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Bayesian Methods for Analysing Climate Change and Water
Resource Uncertainties
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The purpose of this paper is to outline the advantages of the Bayesian
approach for analysing uncertainties involving climate change, emphasizing the
study of the risks such changes pose to water resources systems. Bayesian
analysis has the advantage of basing inference and decisions on a coherent and
normatively appealing theoretical framework. Furthermore, it can incorporate
diverse sources of information, including subjective opinions, historical
observations and model outputs. The paper summarizes the basic assumptions
and procedures of Bayesian analysis. Summaries of applications to detection of
climate change, estimation of climate model parameters, and wetlands
management under climatic uncertainty illustrate the potential of the Bayesian
methodology. Criticisms of the approach are summarized. It is concluded that
in comparison with alternative paradigms for analysing uncertainty, such as
fuzzy sets and Dempster–Shafer reasoning, Bayesian analysis is practical,
theoretically sound, and relatively easy to understand.
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1. Introduction

The object of climate change research is to dispel uncertainty concerning the likelihood,
magnitude and impacts of climate change. Bayesian analysis is a practical and theo-
retically appropriate tool for making inferences about climate change and for making
decisions based on those inferences. It can help to address questions such as:

• Given present evidence, has the climate already become significantly warmer?
• When might we know if greenhouse gas-forced climate change is really occurring?
• Given the uncertainties inherent in global circulation models (GCMs), what range

of mesoscale impacts can be expected in the future?
• Should we commit resources now for preventing or adapting to anticipated

climate change, or should we wait to obtain additional information?
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The purpose of this paper is to summarize the case for Bayesian analysis of climate
change uncertainties. Other papers in this special issue present alternative risk analysis
methods. Here I address the following questions:

• What can Bayesian analysis do?
• What does Bayesian analysis assume?
• How does Bayesian analysis do what it does?
• How might Bayesian analysis be useful for analysing climate change?
• What criticisms have been made of Bayesian analysis, and what are the responses

to those criticisms?

This paper can only touch upon a few aspects of the rich theory that underlies
Bayesian analysis. Only a handful of the numerous applications of the approach to
climate and weather analysis, hydrology and water resources planning can be mentioned.
More thorough introductions to Bayesian analysis and its applications are available
elsewhere (e.g. Raiffa, 1968; Berger, 1985; Gatsonis et al., 1992). For an introductory
discussion of the use of Bayesian analysis for water resources decision making under
climate change, see Fiering and Rogers (1991).

2. What can Bayesian analysis do?

Three features of Bayesian analysis are appealing to practitioners. First are the useful
outputs it provides:

• Inferences. These include hypothesis tests; expected values for model parameters;
credible intervals for those parameters (analogous to, but not exactly the same
as, the confidence intervals of classical statistics); and projections and credible
intervals for future system behavior. Bayesian analysis can derive these inferences
from diverse sources of information, such as historical observations, expert
opinions and model simulations. In contrast, classical statistics and information
theory can only use historical frequency data and often assume that the system
being observed is stationary. Such ‘‘frequentist’’ approaches underlie signal-to-
noise ratios and other statistical tests for climate change (Wigley and Barnett,
1990; Schneider, 1994). However, they have little value for projecting the future
course of climate change because of their exclusive reliance on historical ob-
servations.

• Optimal strategies. Given the uncertainties facing us and the information that is
available, Bayesian analysis can be used to identify good decisions. Here, a good
decision is defined as one that maximizes the expected value of one or more
performance indices.

• Value of information. Bayesian analysis can be used to trace how additional
information would alter the decision we would make and improve the expected
performance of those decisions. This enables us to quantify the value of that
information in economic terms or whatever performance indices one wishes. The
‘‘expected value of perfect information’’ tells us the most we should be willing to
pay for perfect knowledge of the future. Thus, it is a useful measure of the cost
of uncertainty. The ‘‘expected value of imperfect information’’ quantifies the value
of the imperfect information we might obtain from actual studies. That value
can then be compared with the cost of doing such studies. This cost might include
the benefits that are foregone if we put off a decision until the information
becomes available.
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• Robustness. Bayesian analysis provides a systematic set of procedures for under-
standing the sensitivity of our results to the assumptions we make, and the
economic consequences of that sensitivity.

These products are of obvious utility to decision-makers and climate-change sci-
entists. A second feature of Bayesian analysis makes these products even more valuable.
This feature is the comprehensive framework that Bayesian analysis represents, and
the normatively attractive assumptions that underlie that framework. Alternative
paradigms, such as fuzzy set theory, lack this advantage. The virtue of comprehensiveness
is its coherent encompassing of both inference and decision-making. Since the importance
of information cannot be assessed without understanding its impacts on decisions, this
is appealing. By ‘‘normatively valid assumptions’’, I mean that the axioms that underpin
Bayesian analysis are ones that most rational people would agree ought to be adhered
to (even if, in fact, human frailties prevent us from doing so). The comprehensive
framework implies that if we believe that we should accept those assumptions, then we
should be willing to accept the conclusions derived from Bayesian analysis—or at least
be inclined to consider them carefully.

The third and final appealing feature of Bayesian analysis is that its procedures are,
in most circumstances, practical and relatively simple compared to other approaches
(e.g. Dempster–Shafer reasoning; see Caselton and Luo, 1992), and based on familiar
notions of probability. This is an important advantage to the practitioner who must
not only obtain results at a reasonable cost, but also be able to explain and justify
them to others.

