments have considered how air pollution might be affected 57 

by climate change.2, 11-14  These studies generally considered standardized emissions scenarios, 58 

e.g., IPCC Special Report Emissions Scenario A2.15  One advantage of using such scenarios is 59 

that the results can be compared and possibly generalized across different studies.   However, 60 

these scenarios only provide information on annual emissions, and by definition they will show 61 

zero change when emissions are capped on an annual basis, as they are for utility sources of SO2 62 

and NOx in most of the U.S.  They also cannot address shifts in locations and timing of emissions 63 

from particular economic sectors (e.g., increases in summer electricity demand in response to 64 

warming climate), which can be critical to ozone formation. As a result, these annual scenarios 65 

lack the spatial and temporal granularity necessary for use in fate and transport models, and in-66 

teractions of climate change with particular pollution control policies, such as NOx caps, cannot 67 

be analyzed. The purpose of this paper is to develop and demonstrate an integrated framework 68 

that allows examination of the effects of climate change on the spatial and temporal distribution 69 

of NOx (and other pollutants in general) from the power sector.  70 

Climate change could affect power systems in several ways.  It will alter the level and 71 

timing of electricity demands, as well as the efficiency of electricity generating units (EGUs) 72 

(e.g., heat rate and available generating capacity).16  In the short run, with a given capital stock of 73 

EGUs, the result will be changes in their operations and emissions.  In the long run, the mix of 74 

various plant types will adjust in response to fuel and emissions allowances prices as well as cli-75 

mate-induced changes in the intra-annual distribution of electricity demands.  Thus, in order to 76 

understand the effects of climate change on tropospheric ozone, impacts upon spatial and tempo-77 

ral distributions of EGU NOx emissions must be considered. 78 



 

 4

This paper is motivated by two questions concerning NOx emissions from the power sec-79 

tor.  First, how might long run (mid-21st century) spatial and temporal distributions of NOx emis-80 

sions from power plants in the mid-Atlantic region shift as a result of climate change?  Second, 81 

how might inter-year variability of climate impact electricity consumption and NOx emissions, 82 

which could potentially in turn, impact the frequency of summertime ozone episodes?  This is in 83 

contrast to most energy models used in other climate change impact analyses that assume a 84 

“typical” or “average” year.16, 17  Due to nonlinear relationships between temperatures, emissions, 85 

and their impacts, the average impact on air quality over a number of years may be quite differ-86 

ent (and possibly higher) than the impact on air quality in an average year.   87 

Our approach relies upon a sequence of power sector load forecasting and supply models 88 

to address these questions.  These models predict locations of new generation capacity, and tem-89 

poral and spatial distributions of air emissions from power sector.  Generating technologies con-90 

sidered in the analysis include scrubbed coal (steam), integrated coal-gasification combined cy-91 

cle (IGCC), combined cycle units, combustion turbines, and nuclear power plants. Coal-fired 92 

plants are assumed to install various pollution control equipment, namely flue gas desulfurization, 93 

selective catalytic reduction, and electrostatic precipitators. Renewable and other technologies 94 

(e.g., fuel cell and clean coal technology with carbon capture and sequestration) are not included 95 

in the analysis for two reasons. First, we are interested in the worst-case scenario in which fossil-96 

fueled units remain the dominant technology.  Second, renewable siting is less predictable, as it 97 

depends on the availability of resources as well as local and state policies that are designed to 98 

promote their deployment. Of course, there are various scenarios concerning policy and technol-99 

ogy changes could unfold over the next two decades that are not considered by this analysis. 100 

