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 Abstract—A framework to quantify the value of model enhance-
ments (VOME) in transmission planning models is proposed and 
applied to a case study of large-scale long-term planning of WECC 
system. VOME quantifies the probability-weighted improvement 
in system performance resulting from changes in decisions that re-
sult from model enhancements, and is closely related to the con-
cept of value of information from decision analysis. Four types of 
enhancements have been investigated using the proposed frame-
work. Our results show major benefits from considering long-run 
uncertainty using multiple scenarios of technology, policy, and 
economics; these benefits are as much as 26% of total benefits of 
new transmission built in the first 10 years.  But less benefit is ob-
tained from more temporal granularity, more complex network 
representations, and including unit commitment constraints and 
costs. This framework can be applied to quantify the value of 
model enhancements in any planning context. 
 

Index Terms—Generation planning, Economics, Power trans-

mission planning, Mixed integer linear programming, Value of in-

formation, Stochastic programming 

I.  NOMENCLATURE 

𝐼     Set of enhancements, index i and j, with i = 1…n  

𝐸𝑖   Binary parameter: if 𝐸𝑖 = 1, then enhancement i is in 

the model 

𝑥𝐸𝑖..𝐸𝑛
 Optimal first stage transmission investments (“deci-

sion”) from a model with enhancements specified by 

subscripts. (E.g., 𝑥1,0,1 indicates investments from a 

model with only Enhancements 1 and 3 implemented.) 

𝑥    Decision of no transmission investments in stage 1 

𝑥    Optimal decision from model with all enhancements 

𝐶(𝑥)  Expected present worth of system cost of making de-

cision 𝑥, based on the model with all enhancements 

II.  INTRODUCTION 

rid reinforcements are a large part of the cost of integrating 

renewable energy [1]. This cost is justified because they 

contribute to a cost-efficient, reliable, and sustainable power 

system by delivering renewables and reducing congestion. But 

they should be planned carefully to avoid unnecessary expenses. 

Planning processes for transmission are necessarily complex. 

Permitting and construction takes about a decade. This, together 

with the long life of transmission assets and large policy, tech-

nology, and economic uncertainties means that benefit calcula-

tions must analyze how grid investments will perform under 

many different scenarios. Also, planning must consider the en-

tire system and all alternatives for an entire region at once, be-

cause a network reinforcement in one location can strongly af-

fect the benefits of new lines elsewhere. Further, though many 

power markets have unbundled transmission from generation, 

planners still need to consider how generation mix and siting 

are affected by where and when lines are added. This is called 

“proactive” transmission planning [2].  

In summary, transmission expansion models are complex 

because they need to consider entire regions, multiple decades 

of costs, generation-transmission investment interactions, and 

uncertainty in fundamental drivers [3], as well as numerous 

technical and economic details. 

However, models for transmission planning cannot be arbi-

trarily complex because of limited computation capabilities. As 

solvers and hardware improve, planners can add features to 

planning models to make them more realistic, but not all can be 

accommodated. Thus, planners always face trade-offs as they 

consider which model enhancements to implement. For in-

stance, if a model has 8760 operating periods/yr, a 40-yr hori-

zon, 10 long-run scenarios, 1000 candidate generators, and 500 

candidate transmission lines, model size easily grows to several 

billions of variables/constraints. Thus, a planner must choose 

which features of the real system to represent, which to omit, 

and what approximations to use. For instance, a planner might 

decide that renewable variability is more important to model, so 

she might want to consider hundreds of separate operating 

hours per year; to make that possible, she might then sacrifice 

network detail, e.g., by using a “pipes-and-bubbles”/transship-

ment formulation instead of a linearized DC power flow.  

Such choices are difficult and, should, ideally consider how 

much transmission plans would improve as a result of model 

enhancements. Our purpose in this paper is to present a frame-

work to quantify the economic value of model improvements 

and apply that framework to the Western Electricity Coordinat-

ing Council (WECC) using a 300-bus network [4] based on 

WECC’s 2024 Common Case database [5]. Thus, we can ad-

dress the following question: Can we quantify an economic in-

dex to meaningfully compare the value that alternative model 

enhancements might provide to transmission planning? 

The paper is organized as follows. In Section III, we briefly 

review some enhancements that have been proposed for trans-

mission planning models and related models. Then in Section 

IV, a systematic framework for calculating the value of model 

enhancements (VOME) is presented. In Section V, we describe 

the base planning model, the WECC case study environment, 

and the tested enhancements. In Section VI, we show results 

regarding which enhancements have the most value, and in Sec-

tion VII we provide some conclusions. 

