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Abstract 

Investments in power generation, pollution controls, and electricity end-use equipment are made in the face of 

uncertainty.  Unanticipated events can cause regret—commitments that in retrospect were the wrong choices.  We 

analyze how three uncertainties—electricity demand growth, natural gas prices, and power sector greenhouse gas 

regulations—could affect electric power sector investment decisions and costs in the U.S. over the next four dec-

ades.  The effect of multi-pollutant regulations such as the Clean Air Interstate Rule (CAIR) upon these decisions 

and costs is also considered.    

We use decision trees to structure the problem, defining multiple futures for each uncertainty and then simulat-

ing how the U.S. energy market responds to them.  A two-stage stochastic version of the energy-economy model 

MARKAL simulates the market.  Relative importance of the uncertainties is assessed using two indices: expected 

cost of ignoring uncertainty (ECIU) and expected value of perfect information (EVPI).  We also calculate the value 

of policy coordination (VPC), the cost saved by avoiding surprise changes in policy. An example shows how a sto-

chastic program can be used to compute these indices.  The analysis shows that the possibility of greenhouse gas 

regulation is the most important uncertainty by these measures. 
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1. Introduction 

The purpose of multi-pollutant policies for the electric power industry is to lower compliance costs and make 

larger emissions reductions possible by coordinating the implementation of policies addressing NOx, SO2, hazardous 
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air pollutants, and, in some cases, CO2.  For a summary of various multipollutant proposals, including the original 

Clear Skies legislation and proposed Clean Air Interstate Rule.1  Because of the diverse health, material, visibility, 

and ecological effects of these emissions, and the uneven way in which the costs of control will impact different 

societal groups, explicit consideration of tradeoffs among objectives and interests is a critical part of the policy de-

velopment process [2, 3].   The analysis builds upon previous multiobjective analyses of multipollutant policies for 

the electric sector that have been undertaken for the Office of Atmospheric Programs using the MARKAL energy-

economy model [4].  The contribution of our analysis is the inclusion of crucial policy and economic uncertainties in 

the design of multi-pollutant policies that effectively address the full range of policy objectives, and the demonstra-

tion of methods for quantifying various indices of the comparative importance of uncertainties in market models.  

We address three questions: 

• What is the value of considering policy and economic uncertainty in developing multipollutant policies? 

• What is the value of better information about these uncertainties? 

• What is the value of coordinating policies concerning multiple pollutants? 

The questions are addressed by a decision tree-based analysis in which the energy-economy model MARKAL 

[5, 6] is used to assess the cost and emission tradeoffs associated with alternative policies addressing SOx, NOx, and 

greenhouse gas emissions of the U.S. power sector for the years 2000-2050.  MARKAL is a linear program that has 

energy producing, conversion, and use activities and capacities as decision variables, and constraints representing 

energy balances, capacity limits, and various policy considerations.  Demands for energy services, including both 

electric and non-electric energy, are fixed exogenously, and supply curves are defined for all fuels.  The objective 

function is to minimize the cost of meeting those demands; this formulation simulates the operation of a competitive 

market with zero price elasticity for energy services.  Five year increments through the year 2050 are considered 

(2000, 2005, …, 2050), and the values of decision variables in all years are solved simultaneously.  The stochastic 

version of MARKAL is modified for the purposes of this study to force five year-lead times for power plants; that is, 

a commitment to build is made five years before generation capacity comes on line, and this commitment cannot be 

changed no matter what scenario occurs in the on-line year.  This change reflects the reality that plant capacity can-

not be added instantaneously; the change magnifies the effects of uncertainty, because it is more likely that decisions 

made in earlier years will be “regretted” under some future scenarios. 

                                                 
1See Burtraw et al. [1] for summaries of various Congressional proposals. 
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We adopt MARKAL because it is the most widely-applied energy-economy model in literature, it has a two-

stage stochastic programming capability that facilities decision tree analyses, and a USEPA National MARKAL data 

base was available for the model.  Such a stochastic model divides the time periods considered into at least two sets: 

“here and now” decisions that are made before it is known what scenario (e.g., demand growth) will occur, and 

“wait and see” decisions that are made after the scenario is known [7].  For instance, a model might consider three 

demand growth scenarios for the years 2015-2050: high, medium, and low.  The model’s decisions before 2015 

would be of the “here and now” variety, and would necessarily be the same for all scenarios (the so-called “non-

anticipativity constraint).  Those after 2015 would be of the “wait and see” type, and would be modeled separately 

for each scenario so that a different set of, e.g., prices and investments would occur after 2015 if demand growth is 

high than if it is low. 

In order to limit the scope of the paper, the emphasis is upon demonstration of how such energy-economy mod-

els together with decision analytic techniques can provide useful answers to these questions.   Therefore, the analy-

ses address only a subset of the most important uncertainties in energy-environmental policy.2 

For simplicity in this initial analysis, we consider a policy process involving initial choices of policy whose per-

formance would be assessed under a range of scenarios concerning three major uncertainties: 

• Electric energy demand: Future demand depend on many uncertain factors, such as economic growth and im-

provement of end-use technologies, so a range of growth rates are possible.  We simulate these within MAR-

KAL using different growth rates for electricity end use demands.3 

• Resource costs: Oil, natural gas, and coal prices are uncertain, and their relative prices would affect the cost of 

achieving emission targets.  Because of the importance of new gas-based generation in the last two decades, and 

the potential role of gas for complying with multipollutant regulations, we focus on uncertainty in gas prices. 

• Emission policies: USEPA’s Clean Air Interstate Rule (CAIR) tightens caps upon sulfur dioxide and nitrogen 

oxide emissions by power generators, while extending the reach of the SIP call NOx cap to more states and the 

entire year.  These rules have been subject to court challenge and are currently being revised, so we consider, as 

sensitivity analyses, scenarios involving both implementation of CAIR and continuation of the previous, looser 

                                                 
2 To keep the scope of the analysis practical, we focus on three major uncertainties that have been identified in a number of other studies [8, 9, 10] as being highly influen-

tial: electricity demand growth, resource costs, and emission policy.. 

3 The distribution of the growth of electricity demands is based on a study by the California Independent System Operator of past errors in electricity demand forecasts.  The 

growth of demand was expressed by percent ratios of high and low demand cases with respect to the base case, with these ratios being applied to the end use demand categories of 

MARKAL electricity sectors (see Section 5 for details). 
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caps that CAIR would supersede.4  Proposed Congressional “three pollutant” bills also address these pollutants.  

However, greenhouse gases, especially carbon dioxide, may also be capped at some time in the future; consid-

eration of this possibility could affect fuel and emissions control choices today.  Indeed, northeastern states that 

are members of the Regional Greenhouse Gas Initiative have already imposed such caps on power generators.  

Hence, we undertake an analysis in which there is a nonzero probability—but not certainty—of having a na-

tional CO2 emissions cap imposed.5 

Morgan and Henrion [12] present the framework that we use to evaluate the effects of alternative policies under 

uncertainty.6   Electric sector investments in generation, energy efficiency, and pollution control are divided into two 

stages: "here-and-now" commitments (before the technological and economic uncertainties are resolved) and "wait-

and-see" investments (made after further information is obtained on the uncertainties; e.g., ten years from now).  

The analysis searches for robust strategies that perform well under a range of possible conditions.   

An upper bound for the value of information about those uncertainties is given by the EVPI (expected value of 

perfect information), calculated by considering what market equilibria would result under each of the individual 

technology and economic scenarios, if the market participants knew with certainty that the scenario would occur.  

The value of considering uncertainty (expected cost of ignoring uncertainty, ECIU [12]) will be estimated by com-

paring the market equilibrium that occurs when each market party optimizes its decisions under uncertainty with the 

expected performance of the equilibrium that results if parties naively considered only a single nominal or “base 

case” scenario.  The “value of policy coordination” (VPC) is assessed as the cost savings that result from simultane-

ous commitments to caps on NOx, SO2, and CO2 relative to the case in which industry first adapts to caps on the 

criterion pollutants NOx and SO2,, and then later a CO2 cap is imposed that industry did not plan for.   In both cases, 

the CO2 cap is implemented at the same time (2015 in our MARKAL runs); the difference is whether industry 

makes decisions before that time anticipating the implementation of that cap.  Precise mathematical definitions of 

these concepts are given in Section 3 of this paper, with simple numerical examples in Section 4.  Section 5 summa-

rizes the MARKAL assumptions made in the analyses.  The results are discussed in Section 6 and followed by con-

clusions in Section 7. 

                                                 
4 Burtraw et al. [8] and Burtraw et al. [9] point out the importance of the interaction between CO2 and other air pollutants.  The results showed that a $25 tax per metric ton 

of carbon save $12-$14 ancillary heath benefits.  They concluded that greenhouse gases mitigation policies would yield NOx and SO2-related health benefits. 

