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Abstract— Generation costs in electricity markets are non-convex functions of output; as a 

result, prices are not monotonically non-decreasing with demand. Consequently, it is difficult to 

define a single price at each node that results in a balance of supply and demand, while covering 

all generator operating costs. Therefore, most markets currently pay a two-part price at each 

node, consisting of a public marginal price and a private make-whole payment tailored to each 

generator who would otherwise incur variable costs that exceed their revenue. The expense of 

these make-whole payments, also called uplift payments, is usually allocated evenly across all 

customers. This allocation method does not take into consideration who benefits from the 

additional costs. This paper proposes an alternative algorithm for prices in a non-convex market 

and a means to allocate those prices to market participants called the Dual Pricing Algorithm. 

Basic principles of market design are used as the foundation for the new approach in an auction 

market that is revenue neutral and non-confiscatory. The general framework presents a cost 

allocation scheme that maintains the market surplus and can be further modified to consider 

equity objectives defined by the system operator. 

Index Terms—Centralized day-ahead electricity market, power system economics, non-

convex pricing, mixed integer linear programming. 
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I.  NOMENCLATURE 

A.  Sets 

𝐷 Demand (i) 
𝐺 Generators (i) 
𝑇 Time horizon (t), 𝑇$  is total run time of a generator, 𝑇% is a generator’s startup period 

B.  Generator Parameters 

𝑝'()*+ Maximum operating level for generator i in t 
𝑝'()', Minimum operating level for generator i in t 
𝑐'( Marginal operating cost for generator i in t 
𝑐'(./ Fixed costs to startup generator i in t 
𝑐'(01 Fixed costs to operate generator i in t 

C.  Generator Variables 

𝑝'( Cleared energy for generator i in t 
𝑢'( Operating status of unit generator i in t  
𝑧'( Startup variable for generator i in t 
Π' Linear profit for generator i  

D.  Demand Parameters 

𝑏'( Marginal value of demand i in t  
𝑑'()*+ Maximum demand for demand i in t 

E.  Demand Variables 

𝑑'( Cleared demand for segment for demand i in t 
Ψ' Net value received by demand i  
𝜆( Public marginal price in t  

F.  DPA Variables  

𝜆(9:;  Dual pricing algorithm LMP 
𝜆(
<=/?, Conditioning for an up/down deviation for 𝜆(9:; 
𝑢'(
=  Uplift payment (credit) to generator i in t 
𝑢'(@  Uplift charge (debit) to generator i in t 
𝑢'(
=? Uplift payment (credit) to demand i in t 
𝑢'(@? Uplift charge (debit) to demand i in t 

G.  Additional Parameters 

∗
 Optimal solution for (1) 

𝑐<=/?, Cost of an up/down deviation from 𝜆(∗ 
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II.  INTRODUCTION 

In many commodity markets, supply and demand curves provide a single market clearing 

price. In electricity markets, the non-convexities in bid and offer functions can make the 

traditional single market clearing price insufficient for generators to recover costs (e.g., fixed 

startup costs). Markets in the U.S. currently provide make-whole or uplift payments for 

generators to ensure that they will at minimum recover their operating costs. Unlike the single 

market clearing price in convex markets, U.S. electricity markets pay a two-part price: a single 

price in time and space and a discriminatory non-public uplift payment. The allocation of the 

uplift payment to customers varies by market and is often evenly distributed among market 

participants, even though not all participants contribute to the need for such a payment [1]. When 

costs are allocated too broadly they dilute the price and location signal needed to stimulate 

investment in better alternatives. The outcome of the spot market has implications for both 

bilateral and investment markets. For multiple markets to be efficient, they must signal each 

other via public or transparent information. 

 Day-ahead markets aim to find the surplus maximizing generator commitment schedule, a 

mixed integer linear program called unit commitment (UC). After the efficient dispatch has been 

determined, a pricing run determines the price of electricity at each hour and node (or bus) in the 

market. Pricing practice by most independent system operators (ISO) reruns the unit 

commitment model fixing the binary on/off decisions and relaxing the minimum operating level 

of the fast-start generators to zero. The locational marginal prices (LMPs) result from the dual 

variable or shadow price of the node balance constraint. The uplift payments are determined ex-

post based on the total losses of a generator. The LMPs are public and non-discriminatory 

information, while the uplifts are discriminatory and private, lest they divulge specific generator 
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information. This public-private split means market participants and investors only know part of 

the information necessary to enter the market, resulting in a weak investment signal.  