III.  ENHANCEMENTS PROPOSED IN RECENT RESEARCH 

Researchers and software vendors have proposed adding 

various enhancements to planning optimization models (Table 
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I) in an attempt to yield useful information and better perform-

ing plans. In this section, we summarize some of those enhance-

ments. Detailed reviews can be found in [6], [7].  
TABLE I. SOME PROPOSED ENHANCEMENTS OF TRANSMISSION MODELS 

1. Considering uncertainty 

Deterministic, heuristic, stochastic [8]/ ro-

bust [11]/conditional value at risk (CVaR) 

[12]/adaptive [9], [10] 

2. Generation representation 
With/without binary/linearized unit com-

mitment [15], [16] 

3. Spatial granularity 
Number of nodes in network/data aggre-
gation level [17], [18] 

4. Network representation 
Hybrid DC/pipes-and-bubble, DC power 

flow [4], [19], [20], losses [22], AC [23] 
5. Temporal granularity  

a. Investment stages 

b. Operating hours 

More investment stages over the planning 

horizon 

More hours/yr [20]; chronological hours 
6. Transmission-investment 

coordination  

Reactive, proactive (co-optimization or 

multiple level) [2], [26-29] 

1. Uncertainty. A major area of enhancement has been to 

recognize long-run uncertainties in fundamental drivers of the 

economic value of transmission, such as load growth, technol-

ogy improvements, or policy, rather than considering just one 

“deterministic” or “base case” scenario. Some researchers rec-

ommend using stochastic optimization [3], [8] to model multi-

ple scenarios representing diverse values of those drivers. Mul-

tistage stochastic programs can differentiate between immedi-

ate “here-and-now” investment decisions (“stage 1”) that are 

made not knowing the future, and later “wait-and-see” decision 

stages that adapt the system depending on which scenario is re-

alized. A variant is “adaptive planning” that defines a core mul-

tiyear plan along with changes that can be made later if the driv-

ers change [9] (compared to stochastic optimization in [10]). 

Stochastic optimization assumes planners are risk-neutral 

(i.e., minimizers of probability-weighted costs), while other ap-

proaches assume that planners are risk averse, i.e., more con-

cerned with bad outcomes. Examples of the latter methods in-

clude robust optimization (minimizing the cost of the worst sce-

nario or worst regret [11]) and conditional value of risk (CVaR) 

constraints [12]. Simpler heuristic methods also attempt to iden-

tify plans that are “robust” to an uncertain future. Examples are 

MISO’s “Multi-Value Projects” [13] and the CAISO’s “least 

regret investments” [14], which include network investments 

that are attractive under most scenarios. 

2. Generation representation. Planning models can also be 

enhanced by more realistic models of generator costs and con-

straints. Notably, unit commitment modeling can be added to 

expansion models, replacing traditional load-duration 

curve/merit-order methods. The importance of commitment and 

ramp constraints, which limit generation flexibility, can im-

prove estimates of the cost of integrating variable renewables 

[15]. Ho et al. [4] implemented linearized unit commitment 

constraints [16] in transmission optimization. Their results in-

dicate that limiting the flexibility of generators has more impact 

on transmission economics in systems with slow baseload units.  

3. Spatial granularity. Adding more zones or network nodes 

is another potential enhancement. Ref. [17] showed that more 

spatial aggregation can penalize photovoltaics since it mixes so-

lar resources of good and bad quality. Shawhan et al. [18] 

demonstrated how increasing the level of detail for the Eastern 

Interconnection (from 1 node to 62,000 nodes per system) im-

proves the accuracy of policy impacts predictions.  

4. Network representation. The “pipes-and-bubbles” (trans-

shipment) networks used in many planning models have been 

proposed to be replaced by more realistic approximations of 

power flow, such as DC OPF, that are practical to solve [19], 

[20]. However, as [20] shows, in a large-scale system, DC OPF 

modeling can dramatically slow solution times, and may have 

little impact on investment recommendations, compared to 

transshipment networks that lack Kirchhoff’s voltage law. An 

intermediate level of complexity is the hybrid power flow [21]. 

There, existing AC line flows are modelled using angle differ-

ence/flow relationships (as in the linearized DC load flow), but 

all new lines are modelled as if they are DC circuits whose 

flows are controllable (as in pipes-and-bubbles models) and 

whose capacity can be added in continuous amounts. Other im-

provements could include consideration of losses [22], AC load 

flow [23], and N-1 contingencies [22], [24]. 

5. Temporal granularity. Indeed, it has been argued that hav-

ing more operating hours per year in a transmission model is 

important than representing the voltage law [25]. However, oth-

ers have studied the impact of more temporal granularity on 

generation expansion [20], and concluded that adding dispatch 

periods slows down computations while having little apparent 

effect on generation expansion decisions.  

6. Transmission-generation investment coordination. Trans-

mission optimization models traditionally plan against a fixed 

scenario of generation investment locations and types. This is 

“reactive” planning. However, proactive transmission planning, 

which considers how generation investment decision might be 

affected by grid reinforcements, can lead to less costly plans 

[26]. In the simplest proactive models, generation markets are 

assumed to be perfectly competitive, which allows proactive 

transmission planning to be modeled using a single “co-optimi-

zation” model. If instead generators behave strategically, multi-

level transmission planning models can be used [27], [28], [29], 

but are much more computationally intensive. 

The impacts of the above enhancements on transmission op-

timization model solutions have often been assessed [17], [18], 

[20], but generally with a focus on how decisions (such as gen-

eration investments) change, rather than on the improvement in 

economic performance of recommended plans. In one excep-

tion, the cost savings resulting from proactive transmission 

planning were investigated in [26], but not compared to the 

value of other kinds of enhancements. Here, we present and ap-

ply a framework to calculate the value of model enhancements 

in order to inform prioritization of model improvement efforts. 

IV.   VALUE OF MODEL ENHANCEMENT (VOME) 

In this section, we first define the value of model enhance-

ment. We then propose a framework for implementing this idea 

in transmission optimization modeling.  