5 This framework resembles that used by Laitner et al. [11] in their analysis of the ability of different possible “scenarios of future worlds” for the U.S. energy economy to 

adapt to surprise developments, such as a sudden imposition of severe carbon taxes or limitations. 

6 See Hobbs et al. [13] for illustrative applications of this framework to the adaptation of water resources policies to climate uncertainties. 
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2. Previous MARKAL analyses of pollution policies under uncertainty 

Since MARKAL was developed in the late 1970s [5], analyses of greenhouse gas policies have been its most 

frequent reported application.  Our work is most closely related to previous stochastic MARKAL analyses of green-

house gas policies, and in the remainder of this subsection we contrast these with our approach.   

Kanudia and Loulou [14] discuss the general advantages of a stochastic formulation of MARKAL.   The basic 

advantage is that energy investments should be made recognizing their robustness to important uncertainties in eco-

nomic growth, demand, prices, and policy.  In most versions of stochastic MARKAL (including that implemented in 

this paper), “robustness” is operationalized as minimizing the probability-weighted sum of costs (present value) over 

a set of scenarios, simulating the actions of market parties who maximize their expected profit over those scenarios.  

A set of investments and market outcomes that are fine-tuned for one particular scenario might perform disastrously 

for others; in contrast, robust decisions perform reasonably well across a wide range of possibilities.   Stochastic 

programs provide rich detail concerning not only investments and market results in early years in the face of uncer-

tainties, but also the optimal future adaptations that would be made under each particular scenario. 

However, probability-weighted (expected) costs are not the only way to define robust strategies.   Loulou and 

Kanudia [15] proposed a “minimax regret” formulation of stochastic MARKAL.   Such a model solves for a set of 

early year investments and market outcomes that minimize the worst “regret” across scenarios, without reference to 

probabilities.  “Regret” for a particular solution and scenario is defined as the difference in cost between that solu-

tion under that scenario and a solution that is tuned (optimized under perfect foresight) for just that particular sce-

nario.  This model objective represents a type of risk aversion that weighs extreme scenarios most heavily.  The 

minimax regret solutions differ in several ways from solutions using the expected (probability-weighted) cost objec-

tive.   In particular, regret-based solutions will be more sensitive to the range of scenarios considered under the re-

gret objective.  However, most subsequent work with stochastic MARKAL (including ours) has continued to use the 

expected cost objective.   In our case, expected cost is used because it lends itself to calculations of EVPI, VPC, and 

ECIU.  Also, from a theoretical point of view, the minimax regret approach suffers from certain logical inconsisten-

cies, including dependence upon irrelevant alternatives.7 

Condevaux-Lanloy and Fragniere [16] focus on efficient specification and solution of stochastic MARKAL us-

ing a specialized solver for stochastic optimization problems.  Such an approach is worth considering as stochastic 

                                                 
7 For example, by adding an unattractive alternative that performs very poorly in most scenarios, but is best in one scenario, the rank order of the most attractive solutions 

can be changed.     
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MARKAL models are large and challenging to solve—model size is roughly proportional to the number of scenar-

ios.  This is the infamous “curse of dimensionality.”  

Turning to analyses of policies using stochastic MARKAL, Kanudia and Shukla [17] use that model to simulate 

the response of the Indian energy economy to uncertainty concerning possible future global carbon taxes.   The solu-

tions show that it is prudent to reduce carbon emissions in anticipation of possible global restrictions in the future.  

Fragnierie and Haurie [18] undertake such an analysis for Switzerland, with a focus on demand-side management.  

Larsson [19] considered three sets of uncertainties in MARKAL for Sweden, including alternative rates of economic 

growth, three policies concerning shutdown of nuclear plants, and two carbon mitigation policies.  The analysis con-

cluded that a hedging strategy would be more valuable if economic growth was high, and that choice of strategy 

depends on the assessed likelihood of a carbon emissions cap. 

Kanudia and Loulou [20] apply stochastic MARKAL to Quebec, and consider possible hedging strategies in the 

face of a 50% probability of implementing stringent carbon mitigation measures within 15 years.  They compare 

these strategies to three sets of “perfect foresight” strategies developed assuming either that low, medium, or strin-

gent carbon mitigation will eventually be required.  They note that prior to resolution of the uncertainty, the hedging 

strategy’s total emissions take a path similar to the medium mitigation strategy; however, the details differ by sector.  

Before resolution, electricity supply follows the medium path, natural gas and renewable energy are more similar to 

the low mitigation scenario, and oil supply resembles the high mitigation trajectory.  The authors identify some spe-

cialized hedging technologies that are favored in the hedging strategy but in none of the perfect foresight ones.  

The contribution of this paper is to include technology and policy uncertainties in the design of multi-pollutant 

policies.  Our analyses differ from previous work by our focus on the electric sector in the U.S. in the context of 

multipollutant policies; by demonstrating how EVPI, ECIU, and VPC can be calculated from a stochastic energy 

market model; and finally by our use of EVPI and ECIU to assess the relative importance of three crucial uncertain-

ties (CO2 policy, natural gas prices, and electricity demand growth). 

3. Methodology 

    The analysis includes the following tasks: selection of technology, economic, and policy scenarios and assump-

tions (described in Section 5); execution of stochastic MARKAL; and calculation of the outputs of the analysis (op-

timal strategies, EVPI, ECIU, and VPC).  In this section, we define those outputs in mathematical terms.   
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3.1. Solving for optimal strategies 

We consider a decision problem with two decision stages, involving one set of decisions (X1, the “here-and-

now” decisions) that must be made before it is known which future state of the world (θ, different possible scenarios 

concerning demand, fuel prices, and CO2 policy) will occur, and a second set (X2, the “wait-and-see” decisions) that 

are deferred until after θ is known.  We can term X1
*
 the optimal first stage decision, and X2

*(θ, X1
*) the optimal 

second stage decision, which depends on what first stage decisions are made and which scenario has been realized.  

The optimal strategy is the collection of optimal decisions in every decision stage for every possible scenario:  {X1
*; 

X2
*(θ, X1

*), ∀θ}. 

The simple example in the next section shows how decision trees can be “folded back” to solve for the optimal 

strategy for simple problems.  Folding back is also termed “backwards dynamic programming.”  Mathematically, 

folding back proceeds as follows.  Let: 

C1(X1) = the present worth of the cost in the first stage of choosing X1.  This does not depend on the scenario θ 

because these are the costs that are incurred before a scenario occurs.  For instance, if θ represents 

different demand growth rates between 2010 and 2020, then C1 includes only costs before 2010. 

C2(X2| θ, X1) = the present worth of cost of choosing X2 in the second stage under scenario θ and given first 

stage decision X1. 

P(θ) = the probability of scenario θ. 

Note that the total cost of an arbitrary sequence of decisions {X1; X2} under a given scenario θ is the sum of the 

costs in the two stages C1(X1)+C2(X2|θ, X1).  The folding back procedure for a two stage problem has two steps: 

1. Second Stage Optimization.  For each value of X1 considered and each scenario θ considered, obtain the 

optimal second stage decision:  

X2
*(θ,X1) = arg MIN C2(X2| θ, X1)        (1) 

              {X2} 

2.   First Stage Optimization.   Find the optimal first stage decision as follows: 

X1
* = arg MIN [C1(X1) + Σθ P(θ)C2(X2

*(θ,X1)| θ, X1)]     (2) 
   {X1} 

 In a stochastic programming model such as MARKAL, the “MIN” operations are the solution of an optimiza-

tion model—in the case of MARKAL, a linear program.  Two-stage stochastic programs solve (1) and (2) simulta-

neously in a single optimization model in which {X1; X2(θ), ∀θ} are the decision variables.  
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3.2. Expected cost of ignoring uncertainty and value of policy coordination 

We have just introduced one product of a decision analysis: the optimal decision strategy.  Another product is 

the quantification of the expected penalty, if any, if uncertainty is disregarded.  The expected cost of ignoring uncer-

tainty (ECIU) compares the expected performance of two strategies: 1) a naïve strategy developed assuming that 

some nominal value for θ (such as its expected value) will accrue with probability 1; and 2) an optimal strategy de-

veloped considering the full range of possibilities and their probabilities. This represents the expected loss of per-

formance when a decision is made as if there is no risk. The procedure for calculating ECIU is as follows [12].8 

1.   Define a nominal (deterministic) value of θ, calling it θnaïve.   This may be some “base case” value of θ, (e.g., 

medium demand growth or no CO2 cap) or, alternatively, its expected value. 

2.   Define the optimal two stage strategy Xnaïve = {Xnaïve,1, Xnaïve,2} under the base case assuming that probabilities of 

every realization θ are zero except θnaïve: 

 Xnaïve = arg MIN C(X | θnaïve)       (3) 
          {X} 

where C(X | θnaïve) is the cost of X assuming that the naïve scenario will occur with certainty. 