3. What does Bayesian analysis assume?

What assumptions must we accept in order to obtain these benefits of Bayesian analysis?
Berger (1985) notes that researchers have developed several dozen alternatives sets of
axioms as a basis for Bayesian analysis. The four major assumptions I outline below
are loosely based on those of Raiffa (1968), and are similar to other developments.
Before presenting the assumptions, some of the notation used must be defined:

x: a performance measure, such as net benefits or environmental impact
(px1,(1−p)x2): a lottery with chance p of yielding outcome x1 and chance (1−p)

of x2.
x̃: a more general lottery, expressed as a probability distribution over x.
C: ‘‘preferred to’’. For instance ‘‘x1Cx2’’ means ‘‘the decision-maker prefers

outcome x1 to outcome x2’’.
>: ‘‘indifferent to’’. As an example, ‘‘x1>x2’’ means ‘‘the decision-maker feels

that outcomes x1 and x2 are equally attractive (or repulsive!).

The four assumptions are as follows:

1. Transitivity: if x1Cx2 and x2Cx3, then x1Cx3.
2. Certainty equivalence: if x1CxcCx2, then the decision-maker must be able to specify

some probability p between 0 and 1 such that xc>(px1,(1−p)x2).
3. Substitution: if x̃1>x̃2 then for any x3, (px3,(1−p)x̃1)>(px3,(1−p)x̃2).
4. Reduction: all that matters in making decisions are ultimate outcomes and their

probabilities, and not the process involved in getting there. For instance, the following
two lotteries should be equally attractive: (i) a 25% chance of winning $100; (ii) a
50% chance of winning an initial bet. If the initial bet is won, then a second bet is
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made with a 50% chance of winning $100. Both lotteries ultimately involve a 25%
probability of gaining $100, so a decision-maker should not prefer one to the other.

Most reasonable people will agree that these assumptions have normative validity;
that is, we ought to try to be consistent with them. Of course, the actual behavior of
people often violates those assumptions (von Winterfeldt and Edwards, 1986). But the
important point is that these axioms constitute a reasonable definition of ‘‘rationality’’
and that it is reasonable to argue that we ought to strive to be consistent with them.
Acceptance of these assumptions has three important and useful implications.

1. ‘‘Subjective degree of belief’’ or ‘‘confidence’’ can be quantified as a subjective
probability by the reference lottery method (von Winterfeldt and Edwards, 1986;
Morgan and Henrion, 1990). The reference lottery method quantifies a person’s
subjective probability p of an event A (e.g. ‘‘the global mean temperature in the
year 2020 will be between 0·5 and 1·5°C higher than in 1990’’ ) by finding the p
that makes that person indifferent between the following two lotteries: (i) $X
(say, $100) is won if event A occurs, and $0 is won if A does not occur (ii) a
‘‘reference lottery’’ in which $X is won with probability p, and $0 is won with
probability (1−p), with the outcome of the bet occurring at the time that it
becomes known whether event A has occurred (in the temperature example, in
the year 2020). Spinner dials or other physical devices are often used in actual
assessments to visually portray the meaning of different levels of p. When assessing
subjective probabilities, the analyst will generally suggest different values of p
and ask the decision-maker which lottery is preferred. By trial and error, the p
that yields indifference can be determined. There are also many other approaches
to eliciting subjective probabilities (e.g. von Winterfeldt and Edwards, 1986;
Morgan and Henrion, 1990).

2. Subjective beliefs assessed in this manner have the properties of probabilities:

P(A )+P(Ac )=1 (1)

P(A )+P(B )−P(AkB )=P(AlB ) (2)

P(AB ) P(B )=P(BA ) P(A )=P(AkB ) (3)

where:

Ac: the complement of A (i.e. ‘‘A does not occur’’ ),
k, l: set intersection and union symbols, respectively, and
P(AB ): the conditional probability of event A, given that event B has occurred.

3. A utility function U(x) exists such that E(U(x̃1) )>E(U(x̃2) ) if and only if x̃1Cx̃2,
where E(U(x̃) ) is the expected value of U(x̃). That is, there exists a function
whose expected value can be used to represent the preferences of the decision-
maker. This function can be estimated using standard procedures of decision
analysis (e.g. Raiffa, 1968).

Of course, people are unsure of their beliefs and preferences and have difficulty
expressing them coherently. Consequently, consistency checks generally will show that
actual subjective probabilities and utility functions are inconsistent and error-laden.
This does not mean that the Bayesian method has no value. Instead, it implies that
trustworthy results are only possible if assessments are carefully done, consistency
checks are applied, and the users thoughtfully resolve those inconsistencies and have
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Figure 1. Decision tree for management decisions under climate change.

confidence in the final values. This process can be difficult and time consuming, but
users benefit because they have a chance to think through their beliefs and preferences
and to make them more coherent.

Equation (3), the third property of subjective probabilities, can be rearranged to
yield Bayes’ law:

P(AB )=P(A ) [P(BA )/P(B ) ] (4)

That is, the probability of A given that B has occurred (the ‘‘posterior’’ probability of
A ), equals the ‘‘prior’’ probability P(A ) multiplied by the ratio of (a) the likelihood of
observing B given that A will occur (P(BA ) ) to (b) the overall or ‘‘marginal’’ probability
of B(P(B ) ). This disarmingly simple equation is the foundation of Bayesian inference.

4. How does Bayesian analysis do what it does?

Bayesian analysis produces the outputs described in Section 2 in four steps:

1. Specify problem structure.
2. Quantify inputs.
3. Perform the analysis.
4. Examine robustness of the results to changes in assumptions.

Each step is discussed below.

4.1.   

This consists of describing the options that are available to the decision-maker (resource
commitments, information gathering); when choices from among those options can be
made; and when information is obtained that reduces uncertainty. Decision trees and
influence diagrams are two useful ways of portraying problem structure (Clemens,
1991); here, trees are used. Figure 1 shows a tree that will be referred to again later in
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the paper. It represents the general structure of several types of decisions involving
management of the Laurentian Great Lakes of North America (Hobbs et al., 1996).