A.  Definition of VOME 

VOME is a close analogy to the idea of the “expected value 

of perfect information” (EVPI) from decision analysis. EVPI is 

the most that a planner is willing to pay for perfect information, 
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equal to the probability-weighted (expected) improvement in 

the performance of the optimal solution. Similarly, VOME can 

be stated as: what are we willing to pay for elaborating a plan-

ning model in a specified way? This is the expected improve-

ment in performance of the resulting decision. Another way to 

look at VOME is as the cost of simplifying the model, i.e., how 

much performance one must sacrifice, in expectation, if a par-

ticular simplification is made (i.e., an enhancement is omitted). 

We can explain the idea as follows. Imagine a decision 

maker (DM) builds a model, and the model indicates that some 

plan 𝑥𝐴 is optimal. Then, the DM enhances the model by im-

proving the realism of the constraints or objective, and then gets 

plan 𝑥𝐵 back instead. Finally, imagine for now that the DM can 

test the performance of alternative plans before implementing 

them by using a sophisticated and highly realistic simulation 

model. This simulation shows 𝑥𝐴 would have a “true” expected 

cost of 𝐶(𝑥𝐴) while decision 𝑥𝐵’s cost is 𝐶(𝑥𝐵). (We put “true” 

into quotes because the actual expected cost cannot be known, 

but this is the best estimate that can be obtained.) The VOME 

of this enhancement (more constraints) is then calculated as 

𝐶(𝑥𝐴) –  𝐶(𝑥𝐵), the decrease in “true” cost resulting from using 

the enhanced model to make decisions.  

However, we must overcome at least three difficulties to suc-

cessfully calculate VOME. 

1. Sometimes an enhancement involves combining infor-

mation from several sources. For example, we can have a 

model A1 based on one set of n operating hours/yr, and a 

model A2 based on a different set of n hours/yr. Combining 

the information, we have model B with 2n hours. Then the 

cost improvement can be calculated in two ways: [𝐶(𝑥𝐴1) −
𝐶(𝑥𝐵)] and [𝐶(𝑥𝐴2) − 𝐶(𝑥𝐵)]. Which should we use? 

2. There are usually multiple enhancements available. For in-

stance, if there are 2 kinds of enhancements, from A to B 

(e.g., fewer to more operating hours) and from C to D (e.g., 

from a simple to a more sophisticated network), then there 

are 4 types of models: AC, BC, AD, BD. This also means 

that there are at two ways of calculating the savings of using 

B rather than A: [𝐶(𝑥𝐴𝐶)–  𝐶(𝑥𝐵𝐶)] and [𝐶(𝑥𝐴𝐷)–  𝐶(𝑥𝐵𝐷)]. 
Which should we use? 

3. The “true” cost 𝐶(𝑥) may be hard to evaluate, involving a 

complex or difficult to compute model, as it should ideally 

be capable of simultaneously evaluating all enhancements 

under investigation. How should 𝐶(𝑥) be estimated? 

To address these difficulties, we propose the approach below: 

1. When the enhancement involves combining information 

from more than one source, we calculate a weighted average 

of the improvements. For instance, consider the enhance-

ment mentioned above, in which two sets of hours, each of 

size n, are combined into a 2n hour set. Since each set con-

tributes half of the information, we set the weights to 0.5. In 

that case, VOME = [0.5𝐶(𝑥𝐴1) + 0.5𝐶(𝑥𝐴2) − 𝐶(𝑥𝐵)]1. 

2. When calculating the VOME for one particular enhance-

ment when other enhancements are also under consideration, 

                                                 
1 Similar idea is applied to assess the enhancement from deterministic to sto-

chastic planning. For example, consider two possible scenarios with probability 

𝑝1 and 𝑝2, resulting in plans 𝑥1 and 𝑥2. A stochastic model considering both 

we consider the incremental impact given every possible 

combination of the other enhancements. That is, we com-

pare solutions from two models at a time, where only the 

enhancement of interest i is changed, and all other model 

features are the same. This results in 𝑁𝑖 pairs of decisions 

(thus 𝑁𝑖 cost differences), where 𝑁𝑖 equals the number of all 

possible permutations of other enhancements. (E.g., if there 

are 3 other possible enhancements, each either being present 

or absent, then there are 𝑁𝑖  = 23 combinations.) Then we 

take the average of these 𝑁𝑖 cost differences. 

3. We define the “true” system cost 𝐶(𝑥) as the best obtainable 

estimate of cost of making decision 𝑥. This can be done by 

fixing 𝑥 in the most sophisticated model that can be solved, 

and optimizing over other variables again. As explained in 

Section V.C below, it was not possible in our case study to 

model all enhancements at once in one model, so a compro-

mise was made by calculating 𝐶(𝑥) by one of two sophisti-

cated models (either with unit commitment, or with the max-

imum number of hours, DC load flow, and stochasticity).  

With these assumptions, VOME can be formulated as follows:  

𝑉𝑂𝑀𝐸𝑖 =
1

𝑁𝑖

∑ (𝐸[𝐶(𝑥𝐸1…,𝐸𝑖=0,…𝐸𝑛 )] − 𝐸𝑗,𝑗≠i 

𝐸[𝐶(𝑥𝐸1…,𝐸𝑖=1,…𝐸𝑛 )])      (1)  

In this formulation, 𝑥 is the decision (here, the immediate (first 

stage) transmission investment) obtained by a model with en-

hancements specified by the subscripts, and 𝑖 is the enhance-

ment under evaluation. The expectation operator accounts for 

both the possibility of multiple long-run scenarios (each with 

an assumed probability), and weighting of multiple sets of in-

formation, as described under the first difficulty above. 