3.   Calculate the expected cost of the naïve strategy from Step 2, considering the full probability distribution of θ:  

 Eθ [C(Xnaïve,1| θ))] = C1(Xnaïve,1) + Σθ P(θ)C2(X2
*(θ,Xnaïve,1)| θ, Xnaïve,1)   (4) 

Notice that the naïve strategy is adapted after it becomes known which scenario θ will be realized, and the op-

timal decision is made in stage 2, given the scenario and the (naïve) first stage decision.  That is, it is not as-

sumed that the second stage naïve strategy Xnaïve,2 is implemented, because at that point the decision makers in 

the market realize what scenario has actually occurred.  In a sense, the “scales” have fallen from the eyes of the 

decision makers at that point, and they realize that the naïve assumptions that were made were misinformed.  

4.   Define the optimal strategy as in Section 3.1 and calculate its expected cost C*. 

5.   ECIU is defined as the improvement in the expected cost if the optimal first stage strategy is chosen instead of 

Xnaïve,1.    

 ECIU = Eθ [C(Xnaïve,1| θ))] – C*       (5) 

 ECIU cannot be negative if decisions are made rationally (minimizing expected cost), and is usually positive if 

the naïve first stage strategy differs from the optimal first stage strategy. 

                                                 
8 Birge and Louveaux [7] call this the value of the stochastic solution (VSS), and describe how it can be calculated for mathematical programs with recourse, such as the 

MARKAL model solved here. 
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The value of policy coordination (VPC) is closely related to ECIU, but is calculated under certainty.  It is the 

difference in cost between a naïve strategy that doesn’t recognize that policies will change at some point in the fu-

ture, and a strategy that foresees that policy modification because policy makers have announced the change early 

on and have adhered to that commitment.   The calculation of the actual performance of the naïve strategy would 

then be interpreted as follows: the naïve strategy would consist of the first stage decisions being made assuming that 

the policy will not change, followed by a policy change, after which the decision makers and market adapt as best 

they can, given the naïve first stage commitments.  Comparing this to the optimal strategy given that the policy will 

change shows the possible cost savings if policy modifications are committed to well in advance.  The latter strategy 

is obtained by allowing the market to optimize over the entire time horizon, recognizing the changing policies. 

3.3. Expected value of perfect information 

 EVPI is obtained by assuming that the decision makers in the market know the future state of the world θ with-

out error.  This is represented by first randomly choosing θ and then finding the optimal Xp.i.(θ) = {Xp.i.1(θ), 

Xp.i.2(θ)} for each scenario.   Because both the first and second stage decisions can be tailored to the scenario, costs 

cannot increase relative to the optimal stochastic decision from Section 3.1 {X1
*, X2

*(θ,X1
*)}, in which the same 

first stage decision is imposed upon all scenarios.  Xp.i.(θ) is found by solving the following program for each θ: 

Xp.i.(θ) = arg   MIN   [C1(X1) + C2(X2| θ, X1)]     (6) 
         {X1, X2} 

 In MARKAL, this is easily done by solving (3) with P(θ) = 1 for the relevant θ.  The resulting cost is 

C(Xp.i.(θ)|θ).  Then, the expected cost in Eq. (7) over all θ is found by weighting each of those scenario-optimal 

costs by the probability of its scenario.  EVPI in Eq. (8) is then defined as the improvement in expected cost result-

ing from knowing which scenario is going to occur before making any decisions: 

 Cp.i.  = Σθ P(θ)C(Xp.i.(θ)| θ)        (7) 

 EVPI = C*- Cp.i.         (8) 

4.  Hypothetical example of decision tree solutions 

This section presents a tutorial example of a two decision stage problem in which capacity investment decisions 

are made now, followed by the possible (but not certain) implementation of a CO2 emissions cap on the electric 

power industry, after which additional capacity decisions are made (Fig. 1(a)).  This case provides an example to 

illustrate the concepts of optimal strategy, ECIU, EVPI, and VPC. 
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In a decision tree, time proceeds from left to right.  The tree explicitly represents the earlier here-and-now (stage 

1) decisions to the left, and the later wait-and-see (stage 2) decisions on the right.  Decisions are indicated by a 

square node on the tree, with alternatives indicated by arcs leaving that node to the right.  The stage 1 choices are to 

either have a balanced gas/coal mix for new capacity or to emphasize construction of coal-fired plants in, say, years 

2000-2005. Meanwhile, there are three stage 2 choices, designated as A, B, and C in the tree: either build gas (A) or 

coal plants (B) to meet incremental energy demands (in, say, 2010 and afterwards), or build a large amount of gas-

fired capacity (C) both to meet incremental demand and to allow some previously constructed coal capacity to be 

retired early, should demand, energy price, or policy developments render that capacity uneconomic.  There is a 

chance node (designated by a circle) between the two decision stages, representing the probabilities of a greenhouse 

gas emissions cap being adopted.  Arcs leaving a chance node to the right represent alternative possibilities, each 

with a probability.  Finally, at the end of each branch of the tree is the present worth of cost; “INF” indicates that the 

capacity mix in stage 2 would not be feasible under the emissions cap.  In MARKAL, this would mean that the par-

ticular combination of first and second stage decision variable values would result in violation of one or more con-

straints under that old scenario.   

A decision tree is used to solve for the optimal strategy by folding back, as summarized in Section 3.1.  Folding 

back proceeds from right to left—backwards through time—by calculating the expected cost at each chance node 

and choosing the least expected cost alternative at each decision node.  This procedure is repeated until the left node 

is reached.  Figure 1(a) shows the results of applying this process to a simple tree.  The number on the top of a node 

is the expected cost from that point onwards.  For decision nodes, an arrow indicates which choice is optimal.   

The tree in Fig. 1(a) shows that if there is no cap, then emphasizing coal capacity in both stages is cheapest, but 

that if there is instead a cap, adding a mix of coal and gas plants early and then later adding some additional gas ca-

pacity would be best.  Unfortunately, whether or not there will be a cap is unknown before stage 1 commitments 

must be made, so there is the possibility that a stage 1 choice will be made that would be regretted later (e.g., build a 

lot of coal capacity early, but then have to retire some early later on in face of a cap).  Folding back that tree finds 

that the coal / gas mix that has the lowest expected cost (47.5, vs. 50 for the coal strategy).  The mix strategy is best 

because it avoids the high penalty that can occur if there is a large commitment to coal in stage 1 and then some of 

that capacity has to be retired prematurely in stage 2 (“Emphasize Coal” followed by “C” in the second stage, cost-

ing 60).  That costly second stage decision is made because no other second stage decision is feasible. 

In contrast, if the market naively assumed that there is no chance of a CO2 cap, then the optimal solution would 
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be to emphasize coal in both stages, resulting in a low cost of 40.  However, this strategy would actually cost 50 in 

expected value terms, because in reality there is some possibility of such a policy being implemented.  Of course, 

this expected cost depends on the assumed probability of such implementation.   The ECIU is therefore the expected 

cost of the naïve strategy (50) minus the expected cost of the optimal strategy (47.5), or 2.5.    

EVPI for the two-stage problem is obtained by solving a decision tree (Fig. 1(b)) in which the first node is a 

chance node for the uncertainty, representing the probabilities of different (perfect) forecasts.  Solving that tree re-

sults in a decision to have a coal/gas mixture if a tight cap is forecast, whereas emphasizing coal is the optimal stage 

1 decision if no cap is anticipated.  With different decisions being made under different forecasts, the value of in-

formation can be positive.  This is indeed the case, as a comparison of the optimal expected cost under perfect in-

formation (45) and the expected cost without that information (47.5) shows: EVPI = 47.5 – 45 = 2.5. 

The value of policy coordination is calculated by comparing the naïve and optimal policies assuming that the 

probability of imposing the cap is 1.  That is, if electric generation companies realized that they should be making 

decisions in Stage 1 recognizing both the in-place limits on SO2 and NOx emissions as well as the real possibility of 

a CO2 cap, they would choose a different capacity mix.  VPC can be assessed by considering the “Tight CO2 Cap” 

branch in Fig. 1(b), which shows that the coal/gas mix would be 10 cheaper than the naïve solution of emphasizing 

coal, assuming that the policy change would be implemented for certain.  This is because the optimal strategy na-

ïvely assuming no CO2 policy (emphasize coal) has a cost of 60 if in reality such a cap is imposed, whereas the co-

ordinated policy (the optimal policy anticipating the cap) costs only 50 in that case. 

5.  MARKAL-based analyses: Assumptions 

The basis of the below analyses is the USEPA National MARKAL data base (version EPANMD07).9  To avoid 

over-interpretation of the results, we report only cost and solution differences rather than totals in Section 6. 