As for any decision tree, the one in Figure 1 has three major elements.

• Decision nodes, represented as squares. Here, the options are to make an irreversible
commitment of resources, or to put off the decision. Examples of such com-
mitments might be the construction of shore protective works or a control
structure at the outlet of Lake Erie, a decision to develop a wetland, or the
signing of an agreement to export water out of the basin.

• Chance nodes, represented as circles. I show three types of uncertainties. The first
includes lake-related variables, such as levels or temperatures, which fluctuate
randomly and which also have an uncertain trend due to the possibility of climate
change. Socio-economic variables, such as values of shoreline property, make up
the second category. The third group includes climate variables, which provide
information that can be used to update the decision-makers’ beliefs concerning
the likelihood and magnitude of climate change. These may overlap with the lake
variables. Probabilities, usually containing some subjective element, are associated
with each branch on a chance code.

• outcomes, which I show as benefits and costs ‘‘B&C’’ that accrue over time. In
general, there may be several incommensurable types of benefits and costs, which
means that the decision problem is a multicriteria one.

Decision nodes can be omitted in pure inference problems, such as the testing of
hypotheses, estimation of model parameters, or making of predictions.

4.2.  

Once the structure of the problem has been outlined in the form of a tree or influence
diagram, then numerical inputs are needed: probabilities and outcomes. First, some
more notation:

h: state of nature, which, at least initially, is unknown. An example would
be h1 which might represent the state ‘‘the global mean temperature
will be warm by between 0·25 and 0·5°C per decade over the next
century’’.

z: information, usually in the form of an observation of some random
process (e.g. next year’s global mean temperature) or a prediction by an
expert or model. Obtaining information alters subjective probabilities of
h.

Now the necessary inputs can be summarized as follows:

P(h): prior probabilities of the state of nature. These should be assessed based
on the best information now available. If information is unavailable or
ambiguous, then so-called ‘‘non-informative priors’’, which attempt to
avoid favoring some states of nature over others, are appropriate.
Priors might also be based on past historical observations, numerical
simulations and expert judgment.

P(zh): likelihoods, which describe the probability of obtaining evidence z
given that the state of nature is actually h. For instance, if the climate
is actually warming by an average of 0·25–0·5°/decade (i.e. the state
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of nature h), what is the likelihood that the observed global mean
temperature next year will be, say, between X° and Y° (i.e. the
observation z)? The values of P(zh) are frequently determined by
models that, given an assumed set of parameters (the state of nature
h), can generate probability distributions P(zh). Expert judgment can
also be used to assess likelihoods.

In addition, if we are not merely going to make inferences about the state of nature,
but are also going to model the decision-making process, then the following additional
information is required:

a: options (resource commitments, information gathering) available at
each decision node.

x: measure(s) of performance. In general, x might be a vector, en-
compassing a range of monetary and non-monetary criteria.

U(x): a utility function translating the measures of performance into a single
index of worth. Several U(x)’s might be defined, each representing a
different interest group’s point of view.

4.3.   

There are two basic types of Bayesian analysis: posterior and preposterior. The purpose
of posterior analysis is to update the probabilities of the state of nature after information
z is obtained, yielding the posterior probabilities P(hz). Bayes’ Law (4) is used to
accomplish this. If the h represent different hypotheses, then the posterior probabilities
can be used to ‘‘test’’ which hypothesis is most credible. For example, h1 might represent
the hypothesis that ‘‘the climate at location X has not warmed by more than 0·25° in
the last 40 years’’, while h2 might instead be ‘‘the climate has warmed by more than
0·25°’’. Their posterior probabilities, given the evidence z (the actual temperature record)
and the prior probabilities (say, equal), show which hypothesis is more likely.

If h is instead a continuous variable, such as the parameter of a flood frequency
distribution, then posteriors P(hz) can be used to calculate several useful statistics.
These include the most likely value of h (the mode or ‘‘maximum likelihood’’ estimate),
its expected value (which might differ greatly from the mode), and credible intervals.
A X % credible interval for h is defined as a domain D such that the posterior probability
of h falling in that domain is X %:

PhvD

P(hz)dh=X/100 (5)

An example of the calculation of these statistics is given later in this paper.
Posterior analysis focuses on inference. Preposterior analysis, in contrast, emphasizes

decision-making. First, considering the distribution of possible outcomes z and h,
preposterior analysis calculates the optimal immediate action a—the so-called ‘‘Bayes
decision’’. More generally, the optimal strategy is defined, i.e. the option at each decision
node that maximizes the expected net benefits from that point on. This is accomplished
by the ‘‘folding back’’ method, also called stochastic dynamic programming. Basically,
the following calculation is made for each decision node, starting at the last period:
choose the action yielding the highest expected benefit. Because this calculation will
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have already been done for all subsequent decision nodes, the procedure automatically
takes into account what decisions might be made later in response to further information.

Preposterior analysis also produces a second important product: the value of further
information. The value of perfect information, which gauges the cost of uncertainty, is
obtained as follows. It equals the difference between the expected net benefits of the
Bayes decision, and the expected net benefits if the future could be perfectly forecast—i.e.
if there was no uncertainty. More important for decision-making, preposterior analysis
can also assess the value of imperfect information. Say that an experiment, modeling
exercise or other research project would yield information z about the present or future
climate. If that information is optimally used to update prior distributions via Bayes’
law, then having that information available will usually improve the expected net
benefits of the optimal strategy, which in general, will depend on what information is
obtained. The expected amount of that improvement is the value of that information.
If net benefits are measured using multiple criteria, then the value of information itself
will have multiple dimensions (e.g. expected reduction of cost, expected reduction of
environmental impact, etc.).