 In addition to transparency issues, allocation of the uplift has caused poor investment signals. 

Historical examples in the upper peninsula of Michigan and on Cape Cod show that traditional 

pricing mechanisms can hide or misallocate funds [2], [3]. A pricing mechanism should follow 

basic economic principles in order to create an efficient market. With the underlying principle of 

maximizing social welfare and building on the description in [4], the proposed dual pricing 

algorithm outlined in this paper aims to provide an alternate approach to efficient prices and cost 

allocation of make-whole payments. The algorithm is based on the dual formulation to the post-

unit commitment problem, hence it is called the Dual Pricing Algorithm. Unlike other pricing 

mechanisms, this algorithm allocates all costs, maintains market surplus, is non-confiscatory and 

revenue neutral. These principles are examined in detail in Section III. Section IV discusses 

previous literature. Section V explains the formulation the multi-period dual pricing algorithm. 

The results, discussion, and conclusions are in VI, VII, and VIII.  

III.  FUNDAMENTAL ECONOMIC PRINCIPLES  

The basic principle of market design underlying the Dual Pricing Algorithm (DPA) is 

efficiency, as measured by the maximization of market surplus. From this basic principle, three 

other guiding principles are developed below. Day-ahead unit commitment determines the 

efficient schedule and dispatch for resources in electric markets. Because of the non-convexities, 

the market clearing price is not guaranteed to cover the startup and fixed operating costs for any 

individual generator. In order to guarantee that both generation and demand are not incentivized 

to leave the market (have non-negative profit and value), we include non-confiscation as the first 

of three principles for the DPA. Non-confiscation ensures that both suppliers and demand will at 
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least break even if they are part of the efficient dispatch. The second principle is revenue 

neutrality, which implies revenue adequacy in the market. Specifically, we propose that the 

market should give out what it takes in. Third, the market should incentivize efficient 

participation and investment; this principle must hold in order to adequately build resources that 

will improve overall market efficiency. This should apply to both generation and transmission 

investments. 

Volatility and a constant (increasing) price-demand relationship are two issues that arise in 

non-convex pricing literature [5], [6]. To economists, the volatility of efficient prices is of little 

concern. Prices should reflect the relationship between supply and demand, and should include 

any volatility due to congestion, scarcity, or non-convexities. However, electric markets often 

suppress volatility in favor of ‘stable’ prices or fixing a scarcity problem with an out-of-market 

correction. A pricing mechanism with a constant price-demand relationship might not reflect the 

true costs of the system resulting in inefficiencies. Demand in many industries benefit from 

quantity discounts, or bulk purchases for a lower price. However, constant price-demand prices, 

such as convex hull pricing, can never reflect the cost savings due to higher generation 

production. This paper strives to create a pricing algorithm that reflects market efficiency, and 

therefore we do not limit the method to one which will produce stable prices or prices that 

increase with demand. The following two sections discuss discriminatory pricing and 

assumptions made in the formulation.  

A.  Uplift Allocation: Ramsey-Boiteux Pricing  

Without appropriate allocation, even distribution of uplift payments can provide misleading 

signals for investment. The DPA aims to allocate uplift judiciously, justifying the payments and 

charges with a scheme defined by Ramsey in 1927 [7]. Ramsey proposed a pricing method that 
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allocates costs of taxes or fixed costs to consumers based on their willingness to pay. This is 

often called the inverse elasticity pricing rule, and requires transparency on cost and value 

functions. Ramsey’s result shows in the presence of fixed costs, the efficient result can be 

discriminatory pricing in proportion to demand elasticity, i.e. the language of the Federal Power 

Act would define it as not unduly discriminatory since it is efficiency enhancing. 

The result was extended by Boiteux in 1956 for electricity markets, differentiating a public and 

private price [8]. Ramsey-Boiteux pricing separates the single Ramsey price into a public price 

charged to all demand and a private discriminatory price that is different for each consumer 

based on that customer’s elasticity.  Demand that is more elastic, with a lower marginal value, 

will pay less of the fixed cost. Demand that is more inelastic, with a higher marginal value, will 

pay more of the fixed cost. Described in detail in Section V, the DPA introduces uplift payments 

and charges for both demand and generation. In order to maintain non-confiscation for both 

parties, uplift is distributed according to the bids and offers placed in the market.  