Possible policy, technological and economic changes could certainly interact with temperature 101 

change in a way that alters the assumptions. However, what we demonstrate in the paper is a 102 

method that could be used to explore the effects of climate change on the spatial and temporal 103 

distribution of emissions from power sector under alternative assumptions.  104 

To model inter-year variability, we use 14 years of simulated ground-level temperatures 105 

from the GISS (Goddard Institute of Space Sciences) GCM, where the years 1991-1998 (“1990s” 106 

hereafter) represent normal climate conditions, and years 2050-2055 (“2050s”) represent a 107 

warmer climate.18 The results suggest that even if total seasonal NOx emissions are unchanged 108 
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due to the presence of “cap-and-trade” policies, changes in their spatial and temporal distribution 109 

imply that the severity of ozone episodes could enhance.  110 

This analysis focuses on the mid-Atlantic region for two reasons.  First is its nonattainment status 111 

for ozone.  Second, the mid-Atlantic regional power system has been deregulated over the last 112 

decade, with the objective of decreasing costs and making generation decisions (and thus pollu-113 

tion emissions) more responsive to market conditions. Figure 1 displays the study region, con-114 

sisting of 14 demand and generation subregions (corresponding to individual utilities) and 18 115 

transmission corridors.  This analysis includes the high voltage (i.e., 500 kV) network, taking 116 

into account the effect of regional-level transmission constraints upon the spatial distribution of 117 

generation and emissions. We split several utilities so that congestion within each can be repre-118 

sented, including ME (Metropolitan Edison), JC (Jersey Power and Light), PPL (PPL Electric 119 

Utilities) and BGE (Baltimore Gas & Electric); and part of BGE together with PEPCO (Potomac 120 

Electric Power) is represented with BGEPEP.   Since the former East Central Area Reliability 121 

Council (ECAR) 19 is located upwind of the mid-Atlantic region and its EGUs emit significant 122 

amounts of NOx, we also include its eastern portion in the analysis.  Because transmission con-123 

straints are less of a problem within ECAR20, this analysis represents that region as a single 124 

subregion.  Congestion between the mid-Atlantic and ECAR regions will be captured by limited 125 

capacity in the two main corridors connecting them.  126 
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Figure 1: Transmission network of study region21, 22 

 127 

METHODOLOGY  128 

Linear programs (LPs) are a common tool for simulating operations and capacity expansion de-129 

cisions for the power sector.23  Examples include IPM (Integrated Planning Model)24 and MAR-130 

KAL.25  LP solutions are equivalent to a competitive market equilibrium subject to price-131 

insensitive demand.  An advantage of using LPs is the existence of efficient solution algorithms.  132 

LPs are the primary modeling tool in this analysis.  Several are used in succession to downscale 133 

regional projections of electricity demand into temporal and spatial distributions of NOx emis-134 

sions for the 1990s and 2050s climate scenarios.   135 

Figure 2 is a flow chart summarizing the six steps of the analysis.  Each step uses one or 136 

more models, summarized below.  Details on the model formulations can be found elsewhere.26  137 



 

 7

Step 1: Construct average electricity demand distribution curve for year 2025 under 
1990s and 2050s climate scenarios using NEMS demand module and cooling-
degree day scenarios, and short run load forecasting model  

                                   Regional Load distribution as f(average climate) 

Step 2:  Estimate the amount of new generating technologies at the regional level using 
transmission–unconstrained least-cost capacity model and average load pat-
terns under each climate scenario 

                                   Generation capacity by type & region 

Step 3: Allocate new capacity to utility (subregional) level using transmission-
constrained least-cost capacity expansion model 

                                    Generation capacity by zone 

Step 4:  Assess county-level probability of siting power plants using empirical logit 
models  

                                    Generation siting probabilities by county 

Step 5: Site new capacity using mixed integer optimization, consistent with empirical 
model 

                                      Generation capacity by zone 

Step 6:  Generate hourly NOx emissions using short run least-cost dispatch models and 
year-by-year electricity demands & meteorology 

                                       Emissions by hour and plant for particular year:  
                                      1990s climate scenario and 2050s climate scenario 

Figure 2: Flow chart of the analysis procedure 
 138 

The first step is the construction of average annual load duration curves (LDCs) for 1990s 139 