All dollar amounts are expressed in real $1995.  A discount rate of 5%/year is applied10.  The base case set of 

technology efficiencies and costs is drawn from the USEPA National MARKAL data base.  MARKAL minimizes 

cumulative costs for 2000-2050, present worthed to 2000.  The model is a market simulation, not a central planning 

(social welfare maximization) model; thus, these costs are described from the firm’s point of view, including emis-

sion taxes which from a social point of view are transfer payments.  Energy firms are assumed to make an invest-

                                                 
9 This version of data base was provided by Carol Shay of Air Pollution Prevention & Control Division, Office of Research and Development of USEPA.   

10 The discount rate in USEPA national MARKAL database is consistent with other energy models such as the Integrated Planning Model [21] and National Energy Model-

ing System [22].USEPA  
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ment if the present worth of its expense is less than the present worth of its revenues from the market, rather than use 

some other criterion such as payback period.  No distinction is drawn between private cost of capital (assumed to be 

5% real per year) and social discount rates.   

MARKAL is a linear programming model, so technological learning is exogenous.  The USEPA national MAR-

KAL database includes assumed rates of learning, in the form of decreased capital costs over time for energy sup-

plies, energy conversion, end use demand, and emission reduction technologies.   

Because MARKAL is alinear program, the elasticity of demand for energy services is assumed to be zero, al-

though consumer decisions to invest in more efficient energy using equipment results in a nonzero elasticity for 

electricity.  Macroeconomic feedbacks (energy prices change effective income, which changes economic activity, 

which can alter energy demand) are also not considered in this version of MARKAL.  High costs of energy provi-

sion (due to higher demand, higher fuel prices, or regulation) either go to pay for factors of production (fuel and 

capital, mainly, possibly resulting in increased net income to owners of those factors) or to owners of generation 

firms whose revenue increases exceed the increases in their cost of inputs.     

Some modifications were made for future scenarios to ensure realistic rates of additions of new technologies.  

For example, the database sometimes would add large amounts of hydro, geothermal, or nuclear capacity, which for 

our cases we considered to be unrealistic.  Consequently, we added constraints to limit additions to realistic levels, 

which for some technologies were small, and for others were zero.  In particular, we assume the new investment of 

hydro and geothermal will not be a significant proportion of future US generation capacity additions due to the pau-

city of suitable sites and, in the case of hydropower, likely public opposition to new dams. This is consistent with 

other national analyses; for similar reasons, the U.S. DOE Annual Energy Outlook(AEO) 2009 base case [22] pro-

jects additions of only 0.85 GW of hydropower and 0.47 GW of geothermal capacity in 2010-2030, with wind and 

biomass providing most renewable additions..  Nuclear power additions are limited to the rate (approximately 5 

GW/decade, on average) projected by the AEO, which added 11.4GW nuclear in 2010-2030, in part reflecting con-

struction capacity limitations.  Thus, combined cycle, combustion turbine, coal (with and without CCS), biomass, 

wind, and, to some extent, nuclear investments are the major alternatives for meeting future load growth.  We be-

lieve that this range of alternatives captures a wide range of possible high and low emissions technologies as well as 

baseload vs peaking facilities, which allows us to explore the possible impacts of different uncertainties upon gen-

eration choices. 

The rest of this section details the assumptions made concerning scenarios of emissions caps, energy demand 
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growth, and natural gas prices.  The NOx and SO2 caps in Table 1 are applied in the cases where we assume con-

tinuation of the existing Title IV and SIP call policies that the USEPA Clean Air Interstate Rule would supersede.  

Table 1 also shows the assumed caps for those criterion pollutants under the assumption that some variant of the 

CAIR or Congressional three pollutant (NOx, SO2, mercury) legislative proposals will be passed.  We do not con-

sider mercury limitations; however, this may be an important limitation because they would increase the cost of 

maintaining existing coal power plants and building new such capacity.  Note that the NOx emissions limit is as-

sumed to cover all NOx emissions, not just the summertime emissions in the eastern and Midwestern states to which 

the pre-CAIR SIP call actually applies.  It should be noted that the present NOx limit was rarely binding in the solu-

tions after 2010, and that the Title IV SO2 constraint was rarely binding after 2025, as old dirtier capacity is retired 

and replaced by new plants that comply with tight New Source Performance Standards (NSPS) for air emissions.  

The possible CO2 constraint was chosen to represent a level roughly equal to year 2000 emissions; without this con-

straint, CO2 emission in 2030 would grow to as much as 50% over this value, depending on the scenario. 

Alternative electricity demand growth and natural gas price scenarios were based on a recent study by the Cali-

fornia Independent System Operator [23] that analyzed the accuracy of past forecasts by the California Energy Com-

mission regarding these important variables.  Based on the standard deviations of forecast errors, three equiprobable 

scenarios were chosen for each year for demand and gas prices.  The values for each scenario (expressed as a per-

centage of the base case) were chosen so that standard deviations of those ratios approximated the errors provided in 

that report.  Table 2 shows the three demand scenarios considered for years 2015-2050, expressed as a percent ratio 

with respect to the base case.   These ratios were applied to MARKAL end use demand categories for which elec-

tricity dominated.   Table 3 provides the gas price ratios relative to the base case that we assumed. 

6.  Results 

 This section summarizes results for ECIU and EVPI for CO2, demand growth, and natural gas uncertainties 

(Sections 6.1-6.3, respectively).   We also consider how these results are affected by the presence of tighter conven-

tional pollutant caps under CAIR-like rules.  Moreover, in Section 6.1, value of policy coordination is quantified for 

CO2 caps, as well as the effect of alternative policies upon prices and generation mixes.  We also estimate the cost of 

the CAIR policies in that section.  As sensitivity analyses, the joint ECIU and EVPI for CO2 and demand growth 

uncertainties together is considered in Section 6.4, and the effect of a five year delay in the resolution of the CO2 

policy uncertainty (2020, as opposed to the original 2015) upon CO2 ECIU and EVPI is analyzed in Section 6.5. 
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6.1. Carbon dioxide policy uncertainty    

 Optimal strategies and ECIU under alternative SO2 and NOx cap assumptions.  Fig. 2(a) is a decision tree repre-

sentation of the MARKAL market simulation in the face of uncertainty as to whether a tight CO2 cap would be im-

posed on U.S. electric sector emissions starting in the year 2015.  First, it is assumed that pre-CAIR caps on SO2 and 

NOx emissions remain in place (Table 1).  The figure portrays the range of feasible decisions for 2000-2010 as the 

first decision node, and 2015-2050 decisions as the second set of decision nodes.   Each decision node represents a 

continuous range of possible decision variable values considered in the stochastic version of MARKAL.  However, 

we highlight two particular first-stage solutions in the first stage, shown as separate branches:  

• the naïve solution developed assuming that the future is known, and there is no CO2 cap; and 

• the optimal stochastic solution, in which market parties anticipate a 50:50 chance of a tight cap being imposed.    

The values above each of their chance nodes give the expected cost of each of those two strategies compared to 

the naïve solution under the “No CO2 Cap” scenario, expressed in billions of dollars ($B, present worth, in 1995 

dollars).  For instance, the naïve solution has a $797.7B higher cost11 if the tight cap is imposed than if it is not, as-

suming pre-CAIR limits (Fig. 2(a)).   Meanwhile, the optimal stochastic solution has a higher cost under the no cap 

scenario—as it must, since the naïve solution was optimized for that scenario.   

The naïve solution’s greater emphasis on pulverized coal steam generation (about 66 GW more added in 2000-

2010, as indicated in Fig. 2(a)) results in lower overall costs by $35.8B (relative to the optimal stochastic solution), 

if there is no cap.  However, under a CO2 cap scenario, the naïve solution results in less (and thus inefficient) utiliza-

tion of the pulverized coal steam capacity, but more construction (compared to the stochastic solution) after 2015 of 

efficient capacity such as integrated coal gasification combined cycle (IGCC) and natural gas.  Under the cap, the 

naïve solution’s costs are higher than the optimal solution’s cost by $205.1B (= $797.7B - $592.6B).   Consequently, 

compared to the optimal stochastic solution, the naïve solution’s cost advantage in the no-cap scenario ($35.8B) is 

much less than its disadvantage when the cap is imposed ($205.1B).   In contrast, the stochastic solution constructs 

more natural gas and IGCC capacity early on because it recognizes that there is 50% chance of CO2 policy.  In par-

ticular, it adds about 27 GW more IGCC and 24 GW more advanced natural gas combined cycle in 2015.   