B.  Assumptions  

There are several assumptions made in the model and algorithm. The first is that demand is not 

infinitely valued. We assume that demand bids their true value into the market; although it is 

possible that the bid is large (>> supply offer), it is not infinite. Many markets today allow for 

price responsive demand, though penetration is low. Second, the DPA model is intentionally 

simple in order to examine the new mechanism without introducing complications of a network. 

The addition of an electric network and other generation constraints will be added in subsequent 

analysis. 

Finally, since following the efficient dispatch along with the LMP may cause participants to 

forego additional profits, lost opportunity cost (LOC) payments or administrative penalties are 
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needed. Participants can be paid a LOC as an incentive to stay on the efficient dispatch, or they 

can be assessed a penalty for deviating from the efficient dispatch. While both penalties and 

LOCs may achieve the same outcome for generators – incentive to stay at dispatch level – LOCs 

may result in revenue inadequacy.  If there is not enough market surplus to meet the LOC 

payment, then it is revenue inadequate, meaning there is a shortfall. The market surplus will 

determine if there are funds available to pay additional operating costs.  Since the payment is not 

presently accounted for in the clearing mechanism, funding for LOC payments cannot be 

excluded from a new pricing proposal.  

Administrative penalties may be used in place of LOCs for not following dispatch instructions.  

Such penalties should be clearly stated in the tariffs, which a market participant agrees to when 

entering the market. If the transparency of the penalty is a concern, it can be calculated just as the 

LOC and sent to market participants along with dispatch instructions.  In transactions costs 

economics, contracts with rewards and penalties can result in an efficient contract.  The implicit 

assumption that is now explicit is that a unit not selected cannot self-schedule or faces a penalty 

high enough to prevent self-dispatch.  

IV.  LITERATURE REVIEW 

The literature on non-convex pricing in electricity markets can broadly be divided into 

proposals that advocate for a single market clearing price, and those that impose two- or multi-

part pricing. Markets today use multi-part pricing; a clearing price and side payments, including 

uplift payments. The difficulty in side-payments is determining how they should be allocated. 

Most schemes do not include specific allocation instructions, leading to inefficiencies such as the 

historical examples mentioned in Section II. Alternatively, a single market clearing price is one 

known by all participants in and out of the market. The price must be high enough to cover all 



 8 

costs, and will therefore be non-confiscatory. Given the difficulties in non-convex pricing, it is 

important to evaluate potential implications of new pricing methods.  

O’Neill et al. provided a foundational model for two-part pricing of electricity that supports the 

optimal schedule [9]. The locational and public price is determined from the dual variable of the 

node balance constraint in a linear model of the UC problem by fixing the binary variables. The 

second part of the price is the make-whole payment, which is the cost to cover a generator’s 

fixed costs. As mentioned in Section II, markets today use an approach similar to [9], with 

exceptions for subsets of generation, such as fast-start generators. Convex hull pricing, proposed 

in [10] and [11], minimizes total uplift by creating the convex hull of the supply curve so that 

costs are a non-decreasing convex function of load. Researchers in collaboration with the 

Midcontinent Independent System Operator have suggested solution techniques for the convex 

hull in [12], [13], and have implemented an Extended LMP (ELMP), which relaxes the binary 

between zero and one [14]. Bjørndal and Jörnsten modify the prices from [9] to create less 

volatile prices and uplift charges [6]. Using the same example modified in [10], they show 

increasing stability of average prices compared to [9]. Other models attempt to internalize uplift 

prices with zero-sum transfers between generators, including a “general uplift approach” using a 

quadratic objective in [15] and [16], and a “minimum zero-sum uplift” model that ensures all 

generators break even [5]. The method in [5] ensures profitable generators do not to increase 

their profits by transferring additional payments to unprofitable generators. Van Vyve proposes a 

non-confiscatory pricing method with separate and allocated uplift payments in [17]. Finally, 

three methods attempt to create a single price that can cover both marginal and fixed costs. In 

[18] they use the solution technique of Lagrangian Relaxation to create a Semi-Lagrangian 

Relaxation, which relaxes node balance constraint and adds it to objective with a penalty price. 
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That price is found by iterating to obtain the same objective as the original MIP and raises the 

clearing price to cover any fixed costs. In [19], they use both the primal and dual constraints to 

increase the clearing price to provide non-negative profits to all generators. Although not 

explicitly proposed in the literature, average incremental cost (AIC) pricing can be used to create 

a single market clearing price. In a single period model, the method replaces the cost function 

with the average incremental cost of the generator at its optimal dispatch point, eliminating the 

binary variable and relaxing the minimum operating level to zero. Additional literature 

addressing non-convex pricing in electricity markets that does not directly suggest a new 

methodology can be found in [20], [21]. 