(1991-1998) and 2050s (2050-2055) climates, adjusting for general changes in load shape due to 140 

economic activities and climate conditions using the electricity demand modules of the 2025 Na-141 

tional Energy Modeling System (NEMS).27 NEMS assumes a GDP (gross domestic product) 142 

growth rate of roughly 2.5% per year between 2006 and 2025.28 This step then links demand to 143 

hourly meteorological conditions using a statistical short run load forecasting model that we fit to 144 

subregional load patterns.  An annual LDC ranks hourly electricity demand (the y-axis) in de-145 

scending order against cumulative hours (1-8760 hours on the x-axis).  (Ideally, we would like to 146 

have an identical sample size for each decade, but 2055 is the last year that was available at the 147 

time we did the analysis.)  Scenarios based on assumptions other than NEMS’ could be applied 148 
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and might yield different LDCs.  However, NEMS is recalibrated every year to incorporate new 149 

information concerning technology and economic factors. It is by far the most comprehensive 150 

energy model for US energy sector and commonly used to examine the impact of environmental 151 

and energy policies.29, 30  Thus, NEMS assumptions reflect the best available information for the 152 

US future energy scenarios.    153 

Two substeps are involved in Step 1.  The first captures relative short run variability from 154 

hour-to-hour using meteorological output from the MM5 (derived from GISS GCM) to drive a 155 

set of short run electric load forecasting models (one for each major utility in the region) to pro-156 

duce 14-years of daily electricity demand fluctuations.  The latter models consist of dynamic sta-157 

tistical relationships that account for time of day, recent hourly temperatures, and week-158 

end/weekday/holiday effects on relative load, and so enables us to represent hour-to-hour load 159 

variations and their temporal relationship with the meteorological conditions that are crucial to 160 

ozone formation.  Each year’s hourly load data are then grouped into 27 time blocks consistent 161 

with NEMS’s groupings.  However, the short run models only represent short run load variations 162 

in response to weather, and not long-term adjustments in energy-using capital stock.  The second 163 

substep addresses such adjustments.  Loads in each block are rescaled so that their averages are 164 

consistent with NEMS year 2025 simulations of residential and commercial loads by region and 165 

block; NEMS’ electricity demand modules for those sectors represent long-term responses to 166 

temperatures.  The NEMS simulation representing the 1990s climate is based on NEMS’s as-167 

sumption of approximately 150ºF-day CDDs (cooling degree days) for the major cities in Mid-168 

Atlantic region, while the 2050s NEMS simulation uses CDD values that are 414 ºF-day higher, 169 

based on the GISS output.  Admittedly, there is an inconsistency in using 2025 electricity loads 170 

and 2050 climate, but 2025 loads are the last simulated in NEMS.  The use of 2025 NEMS re-171 
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sults means that we can base generation assumptions upon the NEMS database, allowing con-172 

struction of a consistent set of load, emission and generation assumptions for a scenario year well 173 

into the future. 174 

The second step in Figure 2 estimates the 2025 overall generation capacity mix for the 175 

two climate scenarios using an LP model.  Its objective function is to minimize the total annual-176 

ized cost for 2025, which includes annualized construction costs for new generators, their fixed 177 

and variable operating (O&M) costs27, and O&M costs for existing generators.  The LP’s deci-178 

sion variables include output levels and new capacity by types in MW considering the annual 179 

average LDCs obtained in Step 1 for each decade (1990s, 2050s).  New plant types include pul-180 

verized coal, combustion turbines, and combined-cycle for baseload, peaking, and cycling gen-181 

eration, respectively. The constraints include a NOx emissions cap during the ozone season (May 182 

1 - September 30); energy balances (supply = demand in each time block); capacity limits on 183 

generation by plant type (accounting for both existing and new capacity); capacity reserve mar-184 

gin requirements; and capacity factor constraints that limit the number of hours each plant can 185 

operate. The heat rate and capacity of plants are also adjusted accordingly to reflect the engineer-186 

ing efficiency degradation under the warming climate, in the case of the 2050s case.  In particu-187 

lar, the heat rate is adjusted based on single-cycle Carnot efficiency, while capacity is derated 188 

based on an analysis of the actual summer and winter generating capacity in the mid-Atlantic 189 

region.  The primary data source for existing generators is the NEMS data base.31  It contains 190 

plants in place in 2000, comprising 1,453 EGUs, of which 731 were located within PJM, and re-191 

maining were in ECAR.  That capacity is “derated” by forced and maintenance outage rates32 to 192 

account for differences in reliability of various generator types, while older plants were retired.  193 