B.  VOME Calculation in Transmission Planning  

Before we implement VOME for transmission planning 

models, we lay out three basic assumptions. 

First, all our transmission planning models are in form of 

transmission-generation co-optimization [2]. Thus, we obtain 

the optimal transmission plans anticipating generator reactions, 

assuming that generation investments and spot markets take 

place under competitive conditions.   

Second, we take the viewpoint of a transmission planner, and 

we are interested in the cost of making mistakes in first stage 

(immediate or “here and now”) transmission investment deci-

sions. We define x for our application as the first stage trans-

mission investments, and when calculating 𝐶(𝑥), we allow the 

most sophisticated model to choose the second stage transmis-

sion investments, as well as all generation decisions. This as-

sumption is based on the recognition that a transmission system 

only commits to first stage (immediate) decisions, and has the 

flexibility to deviate from the solution’s second stage recom-

mendations later when there is better information. Thus, this 

VOME is the value of the model enhancement just for immedi-

ate transmission investments.  

Finally, in calculating 𝐶(𝑥) we assume that generation in-

scenarios and their probabilities gives plan 𝑥𝑠. Then the value of this enhance-

ment is [𝑝1𝐶(𝑥1) + 𝑝2𝐶(𝑥2)] − 𝐶(𝑥𝑠). This is the same as the definition of ex-
pected cost of ignoring uncertainty (ECIU) in classical decision analysis [30]. 
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vestors make decisions with full information, including the in-

formation that would be provided by all enhancements, even if 

transmission plans x are based on more naïve assumptions from 

a simpler model. However, generation owners make their deci-

sions assuming that they cannot affect prices of transmission 

services (nodal price differences). This can be viewed as the 

competitive market’s reaction to decisions x. 

Combining all three assumptions, we calculate VOME thus: 

1. 𝑥 is the first stage transmission investments from a model 

with an assumed set of enhancements. 

2. 𝐶(𝑥) is the “true” system cost obtained by simulating the 

optimal generation decisions and second-stage transmission 

investments in response to x. We treat 𝐶(𝑥) as the actual 

system cost associated with x.  

3. VOME for an enhancement is then calculated by (1). 

Fig. 1 presents this procedure as a flow chart.  

 
Fig. 1. Procedure for Calculating VOME in Transmission Planning Model 

C.  Metrics of Economic Benefit of Transmission Planning  

To place VOME in context, we compare it to the overall ben-

efit of transmission expansion. If VOME for a particular en-

hancement is a significant fraction of the total benefit of adding 

transmission, then we conclude that the enhancement is poten-

tially important to include in the model.  

The benefit of expansion is calculated as follows. Assume 

that it is feasible to build no lines at all in first stage, and let 𝑥 

stand for this null plan. The resulting null plan cost (NPC) will 

be 𝑁𝑃𝐶 = 𝐶(𝑥). Then we can define any other plan x’s net ben-

efit (NB(x)) as 𝑁𝐵(𝑥) = 𝑁𝑃𝐶 − 𝐶(𝑥). 

By the definition of “true” cost 𝐶(𝑥) as the cost from the 

most sophisticated model (i.e., the one with all enhancements), 

we can define the best possible optimal plan cost (OPC) as 

𝑂𝑃𝐶 = 𝐶(𝑥), where 𝑥 is the solution from that model. We can 

then define the upper bound of economic benefit (UPB) trans-

mission planning as 𝑈𝑃𝐵 = 𝑁𝑃𝐶 − 𝑂𝑃𝐶.  
Any plan x, other than the optimal plan, can be viewed as 

achieving some but not all of the possible benefits. Thus, we 

can define economic benefit recovery as 𝐵𝑅(𝑥) = 𝑁𝐵(𝑥)/
𝑈𝑃𝐵. The 𝐵𝑅(𝑥) metric is useful when comparing different 

transmission plans, since the change in the objective function is 

usually a small part of total system cost, which is large because 

it includes all generation capital and operating costs.  

V.  EXPERIMENTAL DESIGN  

We now describe how we implemented VOME in a realistic 

transmission planning study. First, we briefly describe the basic 

model for the VOME calculation, and then we give an overview 

of the enhancements we investigated. We then summarize the 

case study environment, a 300-bus network for WECC. Finally, 

we describe how the four enhancements are added to the model. 

A.  Summary of Basic Planning Model 

The basic planning model is the Johns Hopkins Stochastic 

Multi‐Stage Integrated Network Expansion (JHSMINE). Its 

mathematical formulation can be found in the on-line Appendix 

(http://hobbsgroup.johnshopkins.edu/home.html), and is based 

on [8] as elaborated in [4]. JHSMINE is a scenario-based, two-

stage stochastic programming model, in which first-stage (here-

and-now) decisions made today (year 0) include immediate 

transmission and generation investments that will be on-line in 

year 10, while recourse decisions are new transmission/genera-

tion investments that come on-line in year 20, as well as optimal 

generation dispatch and power flows in years 10 and 20, the 

latter being used to estimate costs in years after 20. These deci-

sions are subject to network, unit commitment and other con-

straints. Renewable portfolio standards and renewable credit 

trading are also modeled. Uncertainties can be handled through 

multiple scenarios for year 10 and 20 model parameters. Exam-

ples include capital cost uncertainties caused by technology ad-

vances (i.e., scenarios of objective function coefficients), 

load/peak growth uncertainty (represented by scenarios of con-

straint right-hand sides), and policy uncertainties, such as car-

bon prices. 