In a review article, Liberopoulos and Andrianesis analytically compare many non-convex 

pricing methods to determine the relative prices, payments and profits that result from each 

method [5]; they find no method dominates with respect to pricing criteria. In a similar vein to 

their comparison table, Table I shows a comparison of many of the methods described above. 

The columns show individual methodologies and the rows describe economic principles used to 

evaluate each method. These principles are the same as those described in Section III, principles 

that are essential for any pricing mechanism: maximizing market surplus, non-confiscation, 

revenue neutrality, and maintaining the optimal dispatch. Methods where uplift payments are 

determined outside of the model do not guarantee revenue adequacy (and therefore neutrality), 

since there might not be enough surplus from demand to pay the side-payment. All methods 

account for non-confiscation of supply offers; however, not all explicitly account for non-

confiscation of demand bids. The third row indicates whether or not the demand side was 

explicitly incorporated or if non-confiscation of demand is enforced through the pricing 

mechanism by itself. Transparency is designated in the fourth row. Any mechanism which 
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includes uplift has a discriminatory and private payment; unless the payments are made public, 

the pricing scheme cannot be considered wholly transparent. The DPA can be conditioned to 

provide either a single or two-part price, making transparency dependent on conditioning. The 

penultimate row describes the uplift present in the problem, whether it is allocated internally or 

determined after the pricing run (ex-post), or zero for single part pricing. It can also be noted that 

all but the second method incorporates fixed costs in some form into the price, whereas the price 

resulting from [9] will be a unit’s marginal cost. The last row defines a mathematical category 

for the pricing problem proposed, with one category defined loosely as “LP+”. This category is 

meant to encompass math programs that can be linear, but are nontrivial to determine at each 

implementation. The remaining categories are linear (LP), convex hull (CH), mixed integer 

program (MIP), and non-linear program (NLP). The only method without a direct citation is 

AIC, or average incremental cost pricing, which was described in the previous paragraph. The 

table does not necessarily suggest a single dominant method, but can be used as an evaluation 

tool for the pricing schemes. A system operator can evaluate the most pressing concerns for the 

region: price transparency, investment compatibility, incenting staying on dispatch, etc.  

Methods for non-convex pricing must recover costs through an allocation system, which is 

often distributed evenly by levying a fixed $/MWh fee to all loads. Few of the two-part pricing 

methods explicitly describe how uplift costs will be allocated, and there is little allocation 

literature focused on electricity. A general discussion of the theory and applications of cost 

allocation to many industries can be found in a series of essays edited by Young [22]. Electric 

market literature on cost allocation is mainly focused on transmission investments, such as a 

comparison of methods for cost allocation of transmission lines [23], [24]. As discussed in 
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Section III.A, we use Ramsey-Boiteux pricing to determine cost allocation through demand 

elasticity. 

TABLE I  
COMPARISON OF NON-CONVEX PRICING METHODS  

 Two-Part Pricing Single Price 
 Schweppe 

[25] 
O’Neill 

[9] 
Gribik 
[10], 
[11] 

ELMP 
[14] 

Bjørndal 
[6] 

Galiana 
[15], 
[16] 

DPA 
[4] 

AIC Araoz 
[18] 

Ruiz 
[19] 

Maximize market 
surplus  

Y Y Y Y Y Y Y Y Y N 

Revenue neutral Y N N N N Y Y Y Y Y 
Includes demand 
side  

Y N N N N Y Y Y Y Y 

Maintain optimal 
dispatch 

Y Y Y Y Y Y Y Y Y N 

Transparency Y N N N N N Y/N Y Y Y 
Uplifts Ex-post Ex-post Ex-post Ex-post Ex-post Internal Internal None None None 
Pricing problem 
type 

LP LP CH LP LP+ NLP LP LP LP+ MIP* 

* Combination scheduling and pricing run, linearized MINLP; all other methods are post-UC pricing runs  
 

V.  DUAL PRICING ALGORITHM 

The single-period model is described in minimal detail in [4]. Below we explain the derivation 

of the DPA constraints using a multi-period model, showing the canonical unit commitment 

problem and dual for reference.  