The total derated existing capacity was 90,564 MW.  A real interest rate of 13% is used to annu-194 

alize capital costs for new plants.  Each plant’s variable cost equals the sum of fuel cost, SO2 195 

permit cost, and non-fuel variable O&M expenses.  Fuel costs are exogenous and depend on 196 

plant location and type.  Since the Title IV SO2 trading program is national in scope, we treat 197 

SO2 allowance prices as an exogenous component of O&M (i.e., 750 $/ton). 198 

In contrast, under the NOx SIP (State Implementation Plan) Call, NOx trading is more re-199 

gional in nature, and so the model explicitly caps NOx emissions in the region. Under the re-200 

cently vacated Clean Air Interstate Rule (CAIR), there are two NOx caps: seasonal and annual.  201 
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We assume that only the ozone season cap is binding, and that CAIR remains in effect after 2015.  202 

However, since some states are only partially contained within our study region, CAIR NOx al-203 

lowances are adjusted downwards based on the proportion of the state’s generation capacity con-204 

sidered.33  The number of allowances assumed available is about 130,000 tons.  Three sources 205 

for emissions rates include IPM24, the Emission, Generation Resource Integrated Database 206 

(eGRID)34, and USEPA Continuous Emission Monitoring Data.35 207 

The third step allocates the new capacity estimated in Step 2 to subregions using a LP-208 

based transmission-constrained model for simulating capacity investment, considering the effects 209 

of regional fuel cost variations on siting decisions. To identify the location of each generator and 210 

assign it to a subregion in the network, we used information from USEPA eGRID and other 211 

sources.  This is similar to the model in Step 2 but also explicitly models transmission flows us-212 

ing a linearized DC loadflow representation that considers Kirchhoff’s Voltage and Current 213 

Laws 36 while satisfying the flow limits of transmission lines. This step’s outputs or decisions 214 

variables are generating capacity by technology and subregion.  However, that spatial disaggrga-215 

tion is insufficient for air quality simulations.  Therefore, in Steps 4 and 5, we allocate generating 216 

capacity by county.  The fourth step estimates siting probabilities for counties within the subr-217 

gions using empirical logit models (one for each of three generation technologies) based on sit-218 

ing decisions during 1995-2004.  During that time, the generating capacity for the continental US 219 

increased by 40%, from 686 to 962 GW.  The distribution of additions by technology in terms of 220 

GW generating capacity (number of generating units) for coal-fired steam, combined-cycle gas 221 

units, combustion turbines, and other types is +126.6 (-59), +158.7 (+1,300), +84.8 (+1,094), and 222 

-94.2 GW (+150), respectively.  (Negative numbers indicate decreases in either capacity or num-223 

ber of units.) Ideally, this analysis would construct a dataset with repeated obsevations per year 224 

for each county: a panel dataset for 10 years with 3,193 counties.  However, several independent 225 

variables would likely be time-invariant or would be difficult to determine for each year.  Thus, 226 

we pool the 10 years of data and conduct a pure cross-sectional analysis. 227 

The empirical logit models estimate how various factors affect actual siting decisions, 228 

and assume that the relationships that governed siting in the past will also apply to future siting 229 

choices. The equations, one for each generation technology j, are as follows: 230 

0 0

0 0

exp( )
Pr( 1| )

1 exp( )
j ij nn n

nsij
j ij nn n

x
y x

x
α β β

α β β

+ +
= =

+ + +
∑
∑

     (1) 231 
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The dependent variable (Pr) is the siting probability (between 0 and 1) for a county, where ynsij = 232 