Taking expected values at the chance node, the stochastic solution has a (probability-weighted) average cost ad-

vantage (ECIU) of $84.6B (= $398.8B-$314.2B) over the naïve solution.  This, as Fig. 2(a) shows, is the expected 

                                                 
11 At a 5% interest rate and a time horizon of 55 years, redistributing these costs as an end-of-year uniform series of annual payments for years 2000-2054 results in a cost 

of $42.8B/yr.   This is calculated as (A|P, i=0.05, N=55)*797.7B = 0.0537*797.7B = $42.8B/yr, where the annual worth factor (A|P,i,N) = ((1+i)Ni)/((1+i)N-1).   
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cost of ignoring uncertainty in greenhouse gas policy.  As some environmental groups have argued, energy compa-

nies ought to factor the possibility of greenhouse gas limitations into their investments.  This risk can be hedged by 

diversifying investments, as done in the optimal stochastic solution, giving more emphasis to lower CO2 emitting 

technologies.  MARKAL simulates a market in which risk neutral producers choose and hedge physical investments 

in order to maximize expected profit.12 

With imposition of tighter CAIR-like caps upon SO2 and NOX emissions starting in 2010, the U.S. generation 

mix shifts.  The analysis of the optimal stochastic strategy and ECIU is repeated in Fig. 2(b), but for the case of the 

tighter CAIR caps upon conventional pollutants.  ECIU is $77.8B (= $428.5B - $350.8B) here, a slightly smaller 

amount because the CAIR caps slightly discourage the pulverized coal investment in the naïve solution that would 

be so heavily penalized if CO2 caps are imposed.   

The cost of CAIR.  We briefly compare the optimal stochastic solutions for cases with and without the CAIR-

like caps.  Comparing the optimal stochastic solutions, the solution with CAIR-like cap has 5 GW more of efficient 

IGCC capacity installed in 2010 and 8 GW more natural gas capacity in 2010.  The present worth of cost difference 

(1995$) between the two optimal stochastic solutions, assuming no carbon caps, is $41.1B (=76.9-35.8).  Also, the 

naïve solution is $45.8B more expensive under CAIR caps than without those caps, assuming no CO2 limit.  Thus, 

the expense of tightening conventional pollution limits alone is estimated as an annualized value of $2.5B/year 

(=0.0537*45.8).13  However, the implementation of a carbon cap starting in 2015 drastically reduces the difference 

in cost between scenarios with or without CAIR-like caps; then the cost difference between the pre-CAIR caps and 

the CAIR-like caps falls to $32.0B for the optimal strategy.   This occurs because less carbon-intensive technologies 

are chosen in later years for the CO2 cap cases, and these technologies tend to have lower conventional pollution 

rates; as a result, the implementation of tighter CAIR-like caps on those pollutants makes less of a difference in that 

case. 

MARKAL’s simplified representation of residential and commercial consumer decisions relative to investments 

                                                 
12 It is possible that the reactions of firms and the market to regulatory, demand, or gas price risk could differ from what an energy-economic model like MARKAL would 

yield.  MARKAL, like other economy-wide engineering economic models, assumes that market actors are risk neutral (maximize expected present worth) and hold identical 

beliefs about the probabilities of the scenarios.  Risk averse agents with a diversity of beliefs might make different investment decisions.  Research has recently started on formu-

lating energy market equilibrium models with risk-averse investors and diverse believes.  For instance, Lin et al. [24] consider a two-stage equilibrium among risk averse gas and 

coal-fired plant investors in a simple electric economy; Cabero et al. [25] simulate generator operator decisions in a market in which plant owner risk aversion is represented by a 

CVaR formulation; Rocques et al. [26] analyze equilibrium capacity mixes when generator risk aversion is modeled using portfolio (mean-variance) methods; and Willems and 

Morsbee [27] consider equilibria among risk-averse investors in the presence of forward capacity markets.. However, the literature reports no formulations of technology-rich 

economy-wide models that represent the behavior of risk averse investors in the energy market. Such models would require both a multiple scenario formulation (as we have 

adopted) as well as representation of equilibrium behavior by risk-averse investors (for which only small research-scale models have been developed). 

13 This is close to USEPA’s conclusion using the IPM (Integrated Planning Model) solutions.  (See www.epa.gov/airmarkets/progsregs/epa-ipm/index.html). 
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in efficient energy using equipment suggests that the cost of disregarding uncertainty may be understated.   This is 

because anticipation of the future benefits of energy efficiency under a possible CO2 cap should encourage earlier 

adoption of those technologies, yielding even more cost savings in the stochastic solution relative to the naïve solu-

tion.  However, the amount of any understatement of ECIU can only be assessed by using a more sophisticated rep-

resentation of consumer decision making. 

 Expected value of perfect information.  We now turn to the value of information calculations for greenhouse gas 

policy uncertainty.   Fig. 3(a) shows these for the case in which there is no change in SO2 and NOx caps.  As illus-

trated in Section 4 (Fig. 1(b)), EVPI is obtained by first assuming that the market learns what the future scenario will 

be, and then optimizing; this results in a tree in which the order of the decision and chance nodes is reversed.  First, 

the market finds out in 1995 whether or not CO2 limits will be imposed in 2015.  Then, given each of those two sce-

narios, the subsequent decision node in Fig 3(a) shows one or two of the infinity of possible decisions for 2000-

2010.  One decision is the naïve solution, derived assuming no CO2 cap.  For the “No CO2 Cap” scenario branch, 

this is the only solution shown, since by definition it is also the optimal decision for that particular scenario.  This 

solution has a cost of $0 under that scenario, because we have defined it as the basis of comparison for the other so-

lutions.  For the “CO2 Cap” scenario, two different solutions are shown: the naïve decision (which in 2015-2050 

adapts as best it can to the imposition of a cap) and a solution that is optimized for the cap.  Just as in Fig. 2(a), the 

naïve solution then suffers a $797.7B cost increase relative to the no cap scenario.  In Fig. 3(a), this is $215.2B 

(=$797.7B-$582.5B) higher than a solution optimized under the certain knowledge that a CO2 cap is imposed.  Such 

an optimized solution invests less in pulverized coal steam and more in clean capacity (IGCC and natural gas) in 

2000-2010 compared to the naïve solution.   

In Fig. 3(a), EVPI is calculated by taking the expected cost across CO2 cap scenarios of the optimal decisions 

under each scenario ($291.3B), and then subtracting that cost from that of the optimal stochastic solution in which 

decisions in 2000-2010 must be made before it is known whether or not a cap will be imposed ($314.2B, Fig. 2(a)).  

The difference ($22.9B) is the EVPI concerning CO2 caps, assuming that the existing NOX and SO2 limits remain in 

place.   This is relatively small compared to ECIU ($84.6B), which illustrates the following general point: that EVPI 

and ECIU have no necessary relationship with each other [12].  Either can be much larger than the other.   That 

EVPI is relatively small here, meaning that having perfect information would not improve expected performance 

much compared to considering uncertainty optimally. 

If instead tighter CAIR-like caps are imposed on NOX and SO2 (Fig. 3(b)), then EVPI for CO2 caps reduces to 
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$18.7B.  This is the difference between $332.1B (the cost under perfect information) and $350.8B (the cost of the 

optimal stochastic solution).  This occurs because less carbon-intensive technologies are chosen under CAIR-like 

caps in any event, so the with- and without CO2 cap cases are less different. 

     Value of policy coordination.  VPC describes the cost savings that could occur if the market was immediately 

informed that a CO2 cap would definitely be imposed at some certain date (here, 2015) relative to the situation in 

which the market assumed wrongly that such a policy would not be imposed, but was then surprised when it was.   

An informed market would, in general, make different decisions in 2000-2010 in anticipation of the CO2 cap than an 

uninformed market would.   We calculate VPC for two cases: no change in NOx and SO2 caps, and anticipated im-

plementation of CAIR-like caps.   In the naïve solution in latter case, the market anticipates in years 2000-2010 the 

tighter NOx and SO2 caps, but the CO2 cap still comes as a surprise. 

If the pre-CAIR criterion pollutant caps remain in place, Fig. 3(a) shows that VPC is $215.2B.  This is calcu-

lated as the cost of an optimal response to the CO2 cap, when it is correctly anticipated ($582.5B), and the cost of a 

naïve strategy that disregards that possibility but then has to adjust when the cap is imposed ($797.7B).  Thus, if the 

CO2 cap is to be imposed, considerable cost savings can result from giving enough warning and coordinating re-

sponses to today’s and tomorrow’s pollution laws.   If CAIR-like caps on NOX and SO2 are to be imposed (Fig. 

3(b)), the value of coordination is less ($192.9B = $811.3B - $618.4B), but still large compared to ECIU or EVPI.   

VPC is smaller in this case because some of the shifts in capacity mix from dirty technologies (pulverized coal 

steam) to clean ones (IGCC and natural gas) that would take place under a CO2 cap would already be encouraged by 

the CAIR-like caps on criterion pollutants. 