A.  Unit Commitment Model and Dual  

The formulation in (1) is the canonical post-unit commitment problem. The unit commitment 

problem replaces (1f) and (1g) with 𝑢'(, 𝑧'( ∈ {0,1} and is mixed integer program, whereas (1) 

is a linear program.  

max 𝑏'(𝑑'( − 𝑐'(𝑝'( + 𝑐'(MN𝑢'( + 𝑐'OP𝑧'('∈Q'∈9(∈R   (1a) 

𝑑'( − 𝑝'('∈Q'∈9 = 0  ∀𝑡 ∈ 𝑇 𝜆( (1b) 
𝑝')',𝑢'( ≤ 𝑝'( ≤ 𝑝')*+𝑢'( ∀𝑖 ∈ 𝐺,	𝑡 ∈ 𝑇 𝛽')*+, 𝛽')', (1c) 

𝑢'( − 𝑢',(Z% ≤ 𝑧'( ∀𝑖 ∈ 𝐺,	𝑡 ∈ 𝑇 𝛿'(OP (1d) 
0 ≤ 𝑑'( ≤ 𝑑')*+ ∀𝑖 ∈ 𝐷, 𝑡 ∈ 𝑇 𝛼'()*+ (1e) 
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𝑢'( = 𝑢'(∗  ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇 𝛿'(<  (1f) 
𝑧'( = 𝑧'(∗  ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇 𝛿'(]  (1g) 

The dual formulation is: 

min 𝑑')*+𝛼'()*+ − 𝑢'(∗ 𝛿'(< + 𝑧'(∗ 𝛿'(]'∈Q'∈9(∈R 	  (2a) 

𝜆( + 𝛼'()*+ ≥ 𝑏'(  ∀𝑖 ∈ 𝐷,	𝑡 ∈ 𝑇 (2b) 
−𝜆( + 𝛽'()*+ − 𝛽'()', ≥ −𝑐'( ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇 (2c) 

𝛿'(OP − 𝛿',(a%OP + 𝛿'(< − 𝑝')*+𝛽'()*+ + 𝑝')',𝛽'()', = −𝑐'(MN  ∀𝑖 ∈ 𝐺,	𝑡 ∈ 𝑇 (2d) 
𝛿'(] − 𝛿'(OP = −𝑐'(OP ∀𝑖 ∈ 𝐺,	𝑡 ∈ 𝑇 (2e) 

𝛼'()*+, 𝛽'()*+, 𝛽'()', ≥ 0 ∀𝑖 ∈ 𝐷U𝐺,𝑡 ∈ 𝑇 (2f) 

Using the dual formulation, we can formulate the dual pricing algorithm using the economic 

principles discussed in Section II. From strong duality of the primal and dual linear program in 

(1) and (2) respectively, we claim,  

𝑏'(𝑑'( − 𝑐'(𝑝'( + 𝑐'(MN𝑢'( + 𝑐'OP𝑧'('∈Q'∈9(∈R   
= 𝑑')*+𝛼'()*+ − 𝑢'(∗ 𝛿'(< + 𝑧'(∗ 𝛿'(]'∈Q'∈9(∈R . 

(2g) 

For generators, the non-confiscation conditions for supply in (2c) and (2d) must be modified to 

reflect the startup decision. For 𝑖 ∈ 𝐺, from (2c) and complementary slackness, 

−𝜆(∗ + 𝛽'()*+∗ − 𝛽'()',∗ + 𝑐'( 𝑝'(∗ = 0	 𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇 (2h) 

If 𝑢'∗ = 1, then from (1c) and complementary slackness,  

𝑝'(∗ − 𝑝')*+ 𝛽'()*+∗ = 0	 𝑖 ∈ 𝐺|𝑢'∗ = 1, 𝑡 ∈ 𝑇 (2i) 
𝑝'(∗ − 𝑝')', 𝛽'()',∗ = 0	 𝑖 ∈ 𝐺|𝑢'∗ = 1, 𝑡 ∈ 𝑇 (2j) 