1 indicates that a plant of type j is sited in county n.  The model independently estimates three 233 

types (subscript j) of generating technology: coal for base-load, combined cycle for cycling ca-234 

pacity, and combustion turbine for peaking capacity.  The independent variables (x) include 235 

presence of existing power generators, ozone attainment status, population density, state utility 236 

deregulation status, county population, and median income.  Ozone attainment status is repre-237 

sented by two indicator variables for three categories: attained, marginal (or moderate) and se-238 

vere, and is obtained from USEPA sources.37  The restructuring status and proposed new genera-239 

tors data are from the Energy Information Agency.38, 39 Demographic data (e.g., county popula-240 

tion and median income data) are obtained from the US Census Bureau.40  We use a random-241 

intercept model (also called mixed-effect or hierarchical model) given that siting decisions can 242 

be modeled as two levels: a number of counties are nested within a state.  The random intercept 243 

formulation allows for the information from other states to be used by a given state.41  For in-244 

stance, even if a county has no generator situated, it may still have a positive siting probability 245 

when other counties with similar x have generating facilities within their territory.  The term β0ij, 246 

is state-specific (subscript i) unobserved random effect for technology j.  We assume a underly-247 

ing distribution: β0ij ~ N(0, σ2
β0).  Thus, the term α0j in equation (1) gives an overall US unob-248 

served intercept for technology j.  The resulting predicted probabilities by county and technology 249 

are used in Step 5 to create county-level siting scenarios for new capacity. 250 

Step 5 sites capacity using a mixed-integer nonlinear program (MINLP) that minimizes 251 

the squared deviations of sited EGUs from an ideal distribution that is proportional to the siting 252 

probabilities predicted by Step 4’s empirical models.  As a result, more likely counties obtain 253 

more capacity.   However, integer variables are used to ensure that sited EGUs are of realistic 254 

size.  We assume unit capacities of 600, 400 and 230 MW for coal, combined-cycle and combus-255 

tion turbine unit, respectively.27  To account for the fact that there is no transmission representa-256 

tion within ECAR, the new capacity in that region is first assigned to each state in proportion to 257 

existing capacity.  Finally, since the total capacity of a given type is unlikely to be a multiple of 258 

the assumed unit size, leftover capacity is assigned to the county within subregion i that has the 259 

highest siting probability for technology j.  New plants are assumed to be located at each 260 

county’s centroid. 261 
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The sixth (and final) step generates year-specific hourly pollutant emissions by EGU us-262 

ing a LP-based short run least-cost dispatch model, based upon the generation mix and locations 263 

obtained from the earlier models and demand patterns consistent with the meteorology in each 264 

year.  The model formulation differs from the capacity model (1) in several ways.  First, the 265 

model is a transmission-constrained operations model, and so only considers short run costs (fuel, 266 

allowance costs, and other variable O&M), subject to fixed capacity of the existing and siting 267 

generators.  Next, the simulation period is just the ozone season from May 1 to September 30, a 268 

total of 3,672 hours.  The LDC is approximated using 20 load blocks, with the number of hours 269 

in each block ranging from 25 to 300.  Lastly, the model is dispatched separately against each 270 

year’s summertime LDC, instead of the decadal averages used in Steps 2 and 3.  Thus, the model 271 

can be used to assess the variability in the intra-annual distribution of NOx emissions due to 272 

varying meteorology. 273 

 274 

RESULTS 275 

We review the results of each step, starting with the annual variability of temperature and long-276 

run load from Step 1.  Figure 3 plots their duration curves for the entire study region over ozone 277 

season.  Not only does the 2050s series (warming climate) lie above normal climate group 278 