4.4.  

Robustness analysis concerns the question of the dependency of the results on the
assumed P(h), P(zh), and U(x). Such analysis is important because psychologists have
shown that assessments of subjective probabilities and utilities can be unreliable and
subject to predictable biases (Fischhoff et al., 1979; Kahneman et al., 1982).

Although critics and users of Bayesian analysis both emphasize the importance of
prior distributions, likelihoods and utility functions can also significantly alter the
conclusions of an analysis. Uncertainties in P(zh) are sometimes called modelling and
representativeness uncertainties, when the P(zh) result from some model (such as a
log-normal flood frequency model) that might either be the wrong model or that might
be in error because reality is inherently more complex than any model we might
realistically formulate (Bernier, 1991).

There are several approaches to robustness analysis (Berger, 1985). The first is
traditional sensitivity analysis, in which different assumptions are tested, and variations
in the results are noted. In general, if the prior P(h) is ‘‘sharp’’ (i.e. high for a few
values of h, and low for the rest), then the conclusions will be relatively insensitive to
P(zh). That is, evidence will not alter prior beliefs greatly. On the other hand, a sharp
P(zh) usually implies that the results are relatively insensitive to P(h). There evidence
matters more than previous beliefs.

In the second approach to robustness analysis, the analyst might attempt to minimize
the effect of subjectivity by adopting inherently ‘‘robust’’ prior distributions. These are
‘‘flat’’ or ‘‘non-informative’’ priors, discriminating little or not at all among alternative
values of h. In many cases, use of such priors causes Bayesian analysis to give the
same results as traditional statistical methods (maximum likelihood estimators, classic
statistical tests) and information theory (Tsao et al., 1993). However, if credible prior
information is possessed that does indeed discriminate among the possible h, then it
should be used. Throwing such information away by using a flat prior will, in general,
yield inefficient and biased inferences (e.g. parameter estimates) and decisions that fail
to maximize expected net benefits (Krzysztofowicz, 1983).

The third approach to robustness analysis calculates the regret that could result
from using the ‘‘wrong’’ inputs. Say that there are two alternative sets of assumptions
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concerning P(h), P(zh), and U(x): {P1(h), P1(zh), U1(x)} and {P2(h), P2(zh), U2(x)}.
We start by calculating the optimal action a for each set of inputs: a1 and a2. ‘‘Regret’’
is the foregone expected net benefits resulting from assuming that the first set of inputs
is correct (and thus implementing its action a1) when the other set is the right one
instead. This results from a failure to choose the true optimal action. If a1 and a2 are
very similar, or at least yield similar expected net benefits, then this regret will be
relatively small. But if the possible regret is large, then alternative assumptions make
a practical difference. Additional attention should then be paid to the question of which
set of inputs is truly more representative of the decision-makers’ knowledge and values.

A fourth approach to robustness analysis is maximum likelihood analysis. It uses
observations of z to determine which P(h) and P(zh) seem most consistent with the
evidence. For instance, say that the observed annual floods in the last three years were
12 000, 18 000, and 9000 m3/sec, respectively. Then, a prior distribution that assigns
zero probability to a mean annual flood of over 10 000 m3/s would seem to be less
credible than one that allows such a possibility. A metric of credibility in this case is
P(z)=RhP(zh)P(h), the overall (marginal) likelihood of the evidence (Berger, 1985).
In the above case, this metric is likely to be much smaller for the prior that excludes
the possibility of a mean value over 10 000 m3/sec.

An example of a simple but insightful robustness analysis of the global warming
problem is that presented by Lave and Dowlatabadi (1993). They examined three types
of uncertainties: the relationship between emissions of greenhouse gases and global
climate change; the resulting effects on humans and the environment; and the costs of
reducing greenhouse gas emissions. They evaluated three hypothetical greenhouse gas
reduction strategies under these uncertainties. The robustness of the results were
analysed by considering the sensitivity of the decisions to the inputs, and the regret
that results if incorrect inputs are used.

5. How might Bayesian analysis be useful for analysing climate change?

Bayesian analysis can use evidence to make and update climate change predictions and
estimates of model parameters. Bayesian methods can also be used to define optimal
natural resource management strategies, given the prospect of possible climate change.
Three illustrations are summarized here of the use of Bayesian analysis to analyse
climate change. The first two focus on inference: what models and parameters are most
consistent with evidence? One of the examples examines annual flows in the Senegal
River of West Africa, and the other studies sea level rise. The third example concerns
optimal management of lacustrine wetlands under climatic uncertainty.

5.1.       (, 1994a)

There is considerable concern over the possible effect of climate change upon the
frequency of floods and droughts (Waggoner, 1990). Duckstein et al. (1987) outline
how the Bayesian methodology could be used to forecast resulting changes in annual
flood frequencies. Bernier (1994b) reviews Bayesian tests for detecting the date of
climate change in hydrological time series, and illustrates his methods with applications
to the Harricana, St. Lawrence, and Senegal rivers and precipitation in the North
American Great Lakes region. In Bernier’s (1994a) study of droughts in the Senegal
River basin, uncertainties concerning the probability distribution of annual flows Q
were analysed with a Bayesian approach. He addressed the following questions:
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Figure 2. Posterior probability distribution of failure probability, Senegal River [based on data in Berger
(1994)].

1. When did the mean annual discharge E(Q ) change?
2. What is the future probability of system failure, defined as P(Q<150 m3/s), given

parameter and model uncertainty? What is its credible interval?
3. What are the parameters of a Markov chain model of the annual flow, and what

are their implications for the probability of system failure (Q<150 m3/s)?