Substituting this condition with (2i) and (2j), a one period model (excluding 𝛿'(OP) produces the 

classic economic result that profits are revenue less costs, or  

𝛿'(<∗ = 𝑝'(∗ 𝜆(∗ − 𝑐'( − 𝑐'(MN  𝑖 ∈ 𝐺, 𝑇 ∈ {1}. (2k) 

That is, 𝛿'(<∗ is the LMP payment less the marginal and fixed costs incurred.  Unfortunately, there 

is no guarantee that 𝛿'(<∗ is non-negative, that is, non-confiscatory. In the multi-period case, we 

sum together the 𝛿'(<∗ constraints in (2d) for all periods to create (2l) and reorder (2e) to obtain 

constraint (2m). The sum of (2l) and (2m) then define a total linear profit function for the 

operating period. Both (2i) and (2j) are again substituted into (2d), producing a total profit 
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function for a multi-period model in (2n), where 𝑇% refers to the period in which the generator 

starts up, 𝑇$ refers to the total run period (all startups to shutdowns), 𝑇 as a subscript refers to 

any period in the total time horizon, and 𝛿'Rc
<∗  sums all 𝛿'(<∗ for a generator’s total run time, i.e., 

𝛿'Rc
<∗ = 𝛿'(<∗(∈Rc .   

𝛿'Rc
<∗ = 𝑝'(∗ 𝜆(∗ − 𝑐'( − 𝑐'(MN

(∈Rc
− 𝛿'Rd

OP 𝑖 ∈ 𝐺 (2l) 

𝛿'Rd
]∗ = 𝛿'Rd

OP − 𝑐'OP 𝑖 ∈ 𝐺 (2m) 

                              Π' = 𝛿'Rc
<∗ + 𝛿'Rd

]∗  

= 𝑝'(∗ 𝜆(∗ − 𝑐'( − 𝑐'(MN
(∈Rc

− 𝑐'OP 

𝑖 ∈ 𝐺 (2n) 

Similar to the single period model, (2n) provides the classic economic result that the total profit 

under LMP pricing for generation is the payment received less the variable and fixed costs.  

Due to degeneracy of the upper and lower bounds of (1c) in the primal problem when 𝑢'( = 0, 

we can apply an ε-perturbation method in order to determine the value of 𝛿'(<∗ at this solution. 

From (2c) and the resulting analysis, we have  

𝛽'()*+∗ ≥ 𝜆(∗ − 𝑐'(	 𝑖 ∈ 𝐺	|𝑢'R∗ = 0, 𝑡 ∈ 𝑇.	 (2o) 

Substituting into the startup condition of (2d), and using the same modifications as described in 

(2n), we obtain 

Π' = 𝑝'()*+ 𝜆(∗ − 𝑐'( − 𝑐'(MN
(∈Rc

− 𝑐'OP	
𝑖 ∈ 𝐺	 (2p) 

We have the following four potential outcomes for 𝑢'(∗  that demonstrate the need for make-whole 

payment and penalties. 

If 𝑢'R∗ = 1 and 𝛿'Rc
<∗ + 𝛿'Rd

]∗ < 0, then a make-whole payment, − 𝛿'Rc
<∗ + 𝛿'Rd

]∗ , in addition to the 

LMP payment, which does not cover the offered cost, is needed to avoid confiscation, as we 

demonstrate below.  
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If 𝑢'R∗ = 1 and 𝛿'Rc
<∗ + 𝛿'Rd

]∗ ≥ 0, then a make-whole payment is not needed to avoid 

confiscation. The generator will either profit or break even from its LMP payment. 

If 𝑢'R∗ = 0 and 𝛿'Rc
<∗ + 𝛿'Rd

]∗ > 0, then the LMP and a penalty or an LOC payment is needed to 

avoid the wrong price signal and ‘decentralize’ the market.  The LMP with penalty provides 

enough disincentive to price-chasing and self-scheduling behavior. Without sufficiently large 

penalties, the generator would be indifferent to self-dispatching. 

If 𝑢'R∗ = 0 and 𝛿'Rc
<∗ + 𝛿'Rd

]∗ ≤ 0, then the LMP sends the correct price signal. The generator 

would not profit from an LMP payment. 