B.  Case Study Environment: 300-bus WECC system 

We discuss four sets of assumptions: network reduction, ex-

isting generation mix, new generation investment opportunities, 

and network investment possibilities. First, the system is a re-

duction of the WECC Common Case 2024 [5] (details in [4]). 

The reduced network includes 328 nodes and 530 lines (Fig. 2), 

in which 249 of the nodes were preserved existing nodes in the 

original network (230 kV or above), while 244 lines were pre-

served existing lines from the original network. The whole net-

work can be divided into 26 regions by the preserved paths [31].  

 
Fig. 2. Case study network reduction 

Second, the system includes 544 existing generators of 16 

types distributed among 249 existing nodes.  

Third, the other 79 nodes are designed as candidate sites for 

generation expansion. 26 of the 79 nodes are location-irrelevant 

conventional generation expansion sites in each region men-

tioned above. The remaining 53 nodes in the network were can-

didate sites for renewable investment. Their locations and po-

tential capacities are derived from [32]. Four types of renewa-

bles (wind, utility-level solar, geothermal and biofuels) can be 

constructed along with two types of conventional generation 

(gas combined cycle and combustion turbines). Capital costs 

assumptions vary based on the location of candidate sites [33]. 

Finally, the transmission investment candidates considered 

can be divided into two categories: backbone reinforcements 

and renewable access. Backbone reinforcements are defined as 

having the characteristics of the line with largest capacity in a 
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given WECC transmission path. Such lines relieve congestion 

and path limits. Radial renewable access lines connect renewa-

ble developments to the closest nodes in the existing network. 

Since we assumed all transmission lines in the WECC “Com-

mon Case” [5] have been brought on line by 2024, all transmis-

sion investment variables in our model are incremental over and 

above the Common Case.  

C.  Candidate Model Enhancements 

We compare the economic value of four possible model en-

hancements using VOME, as described above. 

    1)  Generating Unit Commitment  

 This enhancement enables the model to consider limits upon 

generation flexibility, such as start-up costs, minimum running 

capacity, and ramp limits. This would penalize slow-moving 

steam generators relative to single and combined cycle plants. 

Such limits are relevant to transmission planning because, for 

example, delivery of distant renewables will be less valuable if 

their fluctuating output cannot be fully used by the grid.  

In our model, this enhancement is modeled by relaxing the 

binary constraints on commitment variables so that they can 

take on values in the range of 0-1, which reduces computational 

time [16]. The variables can be interpreted as the fraction of 

generation capacity of a given type that is committed in a given 

hour. The assumed commitment parameters (WECC averaged) 

are shown below (Table II). Other technologies such as hy-

dro/wind and solar are not subject to these flexibility constraints. 
TABLE II. GENERATOR UNIT COMMITMENT ASSUMPTIONS 

Generation Type 
Minimum Run 

(% capacity) 

Ramp Rate (% of 

capacity/hr) 

Startup Cost 

($/MW) 
Coal 51% 29% 61.26 

Gas Combined Cycle 51% 44% 59.68 

Gas Combustion Turbine 41% 75% 24.32 

Nuclear 87% 12.5% 81.81 

    2)  Network Modeling 

More physical realistic models of power flow benefits plan-

ning by better characterizing how grid reinforcements affect 

transmission capability, dispatch, and, ultimately, costs.  

The basic model is a pipes-and-bubble (P&B) power flow 

modeling. This can be enhanced by implementing a linearized 

DC power flow model using a “B-theta” formulation, which in-

cludes Kirchhoff’s voltage law by explicitly modeling phase 

angles, but assumes unit voltage and negligible resistance [34]. 

Flow on a line equals the phase angle difference across the line 

divided by impedance; we enforce this for new lines by disjunc-

tive constraints [19], that use 0-1 variables to represent ab-

sence/presence of the line. An intermediate level of enhance-

ment is hybrid flow modeling [21], defined above.  

    3)  More Short-Run (Within-Year) Temporal Granularity 

Computational limits mean that it is not possible to model 

8760 hrs/yr in a multi-decadal transmission optimization model, 

even without any other enhancements. Thus, we must choose 

the number of distinct operating periods. More periods/yr can 

result in a better representation of load and renewable temporal 

distributions and correlations.  

Here, two levels of with-in year temporal granularity, 24-

hrs/yr and 48 hrs/yr, are considered. To make the 24 and 48 

hour solutions comparable, the set of 48 hours is defined as the 

union of two 24 hour sets. The load duration curves for different 

sets hour sets (24, 48, and 8760) are shown in Fig. 3 to show 

the load pattern captured by the hour sets.  