In this analysis, the year in which the change took place is an unknown state of nature,
as are the parameters of the Markov chain model. Bernier’s results for the first two
questions are summarized below.

The Senegal river drains a portion of the Sahel region, and statistical tests showed
that the annual flow during the period 1903 to about 1965 was significantly higher on
average than flows for subsequent years. A Bayesian analysis to answer the first question
was performed as follows. The year in which the mean changed is defined as the state
of nature h, P(h) was assumed to be the same for all years, z consisted of the observed
flows for 1903–1986, and P(zh) was based upon a log-normal distribution whose
mean and standard deviation for each year depends on whether the year is before or
after the year in which the mean changed. The posterior probabilities of the date of
change T were 0·03 for T<1967, 0·27 for 1967, 0·07 for 1968, 0·22 for 1969, 0·16 for
1980, 0·17 for 1971 and 0·08 for T>1971.

The second question Bernier (1994a) addressed is important because annual flows
below 150 m3/s are assumed to represent a failure of water supply. One answer to this
question was derived under the assumption that the mean flow would remain at its
estimated post-1967 value. The state of nature h was defined as the parameters of a log
normal distribution from which P(Q<150 m3/s) would be calculated. The observations z
were the 1967–1986 annual flows, and their likelihood was described by the log-normal
distribution. Bayes’ Law was then applied, resulting in a posterior distribution of h,
from which a posterior distribution of the estimate of P(Q<150 m3/s) could be derived
(Fig. 2). The mode of P(Q<150 m3/s) is 0·0035, but the expected value is much higher,
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about 0·025. The short historical record results in a wide credible interval; there is a
90% chance that the true value is between 0·001 and 0·059. Thus, Bayesian analysis
has permitted quantification of the uncertainty surrounding the probability of future
droughts.

5.2.           
(  , 1992)

In this study, a formal method was developed for using evidence to update probability
distributions for a complex model’s parameters, which were treated as the unknown
state of nature. The model and the probability distributions of its parameters can then
be used to make predictions that reflect the remaining uncertainty. The approach was
then applied to the problem of projecting sea level rise. It can also be used to improve
models of other impacts of climate change, including hydrologic effects, and to
systematically update those models as additional information is obtained. The steps of
the method are as follows:

1. Define a prior probability distribution over the parameters h of the model (in
their case, the parameters of a model of sea level rise). A prior distribution could
also be provided over alternative models, in which different models are assigned
different levels of credibility [in the spirit of Ellis (1988) who considers the
implications for SO2 control of several alternative models to project acid de-
position].

2. Sample h I times by a Monte Carlo procedure. Each realization hi, i=1, . . .,I is
then used to obtain a projection Mi(hi) of one or more variables of interest (here,
future sea levels). Each projection Mi(hi) is assumed to be equally likely (i.e.
having a prior P(Mi(hi) )=1/I ).

3. The variables to be observed, or evidence, are designated as z (in this case,
observed changes in sea level at different locations). A likelihood function
P(zMi(hi) ) is derived, based on likely sources of observational error.

4. z is observed, and then Bayes’ law is used to update the posterior distribution
of model projections P(Mi(hi)z). These can then be translated back into posterior
distributions for the model parameters P(hz).

5. Step 2 can then be returned to, this time sampling from P(hz) rather than P(h).
Then, as new evidence is obtained, the distribution can be further updated by
repeating Step 4.

To illustrate the application of this procedure, Patwardhan and Small’s (1992) application
to sea level rise is summarized below.

The model used by them was a simple one-dimensional upwelling-diffusion model
of the ocean that simulates the effect of thermal expansion upon sea levels. Within h
are four parameters that were modeled as being uncertain:
• temperature sensitivity (equilibrium surface temperature increase for doubled

CO2, °C)
• vertical diffusion coefficient for heat transfer (cm2/sec)
• ocean upwelling velocity (m/year)
• ocean mixed layer depth (m)

In addition, the uncertain state of nature h included growth rates for atmospheric
concentrations of four greenhouse gases, which are also treated as being uncertain.
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The probability distributions for each of these parameters and variables are assumed
to be uniform and independent.

The output Mi(hi) of the model is a projection of mean sea level for a given range
of years for an assumed state of nature hi. By sampling the parameters from the
assumed distribution of h and then calculating one projection for each sample, a range
of predictions Mi(hi) for sea levels can be obtained. For instance, their model projects
a mean sea level change of about 0·75 m by the year 2100, with a 90% credible interval
of 0·2 m to 1·3 m. As actual sea levels and gas concentrations are observed over time,
this evidence can be used to update the parameters of the model, resulting in (presumably,
but not necessarily) less uncertainty. However, z consists of local measurements of sea
level, which can differ from global means because of factors such as isostatic adjustment
and changes in long-term wind patterns. These factors can be considered in the
derivation of likelihood functions P(zMi(hi) ).

To illustrate how this updating process can work, Patwardhan and Small (1992)
first used observed sea levels from 1900 to 1980 as z. As a result of applying their
Monte Carlo Bayesian procedure, they refined the distributions of the four model
parameters. The largest change was in the temperature sensitivity, whose 90% credible
interval shrunk from [0·69,4·3] to [0·96,4·3]. As another illustration of the method, they
demonstrated how the method would have been applied sequentially over the period
1900–1980 as additional evidence accumulated. When year 2000 sea levels were forecast
using just evidence obtained through the year 1900, the 90% credible interval for the
rise relative to 1900 levels was [0·13 m, 0·75 m]. As evidence accumulated through the
century, this interval shrunk until by 1980 it was [0·10 m, 0·25 m].