A two-part settlement (for example, LMP and make-whole payment) or a three-part settlement 

(for example, LMP, make-whole payment and penalties) are options for non-convex market 

clearing. We will assume here that the penalty for self-scheduling is high enough to prevent 

inefficient dispatch and the dispatch signal is a quantity signal.  

Without make-whole payments, the results from (1) can be confiscatory.  We add constraints 

to the equilibrium conditions on the market-clearing quantity to make the reallocation non-

confiscatory. Therefore, the dual pricing algorithm enables a reallocation of profits for make-

whole payments without altering the total market surplus, while maintaining revenue neutrality. 

Consequently the 𝜆(hij is no longer necessarily the LMP, but generally equals the average 

incremental cost, which is a better price signal. 

The DPA scheme guarantees non-confiscation of demand bids. We substitute 𝑢'(
=? − 𝑢'(@?  for 

𝛼'()*+∗ and 𝜆(9:; for 𝜆(∗ in the complementary slackness condition from (2b), i.e.  

𝑑'(∗ 𝑏'( − 𝜆(9:; + 𝑢'(
=? − 𝑢'(@? = 0 ∀𝑖 ∈ 𝐷 (2q) 

This relationship is then summed over the commitment period to account for all payments and 

charges. The net value, 𝑑'(∗ 𝑏'( − 𝑑'(∗ 𝜆(∗, for 𝑑'(∗ > 0 can be defined as 
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Ψ' = 𝑑'(∗ 𝑏'( − 𝜆(9:; + 𝑢'(
=? − 𝑢'(@?

(∈Rc
 ∀𝑖 ∈ 𝐷 (2r) 

The net value must be nonnegative to ensure non-confiscation, enforced by  

            Ψ' ≥ 0                       ∀𝑖 ∈ 𝐷   (2s) 

Since the market surplus is positive, the uplift payments and charges simply reallocate market 

surplus.  Uplift payments and charges are participant specific, avoiding confiscation of any one 

participant. Without discriminatory uplift pricing, make-whole payments recovered uniformly 

across demand could result in confiscation. On the contrary, it is also unduly discriminatory to 

allocate uplift costs not based on cost causation principles. 

For demand bids 𝑖 ∈ 𝐷 not selected (i.e., 𝑑'R∗ = 0, 𝛼'()*+∗ = 0), the net profit is zero, Ψ' = 0.  

This is true for any feasible solution to the non-convex market model in (1).  Substituting 𝜆(9:; 

for 𝜆(∗ in (2b), we obtain  

𝜆(9:; ≥ 𝑏'(	 𝑖 ∈ 𝐷	|𝑑'∗ = 0, 𝑡 ∈ 𝑇.	 (2t) 

This implies new 𝜆(9:; should not low enough to entice an out-of-market bid to consume. In 

other words, unserved load will prefer not to take recourse actions that will lower the market 

surplus. 

The DPA scheme guarantees non-confiscation of generator supply offers. We demonstrate 

above that the profit as defined in (2k) and (2n) can be negative.  To ensure non-confiscation in 

the DPA, we introduce an uplift payment, 𝑢'(
= , and uplift charge, 𝑢'(@ , that can be impose for each 

market participant. We can redefine the profit condition in (2n) with non-confiscation of the 

profits Π'  as 

𝛱' = 𝑝'(∗ 𝜆(∗ − 𝑐'( + 𝑢'(
= − 𝑢'(@ − 𝑐'MN

(∈Rc
− 𝑐'(d

OP	 𝑖 ∈ 𝐺	 (2u) 
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where we substitute 𝜆(9:; for 𝜆(∗ and introduce the uplift quantity 𝑝'(∗ 𝑢'(
= − 𝑢'(@  in each period. 

For supply, the profit or non-confiscation condition now is 

𝛱' ≥ 0	 𝑖 ∈ 𝐺	|𝑝'∗ > 0	 (2v) 

Since the DPA scheme is run post unit commitment, the criteria to maintain market surplus is 

already satisfied for the optimal solution to (𝑝'(∗ , 𝑑'(∗ , 𝑢'(∗ , 𝑧'(∗ ); therefore constraint (2w) is 

enforced but redundant in the formulation.  