(1990s climate), but the former series also has a greater interannual variability for both load (left) 279 

and temperature (right).  The load variability is greatest during high-demand hours (left end of 280 

the x-axis).  This is likely to yield significant year-to-year variation in average ozone levels as 281 

well as numbers of severe ozone episodes, because hotter, higher load years will also be more 282 

likely to have conditions favorable to ozone formation.  More importantly, if environmental 283 

damage as a function of emissions is convex, consideration of emissions only from an average 284 

load year may understate the ozone impact.  That is, the average ozone concentration (or average 285 

days of ozone NAAQS exceedences per year) might be less for an average load year than when 286 

calculated over a sample of years reflecting year-to-year temperature variations.  In other words, 287 

if a system is nonlinear, full distributions of inputs (such as meteorology) should be considered, 288 

not just average conditions. 289 

The long run capacity expansion in Step 2 is based on average load distributions within 290 

each decade (1990s and 2050s).  The 20-block summertime LDCs fit to the data in Figure 3 are 291 

combined with NEMS 2025 non-summer blocks to form a 30-block system in the LDC.  Table 1 292 
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summarizes the results using the transmission-unconstrained model in Step 2.  The overall esti-293 

mated additional capacity is greater than the average peak demand in Figure 4 due to the model’s 294 

inclusion of a reserve requirement (7.5%, consistent with NEMS assumptions27).  The capacity 295 

mix reflects not only the load increase in 2025 relative to today, but also changes in the load pro-296 

file.  The increased peak load resulting from the 2050s climate induces about 20,000 MW (about 297 

10%) more capacity compared to the 1990s climate run.   298 

Figure 3: Summertime temperature (left) and load (right) duration curves for study region (mid-
Atlantic and partial ECAR) for 1990s and 2050s climates, which show the number of hours that 
each respective quantity exceeds the value given at y-axis. 

  299 

Table 1: Summary of results from LP capacity mix models of mid-Atlantic and partial 
ECAR for 1990s and 2050s climates (2025 generation and load conditions considered) 

1990s climate 2050s climate

Average Temperature, Ozone Season [˚K] 295 293

Average Peak Load [MW] 178,105 196,030

Existing Capacity [MW]  90,564 90,564

New Coal-fired Steam [MW] 30,394 35,022

New Gas-Fired Combined Cycle [MW] 78,439 86,602

New Combustion Turbines [MW] 0 7,727

NOx price [$/ton] 16,947 17,872

Average NOx emissions during top 25 hours [tons] 119 127

                 
2050s 

                 
1990s                 

1990s 

                
2050s 
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 300 

Results from Step 2 (Table 1) are then used by the transmission-constrained model for al-301 

locating capacity to subregions.  Compared with the 1990s capacity allocation, more combustion 302 

turbines in 2050s are projected to be allocated to a few subregions: PECO, PPL1, PPL2, 303 

BGEPEP.  The concentration of turbines in those subregions is due to their proximity to load 304 

centers.  However, given the low NOx emission rates of new turbines, their impact on local air 305 

quality is expected to be negligible.  Most capacity is allocated to the ECAR region, given its 306 

proximity to fue1 sources.  However, the fact that transmission lines from ECAR to the mid-307 

Atlantic are congested more than 35% of the time limits the additional capacity that can be allo-308 

cated to ECAR.  Finally, because of cheaper coal in PPL3 compared to Maryland, most coal 309 

plants in the mid-Atlantic are assigned to PPL3 to meet load in PECO and BGE2. 310 

The empirical logit siting models (Step 4) together with the MINLP EGU siting model 311 

(Step 5) are the means we use to allocate each subregion’s new capacity to its counties.  (The 312 

estimated logit models can be found in the on-line appendix.) The outcome represents the spatial 313 

distribution of capacity that is consistent with both historical trends and the market conditions 314 

simulated by the LPs of Steps 2 and 3.  315 

Figure 4 presents the EGU siting results for the 1990s and 2050s climates, respectively.  316 

In both scenarios, the new capacity is primarily allocated to ECAR because of its less expensive 317 

fuel. Incremental combustion turbine siting for the 2050s compared to the 1990s is also indicated 318 

in Figure 4.  This spatial allocation of new capacity is required to project the spatial distribution 319 

of emissions in the next step.   320 

The final step of the analysis is to generate hourly NOx emissions for the ozone season 321 

using the transmission-constrained operations model considering both existing and new capacity. 322 