5.3. -      
(, 1994)      
( ET AL., 1994)

This example integrates the problems of inference and decision-making in a Bayesian
framework. The problem Krzysztofowicz (1994) addresses can be simply stated, as
follows. There is uncertainty concerning the future climate; the state of nature h
represents possible future climates. A decision must be made either to commit resources
(e.g. invest in a flood control project) or wait for further information z that can be
used to revise prior probabilities of the various climates. (In addition, operating decisions
that are not irreversible commitments can also be made, but I disregard that complication
here.) This commitment of resources is called a ‘‘stopping’’. Waiting can be worthwhile
if the net benefits of the resource commitment depend on climate. Waiting can result
in, ultimately, a better resource commitment (e.g. design of a hydraulic structure), but
there are likely to be opportunity costs in the meanwhile—no benefits are received from
a structure that is not built.

Krzysztofowicz (1994) assumes that the evidence Zt at time t of climate change has
a likelihood function of the form P(zih,zt−1). That is, given that the actual climate is
h, zt is a first order (autoregressive) Markov process. Given this likelihood function,
and the prior probabilities of h, Bayes’ law (4) can be applied to the evidence, resulting
in an update of the decision-makers’ beliefs concerning climate change. Krzysztofowicz
(1994) presents two important results for this problem under the assumption that there
exists a utility function of the type I discussed in Section 3. The first is that an
optimal ‘‘stopping-control’’ strategy can, in theory, be obtained by stochastic dynamic
programming. This strategy describes the best decision now (whether or not commit
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resources, and how to control the system), and the best decisions in the future under
all possible realizations of the evidence zt. The second is that the value of improved
forecasts (information) can be calculated.

This general framework is relevant to many problems involving the management
of the Great Lakes of North America. Below, I summarize an application to wetlands
management as an illustration (Hobbs et al., 1994). Other applications have been made
to decisions concerning construction of breakwaters at Presque Isle, PA and regulation
of the outflows of Lake Erie (Hobbs et al., 1996).

An increase in greenhouse gas concentrations equivalent to a doubling of CO2

concentration could drop levels of Lake Erie by 1 to 2 m (Croley, 1990). This decrease
would have an enormous effect on coastal wetlands. Many existing wetlands would be
deprived of the periodic inundation that they require, while new wetlands would be
created from former lake bottom.

To illustrate the application of Figure 1’s decision framework, I consider an existing
wetland that would disappear if lake levels drop that far. I assume that this wetland is
situated so that the land would be valuable for commercial development.

The elements of this problem are:

a: decisions whether to allow commercial development a1 or to preserve the
wetland (‘‘wait’’ ) a2. I disregard the possibility of maintaining the wetland
by diking and pumping by assuming that its expense could not be justified
if lake levels drop. This is because diking would cut off access to the lake,
thereby destroying the wetland’s value for aquatic habitat.

h: states of nature indicating whether lake levels are stationary around the
historical mean (h1) or whether they vary around a mean trend that decreases
linearly over 40 years to a level 1·5 m below the historical mean (h2). My
prior probabilities are P(h1)=P(h2)=0·5.

zt: evidence obtained in year t concerning whether lake levels are indeed
permanently dropping because of climate change. For simplicity, I assume
that yearly mean lake levels are the only such evidence, although in reality
evidence can be obtained from many sources. Observations of these levels
are used in Bayes’ law to update the state of nature probabilities. I assume
that lake levels are a first-order autoregressive process.

x: outcomes, including benefits of development, if allowed, and permanent loss
of wetlands. I assume, for illustration purposes, that the wetland has a high
(but unspecified) ecological and social value if lake levels do not drop
permanently (h1). However, because the wetland would degrade in quality
and other wetlands would be created if levels fall permanently (h2), I assume
that the wetland would have relatively little ecological value if h2 is realized.
The particular performance measures I use are:

x1: worth of commercial development, equal to the expected present value
of the land for commercial purposes at the date of development. An
expected value is calculated because it is uncertain when, if ever,
commercial development would occur.

x2: loss of wetlands, equal to the probability that a valuable wetland is
eventually developed (i.e. that both commercial development and h2

occur). In a sense, this is the long run ecological cost that could result
from making a wrong decision.
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Figure 3. Tradeoff between expected development benefits and probability of mistakenly losing valuable
wetlands.

This problem fits into the optimal stopping-control framework because:

1. Commercial development is assumed to be irreversible.
2. Delaying development would allow managers to obtain better information on

whether lake levels are going to drop permanently, via Bayes’ law.
3. The benefit of not developing the wetland depends on whether lake levels

permanently decrease.
4. If development is delayed, economic benefits will be foregone in the meanwhile.

The heart of the problem is thus whether to develop now, and run the risk that a
valuable wetland will be destroyed, or to wait, and thereby give up economic benefits
in the interim.

One possible approach to solving this problem is to assume a monetary value for
the worth of wetlands, and then combine that value with the economic value of
commercial development. An alternative approach is multicriteria analysis. The focus
of my multicriteria analysis is on generating tradeoffs among competing criteria x1

(development benefits) and x2 (risk of ecological loss due to making the wrong decision).
Different strategies will result in different levels of performance of each objective, as
illustrated in Figure 3. The commercial development axis has been normalized so that
‘‘1’’ represents the maximum possible economic value of development (resulting from
development immediately at t=0). The points on the lower left represent conservative
strategies that prohibit development unless it is almost certain that lake levels will drop;
as a result, there is little chance of developing a valuable wetland but also a relatively
low present worth of development. The points on the upper right represent more
aggressive strategies that allow development even if climate change is highly uncertain.
Consequently, the probability of mistakenly developing a valuable wetland is higher,
but so are the development benefits.