     Comparisons of decisions.  It is also of interest to compare the decisions that are made under perfect foresight 

with the naïve and stochastic decisions.  First of all, under pre-CAIR limits on NOX and SO2, the naïve solution 

would install almost 66 GW (14.0+51.6) more pulverized coal steam capacity by 2010 than a solution that results if 

instead there is a 100% certainty (perfect forecast) of a CO2 cap.  The latter solution has 29.7 GW more integrated 

coal gasification combined cycle (IGCC) and 30.8 GW (=170-139.2) more natural gas capacity in 2010.  The incre-

mental natural gas capacity additions between the perfect forecast (CO2 cap) and the optimal stochastic solutions are 

7.0 GW (170.0-163.0) for 2000-2010. 

In contrast, under the CAIR-like tightened NOX and SO2 caps, the optimal generation mix in the face of a CO2 

cap that would be implemented in 2010 would involve an increase of 46 GW (year 2010) in IGCC and 39.9 GW 

more natural gas capacity compared to the naïve solution.  On the other hand, 65 GW (14+50.9) less pulverized coal 
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capacity is put in place in the perfect forecast (CO2 cap) solution compared to the naïve solution.  Also, in the perfect 

forecast solution (in which the CO2 cap is foreseen), 14 GW (=46-32) more of IGCC and 7.8 GW more natural gas 

capacity would be in place in 2010.   

     Comparisons of prices.  An indicator of potential for energy efficiency as a means to mitigate the economic im-

pacts of tighter NOx, SO2, and CO2 caps is the difference between prices for electricity in the various scenarios with 

and without the caps.  Differences in emissions prices also are indicators of the stringency of emissions caps.   

The prices under pre-CAIR limits show the following general trends.  SO2 credit prices eventually fall to zero in 

all cases under pre-CAIR; these indicate that the model’s assumed retirements of capacity and its replacement by 

NSPS-compliant capacity (which is willing to carry out the new source performance standards for emission) cause 

the caps to be nonbinding.  Comparing NOX in the stochastic solutions with and without CO2 cases, the imposition 

of a CO2 cap causes prices for NOX to fall faster than without carbon cap case in 2015 and afterwards. 

In contrast, the MARKAL runs with CAIR-like tightening of SO2 caps yield positive prices for SO2 emissions in 

2010 and afterwards.  This is because under the CAIR-like caps, sharp emission reductions of SO2 caps are assumed 

to occur from 2010.  Again, presence of the CO2 cap from 2015 serves to lower NOX and SO2 prices in the optimal 

stochastic solutions under the CAIR-like limits.  Comparing the stochastic solutions under no carbon cap and with 

such a cap, imposing the cap motivates NOX and SO2 reductions earlier, as might be expected.  But in the naive solu-

tion (without carbon policy) and perfect solution (with carbon emission limit), however, NOX and SO2 prices are 

sometimes lower under the cap, and sometimes higher. 

Turning to CO2 prices, under both the pre-CAIR and CAIR-like pollutant caps, the prices show high initial lev-

els in 2015 and are then lower later on, even as demand grows, as the generation mix turns over.  See Table 4 for 

prices of CO2, NOx, and SO2 for the CO2 uncertainty solutions under CAIR-like limits.14  Again, this may be an arti-

fact of the present MARKAL’s relative lack of flexibility.  It is of interest that the perfect solutions (with CO2 cap) 

in both the pre-CAIR and CAIR-like cases have higher carbon prices than the stochastic solutions (with CO2 cap), 

because the market’s 100% anticipation of the tight limits upon CO2 (perfect forecast) caused a earlier shift in gen-

eration mix than 50% anticipation (stochastic cases). 

Differences in electricity prices reflect what is happening in the generation mixes.  In 2010 and before, there is 

                                                 
14 Burtraw et al. [8] and Burtraw et al. [9] point out the importance of the interaction between CO

2
 and other air pollutants.  They conclude that greenhouse gases mitigation 

policies would yield NO
x

 and SO
2

-related health benefits.  Their results indicate that a $25 tax per metric ton of carbon not only lowers CO
2
 emissions, but could also provide 

$12-$14/ton of ancillary heath benefits due to reduced conventional pollutant emissions. 
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not any emission cap imposed so power prices (for the naïve, stochastic and perfect solutions) are almost the same.  

But the results show that in 2015 and afterwards, the presence of either CO2 caps or CAIR-like NOX and SO2 caps 

increases power prices.  This is the result of adding cleaner capacity.  The effect of the CAIR-like limits alone is 

modest compared to the CO2 cap alone, with price increases typically on the order of less 10% after 2010 due to 

CAIR implementation, after an initial uptick in 2010.  The price increases due to imposing a carbon limit are roughly 

an order of magnitude greater (50% to 100%).  However, prices are not that much higher when both sets of caps 

(CAIR and CO2) are imposed than when the CO2 cap alone is present, indicating that the same types of generation 

are on the margin in both sets of the solutions. 

We note that these are increases in generation prices (i.e., wholesale prices), and not retail prices which also in-

clude transmission, distribution, and customer account costs.   Nevertheless, such increases will translate into higher 

electric rates for consumers, and it should be expected that shifts in uses and increased investment in more energy-

efficient end-use equipment would result.  Again, MARKAL may exaggerate the price increases because it does not 

presently represent the full range of alternatives that are available to power generators and consumers to adapt to 

changing fuel, emissions, and energy prices. 

6.2. Demand growth uncertainty 

The costs associated with uncertainty regarding whether CO2 caps will be imposed can be compared with costs 

stemming from other uncertainties to gauge their relative significance.  In this section, we analyze cases in which 

demand growth in electricity is the major uncertainty, and quantify the associated ECIU and EVPI.  Three possible 

post-2015 growth rates are considered: low, medium (base case), and high, which are assumed to be equiprobable 

(Table 2).   The high and low scenarios are about 11% higher and lower, respectively, than the medium scenario in 

later years.  Such uncertainty in demand imposes costs because power plants need to be built several years ahead of 

time (here, assumed to be 5 years for baseload power plants), and if demand growth for a particular year in MAR-

KAL is uncertain, too much or too little capacity might be committed to.  In this case, uncertainty in electricity de-

mands for 2015 and afterwards means that decisions concerning investment in baseload plants in 2010 may be mis-

taken.  The consequences of wrong decisions depend on the levels of demand growth.  If all the demand growth sce-

narios involve generally high rates, then excess capacity from overconstruction will quickly be absorbed, but on the 

other hand, the cost of underconstruction might be greater.   

The ECIU and EVPI analysis is done for two situations: preservation of the pre-CAIR caps on SO2 and NOx, 

and imposition of tighter CAIR-like caps.  No CO2 caps are considered.   (In Section 6.4 below, we consider demand 
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growth and CO2 cap uncertainties simultaneously.) 

Table 5 shows the optimal stochastic and naïve solutions for the case in which the pre-CAIR caps are main-

tained.  The naïve solution is developed assuming that the medium growth rate occurs with 100% probability.  It has 

a $0.2B higher expected cost (ECIU) than the optimal stochastic strategy even though it is $0.3B less expensive in 

the medium growth scenario because it performs worse in both the low and high growth scenarios than the more 

robust stochastic solution.  The stochastic solution’s main advantage is that it preserves some flexibility by making 

less of a commitment to capital-intensive coal capacity in 2000-2010.  This hedging strategy is approximately the 

same as that adopted in Fig. 2(a) to deal with the CO2 cap uncertainty; the stochastic solution has about 6 GW less 

pulverized coal capacity and 11 GW more natural gas capacity. 

Table 5 also shows the optimal strategy and ECIU under demand uncertainty for the case of tighter (CAIR-like) 

NOx and SO2 caps.  At $0.3B, the ECIU here is slightly but not appreciably higher than for the pre-CAIR regulation 

case ($0.2B).  Similarly, 5 GW less pulverized coal capacity and 10 GW more natural gas capacity are built for the 

stochastic solution in 2000-2010. 

EVPI for demand uncertainties is also obtained for both criterion pollutant cap cases (pre-CAIR cap and CAIR-

like cap) in Table 5.  The EVPI for the pre-CAIR cap case is $2.0B ($5.4B minus $3.4B), and equals $1.9B for the 

CAIR-like cap ($51.8B minus $49.9B).  In terms of changes in generation mix, low, medium, and high demand sce-

narios of pre-CAIR cap have 27 GW less, 11 GW less, and 19 GW more of natural gas generation capacity.  Like-

wise, in CAIR-like case, 23 GW less, 10 GW less, and 19 GW more gas capacity is built.  This ECIU and EVPI of 

the demand uncertainty are much smaller than the CO2 cap uncertainty with both pre-CAIR and CAIR-like cap.  The 

reason is that demand uncertainty causes fewer wrong decisions in 2000-2010 than CO2 uncertainty (Section 6.1).  

Furthermore, unlike the CO2 cap uncertainty case, the tightening of NOX and SO2 caps to CAIR-like levels have 

similar ECIU and EVPI under demand uncertainty with pre-CAIR scenario.  This makes sense, as a tightening of the 

caps means that the perfect information decisions with and without the CO2 cap become more similar, as the CAIR-

like caps push the solutions in the direction with or without CO2 policy; the result is a smaller ECIU and EVPI under 

the CAIR-like caps.  On the other hand, under demand uncertainties, imposition of tighter NOX and SO2 caps does 

not impact the uncertainty or value of a perfect forecast of demand increases. 