The 3,672 hours in this season are clustered into 20 periods with similar load levels.  Figures 5 323 

plots the average NOx duration curves for the 1990s and 2050s scenarios for our study region.  324 

The thick solid line in the plot are the average of NOx emissions duration curves over 8 years of 325 

the 1990s, while the thick dashed sold line portrays the 6 years of the 2050s.  The plot suggests 326 

that for the top 750 hours, NOx emissions for 2050s are greater than 1990s case by a margin of 3-327 

8 tons per hour, with the highest difference occurring for the top 25 hours (8 tons/yr, or 7%) (Ta-328 

ble 1).  For hours 1,500 to 3,672 the emissions profiles are nearly identical.  Since total NOx 329 

emissions are capped for each year, the area under the average NOx duration curves will equal 330 
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the allowances cap.  This explains why the 1990s curves emit more NOx during the hours 750-331 

1500.   332 

  Although Figure 5 indicates significant variation in peak emissions from year to year as 333 

gauged by the 95% CI, the between-year variation in NOx emissions under allowances banking 334 

could be even higher than simulated.  This is because we assumed no banking of allowances 335 

from one year to the next.  But in reality, a firm may emit more in a hot summer if it can use 336 

banked allowances from previous years.  On the other hand, if demands are low, then a firm may 337 

choose to emit less and bank surplus allowances. 338 
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Figure 4: County level allocation of new capacity under 1990s (upper) and 2050s (lower) climate 
scenarios. (♦ indicates the locations of the additional combustion turbines under 2050s climate. 
For each point shown, there is at least one new generator situated at that location.) 
 339 
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Overall, the variability of hourly emissions is larger during high emissions periods.  For 340 

our study region, the standard deviation of the highest-emission 25 hours is approximately equal 341 

to 10 and 15 t/hr (8 and 12%) for 1990s and 2050s, respectively, which is substantially larger 342 

than in the other hours.  Thus, under extreme cases, climate change enhances emissions of NOx 343 

during warm periods (when peak demands occur), and thus likely increases the frequency of se-344 

vere ozone episodes. Of course, CMAQ or other simulations would be necessary to verify this 345 

conjecture.  346 
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Figure 5: Average summer NOx duration curves for mid-Atlantic&ECAR for 1990s and 2050s 
climate conditions. The uncertainty is represented by the thin smooth lines delineating 95% con-
fidence intervals based upon the samples of 8 years and 6 years data for two series, respectively, 
and assuming a normal distribution. 
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The variability associated with NOx duration curves is mainly the consequence of de-348 

mand fluctuations due to meteorology, not because of EGU efficiency degradation as a result of 349 

warming weather.  In our analysis, for each ˚F increase in the ambient temperature, generating 350 

capacity is adjusted downward on average by 2.4%, and efficiency (i.e., heat rate) is worsened by 351 

0.6 and 0.7% for combined-cycle and combustion turbine EGUs, respectively.   However, if 352 

these changes are not considered, the distribution of emissions is only slightly altered, in part due 353 

to the seasonal cap.  354 

We also examined subregional emissions.  A one-tailed t-test shows that the mean peak-355 

period (highest 25 hours) NOx emissions for the 2050s is significantly (p<5%) greater than for 356 

the 1990s climate for the ME1, ME2, PPL1, BGEPEP, PL2, JC2, PN, and mid-Atlantic subre-357 

gions.  But this is not true for the study region as a whole. This suggests that climate change’s 358 

effects on emissions differ by location.  359 

Finally, we examine the relationship between hourly NOx emissions and corresponding 360 

ambient temperatures. We created a detailed load duration curve that includes 173 blocks: 153 361 

single hour blocks, each representing the 2 p.m. load of a single day, and 20 blocks that aggre-362 

gate the remaining hours. This allows us to study the relationship between temperature and NOx 363 

emissions during that particular hour.  Figure 6 displays the scatter plots of ambient temperature 364 

versus hourly NOx emissions for ECAR.  Each point is a pair of hourly NOx emission and 365 

ground-level temperature at 2 p.m., which tends to be near or at the time of peak power demand.  366 