The points in Figure 3 are generated as follows. Rather than discretizing probability
distributions of lake levels and then solving the resulting (enormous) tree by backwards
dynamic programming, I opted to define a range of simple policies and then stimulate
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their performance using Monte Carlo simulation. The policies are of the form: If in
year t the posterior probability of decline in lake levels Pt(h2) exceeds a threshold T, then
develop the wetland. Otherwise, wait. A low threshold T (e.g. T=0·7 or less) yields the
upper right points in the figure. In those cases, there are high development benefits x1

because development is likely to occur relatively soon, but there is also a high probability
x2 of mistakenly developing a valuable wetland. In contrast, a high threshold (T=0·9
or more) results in the lower left points. Such a cautious policy lowers the probability
of mistaken development, but also diminishes the present worth of development benefits.
There may be (indeed, are likely to be) better strategies that lie below and to the right
of this curve; they might be discovered either by simulating more complex policies or
by backwards dynamic programming.

The exact form of the tradeoff curve depends on the assumed interest rate and the
prior probabilities. If the interest rate is zero, then the curve consists of a straight line
connecting the points (x1=0, x2=0) (development never occurs because the threshold
is zero) and (x1=1, x2=0·5) (development immediately occurs because of a high
threshold, thereby resulting in a high risk of losing a valuable wetland). A change in
the prior probability of climate change P(h2) scales the tradeoff curve up or down in
rough proportion to that probability.

When managers are presented with a curve such as Figure 3, they can decide what
trade-off between development benefits and risk of wetland loss is acceptable. The
decision depends on the relative weight given to wetlands and commercial development.

6. Criticisms of Bayesian analysis

The above applications illustrate some potential uses of Bayesian analysis for inference
and decision-making. However, critics direct four types of criticisms at Bayesian theory
and applications. I discuss each in turn, along with some of the rebuttals offered by
advocates of Bayesian analysis.

6.1.   

The idea that subjective judgments of prior probabilities and likelihood functions
can—and indeed should—influence the outcome of an inference process is abhorrent
to many scientists. The debate between ‘‘frequentists’’ and Bayesians is now an ancient
one, dating back more than a century (Poirier, 1988; Rust et al., 1988). Frequentists
argue that inference should be based on observed data, and that alone; subjectivity
prevents us from viewing that data objectively and can introduce bias.

One reply Bayesians make to this criticism is that subjectivity is inevitable, and is
merely swept under the rug by frequentists. For example, many standard statistical
tests assume a priori that all parameter values are equally likely, even though, for
example, physical principles might dictate non-negativity. The Bayesian approach
instead makes subjective assumptions explicit, where they can be scrutinized and
analysed for robustness.

Subjectivity’s inevitability is apparent in the effort to detect whether global warming
is occurring. There has been, for example, a statistically significant warming trend
during the 20th century. However, whether or not such evidence ‘‘confirms’’ a greenhouse
hypothesis depends on the assumptions that are made about:

• other possible hypotheses (e.g. whether the possibility of sun spot-driven climate
change is considered) and
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• the degree of natural variation, or ‘‘noise’’, that might mask a climate warming
‘‘signal’’ (such as the random shifts in the means of regional temperature and
precipitation that occur on a multi-decade time scale; Slivitsky and Mathier,
1994).

These can be viewed as assumptions concerning prior distributions and likelihood
functions—assumptions that Bayesians make explicit and can be subject to robustness
analysis.

Another reply made by Bayesians is that it is demonstrably suboptimal to ignore
prior beliefs when making decisions. That is, decision-makers will, in the long run,
realize lower net benefits (utility) if they fail to combine prior beliefs and evidence
according to Bayes’ law. To just consider past direct observations of a phenomenon
when making inferences (a key aspect of the frequentist approach) ignores potentially
very valuable information based upon physical reasoning (models) and export opinion.
Krzysztofowicz (1983), for instance, shows how an intentional disregarding of such
information yields lower expected net benefits for a decision-maker who must use
weather forecasts to make decisions about resource allocations (in his case, crop
watering).

6.2.       

There is ample empirical evidence that people act contrary to the assumptions of
Bayesian analysis. They fail to update prior beliefs using Bayes’ Law, and they have
great difficulty specifying utility functions because their preferences are incoherent and
inconsistent (Kahneman et al., 1982).

A Bayesians’ response to this criticism might be ‘‘so what?’’ The point of Bayesian
analysis is to improve upon unaided human judgment, not to imitate it. Bayes’ Law is
not meant to be a psychological theory that can be used to predict behavior; rather it
is supposed to be a guide to making more rational, consistent, and defensible decisions.
Bayesian analysis is the only integrated approach to inference and decision making
that is fully consistent with a set of assumptions that have normative appeal.

6.3.       ’   

Critics of Bayesian analysis argue that ‘‘uncertainty’’ encompasses several distinct
concepts, and that subjective probabilities fail to do them justice. For instance, linguistic
imprecision is one form of uncertainty. What is ‘‘warm’’? What is a ‘‘significant’’
environmental impact? Another form of uncertainty results from ignorance. As an
example, scientists do not know whether higher CO2 levels will encourage further
accumulation of biomass (and thus sequestering of CO2) in climax forests. Imprecision
and ignorance are not the same phenomena as randomness, such as is the situation
with random hydrologic variables for which probability distributions have been es-
timated (e.g. the annual discharge for a river with 100 years of flow data). To boil
down these various dimensions of uncertainty into a single number—a subjective
probability—strikes many people as distortion and oversimplification (e.g. Tonn and
Schaffhauser, 1994).