6.3. Natural gas cost uncertainty 

This is the third of the uncertainties considered.  In 2015 and afterwards, three relative scenarios of natural gas 

prices are assumed to be low, medium, and high with equal probability (Table 3).  In the later years, low and high 
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gas prices are 40% below or above the medium levels.  The presence of such fuel price uncertainty, together with the 

five-year lag time for plant construction, means that 2000-2010 commitments might be to the wrong type of genera-

tion capacity.  For instance, if gas prices rise, then building a large amount of gas capacity early on may be subopti-

mal.  If the wrong type of capacity is built in 2000-2010, but that capacity would eventually be built anyway under 

all scenarios, then the consequences of building capacity at wrong time would be less than if other types of capacity 

were always preferred.  We calculate ECIU and EVPI for just the case of the pre-CAIR NOx and SO2 caps. 

We contrast the optimal stochastic and naïve solutions in Table 6, allowing calculation of ECIU for the natural 

gas uncertainties.  The cost penalty of choosing the naïve solution is relatively low ($0.2B) for both cases of pre-

CAIR and CAIR-like caps.  Turning to generation capacity shift, for CAIR-like case, the stochastic solution has 0.5 

GW more pulverized coal steam and 0.4 GW less natural gas capacity.  This indicates that uncertainty in gas prices 

favors other fuels, especially coal.15  However, the value to the market of considering this uncertainty explicitly is 

several times less than for uncertainties in CO2 cap, at least for the USEPA National MARKAL data base. 

The value of perfect information for natural gas uncertainty is obtained by comparing the expected cost of the 

optimal stochastic strategy with the optimal expected cost under perfect information (Table 6).  The difference in 

cost ($1.5B = -$52.9B minus -$54.4B and $1.6B = -$6.7B minus -$8.3B) indicates the most that the market should 

be willing to pay for perfect forecasts.  For the low, medium, and high gas costs scenarios, 5 GW more, 0.5 GW 

more, and 5 less gas capacity are built for CAIR-like case.  Note that these values are similar to what we obtained 

for demand uncertainties, but are much less than the results for CO2 uncertainty. 

6.4. Sensitivity analysis: Combined CO2 cap and demand growth uncertainties 

In this section, both CO2 cap and electric demand growth uncertainties are simultaneously considered, assuming 

that the pre-CAIR NOx and SO2 caps remain in place.  This allows us to consider whether these uncertainties interact 

so that their joint ECIU and EVPI are either less than or greater than the sum of their individual ECIU’s and EVPIs 

(Sections 6.1, 6.2).   

      All six possible combinations of demand growth (low, medium, high) and CO2 cap (none, cap imposed in 2015) 

are considered as separate scenarios in the decision tree.  The probabilities of the cap and growth scenarios are as-

sumed to be independent; for instance, the probability of the low demand-CO2 cap scenario is then 1/3*1/2=1/6.   

                                                 
15 It is well known that increased volatility and risk in fuel prices actually can increase the attractiveness of a generation asset, so it is not necessarily the case that more un-

certainty in natural gas prices would discourage additions of gas-fired capacity.  This is most obvious for peaking facilities; the option of taking advantage of low prices can en-

hance the option value of the asset.  On the other hand, fuel price risk in base loaded facilities is unlikely to increase their value, because their manner of operation probably would 

not be affected by the fuel cost. 
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The expected cost of the optimal stochastic strategy is $319.7B (relative to the cost of the naïve strategy under 

the medium growth/no CO2 cap case), while the naïve solution has an expected cost of $405.1B.   The cost of ignor-

ing uncertainty in demand and the CO2 cap when making decisions in 2000-2010 is therefore $85.4B.  Much of this 

comes from the very large advantage of the stochastic solution over the naïve solution if the CO2 cap is imposed 

($167.8B, $205.7B and $250.4B less cost for low, medium and high demand growth, respectively), while the sto-

chastic strategy has an $37.0B, $37.0B and $36.5B disadvantage for the three without CO2 cap scenarios of low, 

medium and high growth, respectively.  This ECIU result is very similar to the CO2 uncertainty only case ($84.6B) 

in Fig. 2(a) in Section 6.1. 

The ECIU for the two uncertainties combined ($85.4B) is slightly larger than the sum of ECIU for CO2 cap un-

certainty alone ($84.6B, Fig. 2(a)) and ECIU for demand growth uncertainty ($0.2B, Table 5).  Thus, adding the 

demand uncertainty to the CO2 cap uncertainty is apparently superadditive.  Comparing the stochastic solutions with 

naïve solutions, the impacts upon the 2000-2010 decisions are similar (for both CO2 uncertainty case and two uncer-

tainties case, a decrease of 60-70 GW in pulverized coal steam additions, with an approximately matching 20-30 

GW increase in IGCC and natural gas additions).  Thus, it might be inferred that the hedging strategy for demand 

and CO2 cap uncertainties, separately or together, are approximately the same, and is a robust choice in the face of 

these uncertainties here.   

The EVPI calculations yield a total value of $25.6B for perfect forecasts of future demand growth rates and the 

presence of CO2 caps.  Again, this value is close to (and slightly larger than) the sum of the EVPI for CO2 ($22.9B, 

Fig. 3(a)) and demand uncertainty ($2.0B, Table 5). 

6.5. Different dates for resolving CO2 uncertainty 

The last analysis considers the effect of changing the date of the CO2 cap chance node.  In Section 6.1, we as-

sumed that in 2015 a once-and-for-all decision would be made to impose a cap.  Here, we postpone that decision to 

2020.  Unlike Section 6.1, this means that commitments to build plants in 2015 (which would be on-line in 2020) 

would be made without knowing whether a cap would be in place.  In reality, of course, imposing a cap can be con-

sidered in any year, and reconsidered later—either implementing a cap if one was not imposed earlier, or adjusting 

the level of the cap.  But because stochastic MARKAL is limited to 10 scenarios (the feature of the software), its 

ability to consider multiple decision stages is limited.  

Maintenance of the pre-CAIR NOX and SO2 caps is assumed.  The naïve solution’s expected cost is $104.7B 

greater in present worth terms than the optimal stochastic strategy under the 2020 date for a possible cap.  This 
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ECIU value ($104.7B) is about a quarter higher than the case where the chance node was in 2015 instead ($84.6B, 

Fig. 2(a)).  The reason for this is apparent from comparing the solutions.  Assuming pre-CAIR cap, the naïve solu-

tion of 2020 case has about 1 GW more pulverized coal capacity in 2010 and 30 GW more coal in 2015 than the 

naïve solution of 2015 case which recognizes the CO2 uncertainty in 2015.  The naïve solution in the 2020 case has 

accumulated five years more of high CO2 emitting coal capacity than the 2015 case.  This high carbon emitting strat-

egy increases the economic regret if a  CO2 cap is finally adopted.   

For the same reason, the EVPI calculation for the 2020 CO2 cap uncertainty yields a higher value than if the un-

certainty is instead resolved in 2015.   In the 2020 case, $27.7B is the expected value of a perfect forecast of whether 

a CO2 cap will be imposed or not, exceeding the $22.9B (2015 case in Fig. 3(a)) for the 2015 uncertainty case.   

7. Conclusion 

The decision analysis framework presented in this paper includes two decision stages.  These stages differenti-

ate between “here and now” commitments that energy producers and consumers must make in the near term without 

knowing which of the possible futures will be realized, and later “wait and see” choices that are made after the mar-

ket learns which scenario will occur.   In most of the analyses, uncertainties concerning electricity demand, gas 

prices, and whether or not greenhouse gas limits will be imposed are assumed to be resolved in 2015, so optimal 

decisions before that time would likely involve some degree of hedging. 

If an uncertainty is important, then investments made considering uncertainty will differ from decisions made 

naively assuming no uncertainty, and result in better (probability-weighted) performance (i.e., a positive ECIU).   

Furthermore, eliminating the uncertainty would improve strategies even further, meaning that improved forecasts of 

future conditions are valuable (i.e., a positive EVPI).   Also, the value of policy coordination (VPC) is considered, 

equaling the difference between the cost of the strategy incorrectly based on the assumption of no carbon cap and 

the strategy that correctly anticipate pollutants and the carbon cap. 

The calculation of optimal strategies under uncertainty as well as ECIU, EVPI, and VPC is illustrated using sto-

chastic MARKAL and the USEPA National MARKAL data base.   The carbon cap uncertainty is the economically 

most important uncertainty compared to the electric demand and natural gas uncertainties.  In terms of the expected 

penalty if uncertainty is disregarded, the ECIU with respect to the possibility of carbon trading is $84.6B (present 

worth, 1995 dollars), while the expected value of knowing for certain whether or not such a cap will be imposed 

(EVPI) is calculated as $22.9B.  This assumes that both the probability of a cap being imposed in 2015 is 50:50, and 
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that market parties in the naïve scenario assume that there is a 100% chance of no cap. The optimal strategy in the 

face of the carbon cap uncertainty involves more investment in more efficient IGCC and cleaner natural gas-fired 

power generation capacity compared to the naïve solution, which results in the most significant ECIU. 