 
Fig. 3. WECC-wide load duration curves for different hour sets 

    4)  Multiple Long-Run Scenarios  

Reasons for considering long-run uncertainty are discussed 

in Section II, and in more detail in [7]. Here, we take stochas-

ticity into consideration by two-stage stochastic programming 

[30]. This method uses an expected cost objective to decide 

which stage 1 investment commitments to make before it is 

known how uncertainties such as load growth will be resolved, 

while making “wait and see” (stage 2) decisions afterwards. 

Although there are other uncertainty planning methods, sto-

chastic programming has the advantage of representing system 

adaptations over time as well as the state-of-knowledge when 

commitments are made. Further, the objective (MIN expected 

cost) is consistent with the definition of 𝐶(𝑥) used by VOME. 

We quantify the value of considering long-run uncertainties 

in the case study by considering the first stage decisions x that 

are made considering either each of 5 scenarios separately (de-

terministic model) or jointly in an enhanced model (stochastic 

programming). In the latter model, we assume the 5 scenarios 

are equally likely. Parameters of these five scenarios (Table III) 

are either directly from WECC’s 2013 study cases [35] or de-

veloped with the help of a WECC technical advisory group [4]. 

Considering the above four types of enhancements, two 

groups of experiments were undertaken as follows. First, the 

effect of generator unit commitment modeling is investigated 

by itself, with the model including stochasticity (5 scenarios) 

but only the pipe-and-bubbles network. Then the other three en-

hancements (temporal granularity, network representation and 

stochasticity) are compared together. Unit commitment is ana-

lyzed in a separate experiment mainly because it requires se-

quential hourly data. This requirement, which requires repre-

sentative days instead of hours, renders the planning model with 

other features, especially DC OPF, computationally intractable. 

On the other hand, the three days (72 hours) we used in the unit 

commitment analysis are not as accurate a representation of 

cross-region load and renewable output correlations as the sets 

of hours investigated in the second experiment.  
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TABLE III. VALUES OF UNCERTAIN VARIABLES BY SCENARIO 

Scenario: Base  W1 W2 W3  W4 

Gas Price 

(% change from base) 
0 +86 0 0 -51 

Carbon Price ($/ton) 58 58 113 33 113 

Load Growth (%/yr) 1.13 3.20 3.20 -0.91 -0.91 

Peak Growth (%/yr) 1.28 2.64 2.64 -0.37 -0.37 

State RPS (% change) 0 0 +50 0 +50 

Federal RPS (% of Load) 0 0 +15 0 +15 

Wind Cap. Cost (% change) 0 +7.5 -18.3 +7.5 -18.3 

Geoth. Cap. Cost (% change) 0 0 -15 0 0 

Solar Cap. Cost (% change) 0 0 -28.7 +30 0 
 

VI.  RESULTS 

In this section, we will show the outcomes of the VOME ex-

periments for the case study WECC system. First, we summa-

rize model sizes and computation times to help the reader ap-

preciate the “curse of dimensionality” that arises from attempts 

to include all possible enhancements. Then we show the VOME 

for adding unit commitment to the planning model, and, finally, 

compare the values of VOME across the enhancements of in-

creased temporal granularity, improved network representation, 

and including long-run uncertainties via multiple scenarios.  

A.  Model Size and Computation Time Comparison 

First in Tables IV and V, we display the change in model 

size and solution times under alternative enhancements.  
TABLE IV. MODEL SIZE AND SOLUTION TIME WITH VARIOUS 

ENHANCEMENTS (DETERMINISTIC/SINGLE SCENARIO CASES) 

 
Deterministic 

(15 candidate backbone lines x 2 stages) 

Network P&B Hybrid DC OPF P&B Hybrid DC OPF 

Load slices/yr 24 24 24 48 48 48 

# Constraints (million) 0.23 0.26 0.26 0.46 0.51 0.52 

# Variables (million) 0.18 0.19 0.19 0.36 0.36 0.36 

Solution Time (minutes) 0.25 4.25 5.78 0.78 21 35 
  

TABLE V. MODEL SIZE AND SOLUTION TIME WITH VARIOUS 

ENHANCEMENTS (STOCHASTIC/5 SECOND STAGE SCENARIOS) 

 Stochastic (Same Candidates, 5 WECC scenarios) 

Network P&B Hybrid 
DC 
OPF 

P&B Hybrid 
DC 
OPF 

No 
UC 

With 
UC 

Hours 24 24 24 48 48 48 72 72 

#Constraints 

(million) 
1.15 1.25 1.26 2.25 2.49 2.51 3.17 14.6 

#Variables 

(million) 
0.90 0.93 0.93 1.74 1.86 1.86 2.41 6.67 

Solution 

Time 
3 mins 3 hours 4 hours 

0.25 

hours 

16.8 

hours 

24 

hours 

0.67 

hours 

6.89 

hours 

All these models are mixed integer linear programs (MILPs) 

and are solved to a MIP gap of 10-5 % (relative to the objective 

function value) to avoid possible biases in our conclusions in-

troduced by large gaps. Also, all models were solved on the 

same workstation with an Intel® Core™ i7-5930K CPU and 32 

GB of core memory using solver CPLEX 12.6.3. All solution 

times shown here are approximate averages, since, for example, 

there are 10 deterministic runs using the P&B network together 

one of the two 24-hour sets (5 scenarios times 2 sets of 24 

hours), for which the average solution time is 15 seconds. 

Note that only about 15 seconds are needed to generate an 

optimal plan for the most simplified model, while 24 hours were 

required to solve a model with the most enhancements. 