Fuzzy-set theory has been offered as an alternative in the case where uncertainty is
due to the imprecision of language (Zadeh, 1983; Duckstein, 1994a). It represents
degrees of, for instance, ‘‘warmness’’ or ‘‘significance’’ by fuzzy set membership functions
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whose values can range from 0 (definitely not warm or not significant) to 1 (definitely
warm or significant). Although they use the same scale as probabilities, fuzzy set
membership functions are subjected to different manipulation procedures. Duckstein
(1994b) and Nachtnebel and Duckstein (1994) compare the practical implications of
fuzzy set and Bayesian approaches.

When instead ignorance is the problem, Dempster–Shafer (D–S) reasoning has been
proposed as a generalization of Bayesian analysis (e.g. Caselton and Luo, 1992). Instead
of assessing a precise point probability for each individual event, the D–S method
characterizes uncertainty by assigning, in effect, upper and lower bounds upon the
probability of an event. These bounds are called ‘‘belief functions’’. It is argued that
such bounds are a reasonable characterization of the state of knowledge: if the
probability distribution is known, then the bounds are very tight, but if there are few
data, then the bounds can be loose. As evidence is obtained, these bounds are updated.

To the criticism that subjective probabilities are an over-simplification, a conservative
Bayesian might reply as follows. Under reasonable assumptions (Section 3), it can be
proven that subjective probability is all that is needed for rational inference and decision-
making. The main requirement is that the decision-maker can respond meaningfully to
the reference lottery, which permits reduction of the many dimensions of uncertainty
into one. To develop a new, more complex calculus of uncertainty, such as fuzzy sets
or D–S reasoning, violates Occam’s razor: that a model or theory should be no more
complicated than necessary to accomplish its goal (Lindley, 1987). Moreover, if the
object is to avoid over-precision resulting from assigning a single probability, it seems
counterproductive to replace a single precise number (probability) with two such
numbers (upper and lower bounds).

Regarding the issue of linguistic imprecision, some risk analysts argue that im-
precision is the result of laziness. They assert that definition of appropriate quantitative
scales will, in most cases, get rid of the problem (Morgan and Henrion, 1990).

Another reply to the criticism that Bayesian probabilities do not adequately char-
acterize knowledge is that carefully controlled psychological studies fail to conclude
that fuzzy set or D–S representations of uncertainty are any more valid than subjective
probability. Indeed, there is some evidence to the contrary (Oden, 1977; Morgan and
Henrion, 1990).

A final reply is that non-Bayesian decision procedures are often ad hoc in nature.
For instance, fuzzy set-based decision procedures aggregate different criteria using
formula whose assumptions concerning the structure of people’s preferences are unclear
and never verified in practice.

Dowlatabadi and Morgan (1993) also criticize the ability of Bayesian probabilities
to represent people’s knowledge, although for a different reason. They argue that
Bayesian value of information studies tend to mischaracterize the value of additional
research because analysts do not anticipate the ‘‘surprises’’ that research can reveal.
They therefore recommend that stimulation approaches should be used in climate
change studies to characterize the range of uncertainty in terms of probability dis-
tributions, without engaging in Bayesian preposterior analysis. The retort of a Bayesian
advocate might be that the methodology itself is not unsound; rather, people’s prior
distributions have much too little variance, consistent with the overconfidence bias
identified by Kahneman et al. (1982). The Bayesian’s solution would be to train people
to be better calibrated assessors of subjective probabilities, which would in general
result in priors that allow for a wider range of possible outcomes.
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6.4.     

Bayesian analysis can indeed be complicated. This is especially so if multiple information
sources with correlated errors are to be considered; i.e. if evidence z is a vector whose
elements have likelihood functions that are not conditionally independent:

P(z1,z2h)≠P(z1h)P(z2h) (6)

It is generally difficult to generate joint likelihood distributions, and the resulting
complications can be involved.

Conditional dependence of likelihoods is likely to be a problem when applying
Bayesian analysis to climate change. For example, the results of different GCMs, which
could be treated as separate zi, are likely to have correlated errors because the models
use more or less similar simplifications of meteorologic and hydrologic process and
rely on many of the same data sources. Consequently, the models are likely to have
similar biases and cannot be considered to be conditionally independent sources of
evidence.

This complication has been one reason why the Bayesian approach has not been
widely used in studies attempting to detect climate warming, or to estimate the effect
of climate change on hydrologic systems (Duckstein, 1994a). It is also the major reason
why most developers of expert systems for medical and other applications do not adopt
the full Bayesian philosophy (de Mantaras, 1990). Practical expert systems have used
either approximations to Bayesian reasoning that assume, e.g. independence of distinct
sources of evidence, or have used non-Bayesian methods, such as D–S reasoning (again,
assuming independence).

One possible reply to this criticism is that a correct analysis must sometimes be
complicated because the problems themselves are complex. Rival procedures, if they
are simpler, take a risk by assuming important aspects of the problem away—meaning
that they might yield incorrect inferences or suboptimal decisions. And, in many cases,
rival procedures are actually more complex (Lindley, 1987).

Nonetheless, practitioners of the Bayesian approach admit that complexity is a
problem, and are working hard at developing practical methods for more difficult
problems (e.g. Varis and Kuikka, 1996). Simplified solution procedures based on
Bayesian concepts may prove as or more accurate and optimal than non-Bayesian
methods, which make their own simplifications while, at the same time, adding un-
necessary complications. An example of such a simplified procedure was presented in
Section 5.3. There, a simulation method was used instead of backwards dynamic
programming to identify strategies for managing the development of wetlands under
climate uncertainty.

7. Conclusions

Bayesian analysis is an attractive approach for analysing climate uncertainties for at
least three reasons.

• It provides useful outputs: inferences and recommendations for decisions that
are consistent with those inferences.

• It is based on a comprehensive and coherent framework rooted in normatively
appealing assumptions.
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• Compared to alternative paradigms, its concepts are familiar and, as the case
studies show, its methods are often practical.
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