In Section 6.1, we analyze the effect of carbon policy uncertainty with and without the tighter CAIR NOX and 

SO2 caps.  The results show that generation technologies with fewer carbon emissions are chosen for the CO2 cap 

cases, and that they also emit fewer conventional air pollutants.  This descreases the cost of complying with conven-

tional pollutant caps, especially in the more stringent CAIR cases.  Accordingly, the implementation of CO2 emis-

sion policies reduces the cost difference between the scenarios with and without CAIR NOx and SO2 caps.  The an-

nualized cost of the tighter caps is about $2.5B/yr starting in 2015; but the incremental cost of the tighter NOx and 

SO2 caps is about halved (corresponding to a CAIR-like scenario) than if instead a CO2 cap is also imposed at the 

time (see also Burtraw et al. [8, 9]).  The major difference is the amount of IGCC and natural gas capacity that is 

added (more is added in the 2000-2010 period under the higher NOX and SO2 caps).  Marginal generation prices are 

higher in the presence of the CAIR-like caps, suggesting that there may be economic opportunities for investments 

in energy efficiency in the demand side of the market. 

The analysis in Section 6.4 jointly considers carbon policy and demand growth uncertainties; the ECIU and 

EVPI are roughly close to the sum of ECIU and EVPI for two uncertainties alone (carbon policy and demand growth 

uncertainty).  Future research should examine these results further to understand the interactions between these un-

certainties. The sensitivity analysis in Section 6.5 calculates the ECIU and EVPI for a carbon policy uncertainty 

resolved in 2020 rather than 2015.  The present worths of ECIU and EVPI of the 2020 case are similar in magnitude 

but slightly higher than the values of the 2015 case.  This shows that the estimates are robust with respect to the year 

of implementation of the CO2 policy.  

It would be of interest to compare the gas price, demand, and policy uncertainties with uncertainties in other 

categories of parameters. Future work should consider, for example, uncertainties concerning the feasible amount of 

nuclear build or technological improvements in renewable energy, penetration of electric vehicles or of hydrogen 

fuel cell vehicles, and new emission mitigation technologies.   Also, the sensitivity of MARKAL results to the dis-

count rate and other major parameters should be addressed in future work.  Given the capital intensity of the power 

industry, the discount rate might significantly affect results by changing the relative attractiveness of capital-

intensive versus high fuel cost technologies.  (As one example, we lowered the interest rate for coal plants with car-

bon sequestration and storage relative to normal coal plants, and the share of former plants significantly increased.) 
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In conclusion, this research shows that uncertainties in pollution emission laws, demand growth rates and fuel 

prices can result in economic regret.  The advantage of our methodology is its ability to quantify the potentially high 

cost from wrong decisions using stochastic MARKAL.  Additionally, it suggests that investments should be made 

recognizing a range of possible economic and regulatory developments.  “Good” or “robust” decision strategies un-

der uncertainty are those that will perform relatively satisfactorily across a range of possible scenarios.  “Brittle” 

decisions, in contrast, are choices that might be finely tuned for a particular scenario, but perform poorly under oth-

ers.  Robust decisions tend to hedge risks by investing in a diversity of technologies, or in technologies that are more 

flexible either in their fuel use and emissions, or which have short lead times.   

The advantage of MARKAL for identifying robust energy market solutions is that it is widely used, has a non-

proprietary database for our region of interest, can be run on a PC, and contains a built-in stochastic programming 

capability.  Furthermore, we could adapt it to calculate EVPI, ECIU, and VPC, and include the feature of construc-

tion commitments having to be made before the future scenario is revealed.  Other models (such as USEPA’s IPM 

[21]) have more detail on electric utilities, but are proprietary, very large, and/or lack stochastic capabilities.  This is 

not to say that MARKAL is without limitations; presently, it is limited to 10 scenarios, and it was necessary to over-

come some software and database difficulties in order to use it for our purposes.  Nevertheless, MARKAL enabled 

us to meet the goals of our analysis better than other energy market models.   
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 Table 1    
Assumed emission limits (thousand tonnes) 

Case Emission 2000 2005 2010 2015-2050 

NOx SIP Call 4,750 4,000 3,500 3,600* 
Pre-CAIR caps 

SO2 Title IV 10,630 10,540 9,900 8,950 

NOx 4,750 4,000 1,510 1,510 
CAIR-Like Caps 

SO2 10,630 10,540 2,250 2,250 

Possible CO2 Cap - - - 560,000 
*Slight increases allowed in later years 
 
Table 2    
Demand scenarios: ratios compared to base case (in %) 

Scenario 2015 2020 2025 2030-2050 

Low 95 93.1 89.4 89.4 

Medium (Base) 100 100 100 100 

High 105 106.9 110.6 110.6 

 
Table 3   
Gas price scenarios: ratios compared to base case (in %) 

Scenario 2015 2020 2025 2030-2050 

Low 70 60 60 60 
Medium (Base) 100 100 100 100 

High 130 140 140 140 
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Table 4  

Prices of CO2, NOX, SO2 (1995 U.S. thousand dollars/tonne) for CO2 uncertainty cases under CAIR-like limits 

Price 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 

Naïve solution (no CO2 cap) 

CO2 0 0 0 0 0 0 0 0 0 0 0 

NOx 0.24 0.28 0.56 2.24 2.24 2.24 2.24 7.88 5.03 11.96 2.75 

SO2 0 0 1.33 1.33 2.56 2.71 2.75 3.58 2.56 1.33 1.27 

Perfect information solution (CO2 cap in year 2015 and afterwards) 

CO2 0 0 0 0.20 0.27 0.28 0.16 0.20 0.19 0.21 0.37 

NOx 0.24 0.28 0.56 2.82 0.99 2.24 2.24 3.62 5.19 9.10 11.79 

SO2 0 0 1.33 0.23 0.20 0 2.21 2.56 4.47 2.56 0.15 

Stochastic solution (no CO2 cap in year 2015 and afterwards) 

CO2 0 0 0 0 0 0 0 0 0 0 0 

NOx 0.24 0.28 0.52 2.24 2.24 2.24 2.24 3.62 2.33 13.69 15.32 

SO2 0 0 1.33 1.38 2.56 3.2 2.93 3.37 2.39 1.63 1.27 

Stochastic solution (CO2 cap in year 2015 and afterwards) 

CO2 0 0 0 0.21 0.27 0.32 0.16 0.21 0.19 0.22 0.36 

NOx 0.24 0.28 0.52 2.08 0.59 2.24 2.24 2.59 5.10 7.97 11.44 

SO2 0 0 1.33 0.33 0.24 0 2.39 2.82 3.83 2.56 0.05 

 

Table 5  
Optimal stochastic, naïve solutions, ECIU, and EVPI under demand growth uncertainty (1995 U.S. Billion dollars) 

Demand Uncertainty Low Med High Expected Indices 
Optimal -324.0 0.3 339.8 5.4  
Naïve -324.6 0 341.5 5.6 0.2 (ECIU) 

Pre-CAIR 

Perfect Inf -326.8 0 337.0 3.4 2.0 (EVPI) 
Optimal -280.6 46.1 389.9 51.8  
Naïve -281.1 45.8 391.4 52.0 0.3 (ECIU) 

CAIR-like 

Perfect Inf -283.2 45.8 387.1 49.9 1.9 (EVPI) 
 
 
Table 6  
Optimal stochastic, naïve solutions, ECIU, and EVPI under natural gas cost uncertainty (1995 U.S. Billion dollars) 

Natural Gas Price Uncertainty Low Med High Expected Indices 
Optimal -731.1 0.3 572.0 -52.9  
Naïve -730.6 0 572.4 -52.7 0.2 (ECIU) Pre-CAIR 

Perfect Inf -732.5 0 569.2 -54.4 1.5 (EVPI) 
Optimal -687.6 46.0 621.6 -6.7  
Naïve -687.4 45.8 622.1 -6.5 0.2 (ECIU) CAIR-like 

Perfect Inf -689.2 45.8 618.5 -8.3 1.6 (EVPI) 
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Figure Captions 

 

Fig. 1. Simple hypothetical example of two stage optimization under CO2 policy uncertainty: (a) Naïve and optimal 

stochastic solutions. (b) EVPI calculation. 

 

Fig. 2.  Naïve and optimal stochastic solutions under CO2 policy uncertainty: (a) pre-CAIR limits on SO2 and NOx; 

(b) CAIR-like limits (1995 U.S. Billion dollars). 

 

Fig. 3. EVPI under CO2 policy uncertainty: (a) pre-CAIR limits on SO2 and NOx; (b) CAIR-Like limits (1995 U.S. 

Billion dollars). 
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Fig. 2. 
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Fig. 3. 
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