B.  VOME of Unit Commitment 

In this part of the analysis, first-stage plans x are generated 

from two planning models, both with the stochasticity enhance-

ment (5 scenarios), but one without linearized unit commitment 

constraints and costs, and the other with those features. The net-

work was assumed to be P&B for computation tractability. 

Three 24-hour days were considered per year (72 hrs/yr).  

Since the planning model that includes unit commitment is 

closer to reality, the calculation of 𝐶(𝑥) is performed with both 

unit commitment and stochasticity. That is, “true” cost 𝐶(𝑥) for 

a given set of first-stage transmission investments x is calcu-

lated by optimizing all the other decision variables while in-

cluding unit commitment and 5 second-stage scenarios. 

The resulting cost of transmission plans and their benefits is 

shown below in Table VI. The “true” cost 𝐶(𝑥) of the null plan 

𝑥 (no first stage transmission other than the WECC Common 

Case lines) is NPC = $993.75B (2014 present worth). In con-

trast, with about $3B of first-stage transmission investment x 

resulting from the unit commitment model with 5 scenarios, the 

system’s “true” cost 𝐶(𝑥) is $24.05B lower, which we treat as 

the upper bound OPC of the net benefit of transmission. In con-

trast, if unit commitment is not included, more backbone and 

renewable interconnection transmission is constructed, with a 

total first stage transmission investment of $3.85B, and a 𝐶(𝑥) 

that is $23.54B lower than NPC. Thus, the model enhanced with 

unit commitment gave a more conservative plan x, whose ben-

efits are $0.51B billion higher (= $24.05B-$23.54B) than the x 

resulting from the model without unit commitment. This is our 

estimate of VOME for including unit commitment in the 

WECC-wide transmission planning model. 
TABLE VI. COSTS AND EXPECTED BENEFITS OF FIRST STAGE TRANSMISSION 

PLANS GENERATED BY MODEL WITH/WITHOUT UNIT COMMITMENT 

ENHANCEMENT (BILLION 2014 US$). 

Planning Model No UC With UC 

Backbone Trans. 1.62 1.00 

Renewable Trans.  2.23 2.00 

“True” Cost 𝐶(𝑥) 970.21 969.70 

Net Benefit (NB(x)) relative to null plan 23.54 24.05 

Benefit recovery BR(x) 97.9% 100% 

Null plan cost (NPC)  993.75 

C.  VOME of Temporal Granularity, Power Flow Representa-

tion and Stochasticity 

To estimate the VOME of these three enhancements, the im-

practicality of solving a unit commitment model together with 

all three other enhancements means that each model in this sec-

tion omits unit commitment (i.e., assumes that generators can 

be ramped up and down without restriction and can be freely 

started up or shut down). 
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Fig. 4. Conceptual framework for VOME calculation of Temporal Granular-

ity, Network Representation and Stochasticity 

Fig. 4 is a visualization of how we implemented the defini-

tion of VOME from Section IV.  in this experiment. Let the 

origin of the three-dimensional plot represent the outcome of a 

highly-simplified model with just a P&B network, 24 operating 

hours/yr, and a single long-term scenario. Then one can imagine 

enhancing the planning model along any or all of three dimen-

sions, anticipating that the enhancement(s) will generate a more 

beneficial first-stage transmission plan x. Each node in the dia-

gram represents one possible model formulation (combination 

of enhancements), for which we obtain the first-stage transmis-

sion plan x whose “true” cost 𝐶(𝑥) is calculated using the most 

sophisticated set of assumptions (linearized DC network, 48 

hours/yr, and stochasticity with 5 scenarios). Then we calculate 

the differences between adjacent nodes, which is equivalent to 

calculating the cost savings resulting from enhancing the model 

in one direction. The average of cost differences (arrows with 

same color) is the VOME for the particular enhancement repre-

sented by the direction of the arrow (i.e., equation (1), above). 
TABLE VII. NET BENEFITS NB(x) OF FIRST STAGE TRANSMISSION x 

GENERATED BY DIFFERENT MODELS (BILLION 2014US$) 

Power Flow/ Hour 
Deterministic (Single Scenario) Plans  Stochastic 

Base W1 W2 W3 W4 Avg.  

P&B/24-Set 1 21.28 23.75 21.16 1.85 23.09 18.22 24.38 

P&B/24-Set 2 20.29 23.00 22.13 2.43 23.27 18.23 24.50 
P&B/48 20.20 23.76 22.41 1.95 23.73 18.41 25.09 

Hybrid/24-Set 1 22.43 22.80 21.13 1.93 22.47 18.15 24.44 

Hybrid/24-Set 2 21.09 23.54 22.54 2.58 23.96 18.74 24.97 
Hybrid/48 20.34 23.10 21.31 2.05 24.49 18.26 25.40 

DCOPF/24-Set 1 22.36 22.05 21.43 2.30 22.78 18.18 24.85 

DCOPF/24-Set 2 21.32 23.55 22.57 2.92 24.33 18.94 25.17 
DCOPF/48 20.42 22.57 21.58 2.41 24.77 18.35 25.69 

Null Plan (x =0) Cost (NPC) 887.90 

Table VII shows the benefits achieved by different plans ob-

tained by comparing their “true” cost 𝐶(𝑥) to that of the null 

plan 𝐶(𝑥). The upper bound of benefit is $25.69B (the value of 

the plan from the model with all enhancements, last entry in 

next-to-last row). Several trends are noticeable. First, determin-

istic models (especially based on scenario W3) often perform 

poorly relative to stochastic models. The benefits of plans gen-

erated by stochastic models are consistently higher than plans 

from the five deterministic models (one per scenario) in the 

same row. The large variation among deterministic models 

shows that choosing the wrong scenario for planning can result 

in large regret. On average, stochastic plans achieved $6.68B 

more benefits compared to deterministic plans, which repre-

sents 26% of the maximum benefits.  