The figure shows not only that the warming climate generally increases hourly NOx emissions as 367 

well as temperatures during this hour, as the 2050s points are somewhat shifted up and to the 368 

right of the 1990s points.  369 

The correlation between ambient temperature and hourly NOx emissions is around 0.7.  370 

This suggests that under warming weather, hourly NOx emissions could be considerably higher 371 

as a consequence of increased electricity demand, even if annual emissions are unaffected--by 372 

design--due to the seasonal cap.  Yet the temperature-NOx relationship is subject to a number of 373 

limitations, including the omission of dynamic constraints upon EGU operation in the model of 374 

Step 6, such as min-run levels or ramp rate limits.  Because these constraints are omitted, the 375 

model may mis-predict the generators’ actual output level in particular hours.  Since NOx emis-376 

sion rates could be highly nonlinear for some units such as combustion turbines, the hourly NOx 377 

emissions might be miscalculated as well.  378 
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Figure 6: Scatter plots of the ECAR hourly NOx emissions at each 2:00 p.m. versus ambient 
temperature during summertime based on re-running Step 6’s dispatch model. The different 
symbols represent two selected years from two series: 1995 (○) and 2055 (×).  A trend line based 
upon linear regression is also plotted for the 1990s (solid) and 2050s scenarios (dashed). 
 379 

CONCLUSIONS 380 

This paper examines the long run effects of climate change on the spatial and temporal distribu-381 

tion of NOx emissions by the power sector in the mid-Atlantic and ECAR regions using a series 382 

of optimization-based market simulation models that represent future power plant investment 383 

and operating decisions. The results show that climate-induced changes in the quantity and tem-384 

poral distribution of electricity demand could also modify the mix of generation capacity and dis-385 

tribution of pollution emissions in the long run, even in the presence of a seasonal emissions cap.  386 

It suggests that significantly higher emissions during peak demand hours will occur, possibly 387 

worsening regional air quality.   388 

While national air emissions are reported to have declined over the past several years35, 389 

the more frequent occurrences of extreme air quality episodes in some regions pose a significant 390 

threat to public health.42 The analysis in this paper shows that higher emissions during peak de-391 

mand hours could contribute to increases in this frequency in the future.  Thus, in addition to a 392 
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current seasonal cap system, a separate cap or pollution tax that applies only under forecast ex-393 

treme weather conditions may be needed to prevent worsening air quality during such times43.  394 

However, this study is subject to several limitations.  First, the characteristics of future 395 

technologies, the exact location of new emissions sources, and the nature of future pollution laws 396 

is highly uncertain.  For instance, the location of each county is represented by its geometric cen-397 

troid.  Emissions from new generators associated with that county are assumed to occur at that 398 

geographic point.  Thus, this approach may over-concentrate air pollution emissions locally in 399 

subsequent fate and transport modeling. 400 

Second, we assume that power plants cannot bank allowances between periods, although 401 

banking is permissible in reality.  One way to explore the variation of NOx emissions under 402 

banking scenarios is to adjust emissions in each year so that the marginal cost (permit price) of 403 

emissions is the same in each year, and the average annual emissions meet the cap. 404 

Third, as an example of regulatory change, the Regional Greenhouse Gas Initiative 405 

(RGGI) is not considered in our analysis.  It could affect our conclusions because, in the absence 406 

of federal CO2 limits, RGGI would encourage power plants located in the upwind ECAR (non-407 

RGGI) states to increase output in the short run or to build more coal-fired plants in the long-run.   408 

The consequence would then be to lower emissions in RGGI states but to increase them in 409 

ECAR.44 Our framework can be used to quantify the impact of RGGI or other CO2 regulatory 410 

scenarios by imposing a CO2 price in the appropriate regions.  411 
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