Second, for the enhancements of temporal granularity and 

power flow representation, the improvements in “true” cost are 

consistently small and their sign can vary. For example, for both 

24-hr plans generated from the base-case deterministic/DCOPF 

model, “true” benefits actually decrease when using higher 

temporal granularity (48 hrs). However, when stochasticity is 

considered, the benefit of adding hours is always positive.  

The third trend is that a simple stochastic model (P&B net-

work/24 hrs) can achieve most (95%) of the potential benefit.  

The results from that table are used to derive the VOME val-

ues (Table VIII). Including multiple scenarios (stochasticity) is 

the most valuable enhancement by over an order of magnitude, 

and also greatly exceeds the benefit of unit commitment.  
TABLE VIII. VOME AND ASSOCIATED RANGES (BILLION 2014US$)  

Enhancement 
Stochas-

ticity 

Temporal 

Granularity 

P&B to 

Hybrid 

Hybrid to 

DCOPF 

VOME ($) 6.68 0.30 0.16 0.20 
Fraction of total benefit 26.0% 1.18% 0.62% 0.78% 

Max ($) 7.34 0.695 0.310 0.305 

Min ($) 6.22 -0.21 -0.15 0.090 

Although space does not permit us to describe the individual 

transmission plans x in detail, we can note one important pattern. 

This pattern is that hybrid models tend to over-invest in back-

bone reinforcement. Table IX shows the backbone reinforce-

ment cost of plans generated by different models: hybrid mod-

els universally invest more lines than the P&B and DCOPF 

models. This is likely because the hybrid model treats all new 

grid reinforcements as controllable DC lines, while imposing 

Kirchhoff’s voltage law on the existing grid. This could result 

in an exaggeration of the value of new transmission and thus 

over-encourage investment. In contrast, The simpler P&B 

model is not so biased towards new investment because it treats 

all lines (albeit incorrectly) as having controllable flows. 
TABLE IX. FIRST STAGE BACKBONE INVESTMENT GENERATED FROM 

DIFFERENT MODELS (BILLION 2014US$) 

Power Flow/ 

Hour 

Deterministic Stochastic 

Base W1 W2 W3 W4  

P&B/24-Set 1 0.53 0.88 1.16 0.37 0.53 0.55 

P&B/24-Set 2 0.37 0.52 1.46 0.37 0.37 0.53 
P&B/48 0.37 0.70 1.16 0.37 0.37 0.55 

Hybrid/24-Set 1 1.20 2.72 1.95 1.20 1.20 1.98 

Hybrid/24-Set 2 1.20 1.02 1.66 1.20 1.20 1.84 
Hybrid/48 1.18 2.72 2.28 1.20 1.20 1.84 

DCOPF/24-Set 1 0.56 1.35 1.16 0.56 0.56 0.72 

DCOPF/24-Set 2 0.56 1.00 1.64 0.56 0.56 0.72 
DCOPF/48 0.56 1.05 1.16 0.56 0.56 0.72 

VII.  CONCLUSIONS 

This paper has presented a framework to calculate the eco-

nomic value of model enhancements (VOME), in terms of ex-

pected improvements in the probability-weighted present worth 

of system costs resulting from changes in immediate transmis-

sion investments. We apply the concept to a large-scale, long-

term planning model for the WECC transmission network. Four 

types of enhancements, including stochasticity (multiple long-

run scenarios), finer temporal granularity (operating hours), im-

proved network modeling, and inclusion of unit commitment 

costs and constraints, are investigated.  

The results show major benefits from considering uncer-

tainty using multiple scenarios of technology, policy, and eco-

nomics, but less benefit from the other potential enhancements.  

These benefits are as large as 26 percent of the overall benefit 
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of building new transmission lines between 2015 and 2024 over 

and above the lines already included in the WECC Common 

Case [5].   

These results imply that considering long-run uncertainties 

is potentially highly beneficial in transmission planning. Also, 

a simple model with a small set of hours and a pipes-and-bub-

bles power flow simulation can potentially yield a plan that 

achieves most of the potential economic benefits. On the other 

hand, planning deterministically based on the wrong scenario 

concerning future policy, economics, or technology can result 

in a huge economic regret. These results suggest the following 

practical approach to optimizing network reinforcements: start 

with a plan generated by optimizing a simple stochastic model, 

and then use it as a starting point for heuristic search for a better 

set of first-stage network reinforcements, using the most sophis-

ticated model available to test the solution.  

These particular VOME results do not necessarily apply to 

other regions or planning problems. Nonetheless, they indicate 

that quantifying the economic value of model improvement is 

practical and can provide useful insights not only for users of 

transmission planning models but also for other types of plan-

ning optimization problems in power and other infrastructure 

systems. 
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