𝛱'
'∈Q

+ Ψ'
'∈9

= 𝑀𝑆∗	 	 (2w) 

To ensure revenue adequacy, we balance the uplift payments and uplift charges through the 

following revenue neutrality condition  

𝑑'∗ 𝑢'
= − 𝑢'@'∈9n + 𝑝'∗ 𝑢'

= − 𝑢'@'∈Qn(∈R = 0 		 (2x) 

B.  Conditioning  

There are many possible prices that can result from the DPA. The DPA method allows the 

price to be adjusted based on the preference of the operator and market participants. Specific 

allocation criteria can be embedded in the model and produce conditioning such as perceived 

equity or increased transparency. If the region wishes to keep prices close to the dispatch LMP, 

the DPA maintain close prices and additionally allocate the uplift. If the market prefers a single 

market clearing price with no uplift payments, the algorithm will determine a single price. By 

providing tuning capabilities, we acknowledge that factors outside of the mathematical 

formulation or economic theory can drive decision making.  

In order to condition the price, many small adjustments can be made depending on preference.  

We offer two options to ‘tune’ the price.  Both condition the LMP by keeping the new price, 

𝜆(9:;, close to the dispatch LMP,	𝜆(∗, with penalties for deviations.  To minimize the relative 
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deviation, we constructed (3c). The second option in (2y) minimizes the absolute deviation 

across time.  

𝜆(hij − 𝜆(∗ − 𝜆(
<= + 𝜆(?, = 0 ∀𝑡 ∈ 𝑇  (2y) 

    If there was concern about price spikes, we also may want to condition the uplift payments.  

Many possibilities can be considered. One possibility is to limit the maximum allowable 

payment and charge by the constraints listed in (2z).  This may result in insufficient cost 

allocation. 

𝑢'(
= ≤ 𝑢'

=opq, 𝑢'(@ ≤ 𝑢'@opq ∀𝑖 ∈ 𝐺a, 𝑡 ∈ 𝑇 
(2z) 

 𝑢'(
=? ≤ 𝑢'

=?opq, 𝑢'(@? ≤ 𝑢'@?opq ∀𝑖 ∈ 𝐷a, 𝑡 ∈ 𝑇 

With potentially higher prices, higher penalties can be calculated based on 𝜆(hij. With 

sufficiently large penalties of at least 𝑝'(opq 𝜆(∗ − 𝑐'( − 𝑐'(MN − 𝑐'OP(∈R , the generator becomes 

indifferent to self-dispatching. Just like a lost opportunity cost payment, these penalties can be 

sent along with the price and quantity dispatch signal. 

C.  Dual Pricing Algorithm (DPA) Formulation 

We now formulate the DPA model in (3) using the modifications of the dual problem 

described in Section V.B.   

min 𝑑'(∗ 𝑢'(
=? + 𝑝'(∗ 𝑢'(

=

'∈Qn'∈9n
+ 𝑐<=𝜆(

<= + 𝑐?,𝜆(?,

(∈R

 (3a) 

𝑑'(∗ 𝑢'(
= − 𝑢'(@

'∈9n
+ 𝑝'(∗ 𝑢'(

= − 𝑢'(@

'∈Qn(∈R

= 0 (3b) 

𝜆(9:; − 𝜆(∗	 /𝜆(∗ − 𝜆(
<= + 𝜆(?, = 0  (3c) 

Ψ' = 𝑑'(∗ 𝑏'( − 𝜆(9:; + 𝑢'(
=? − 𝑢'(@?

(∈Rc
 ∀𝑖 ∈ 𝐷a (3d) 

Π' = 𝑝'(∗ 𝜆(9:; − 𝑐'( + 𝑢'(
= − 𝑢'(@ − 𝑢'(∗ 𝑐'(MN − 𝑧'Rd

∗ 𝑐'OP
(∈Rc

 ∀𝑖 ∈ 𝐺a (3e) 

𝜆(9:; ≥ 𝑏'( ∀𝑖 ∈ 𝐷r, 𝑡 ∈ 𝑇 (3f) 
Ψ' ≥ 0 ∀𝑖 ∈ 𝐷a (3g) 
𝛱' ≥ 0  ∀𝑖 ∈ 𝐺a (3h) 

𝑢'(
= , 𝑢'(@ , 𝑢'(

=?, 𝑢'(@? ≥ 0 ∀𝑖 ∈ 𝐷⋃𝐺, 𝑡 ∈ 𝑇 (3i) 
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Theorem 1. If there exists an optimal solution to the primal problem in (1), that is, the maximize 

market surplus problem, then it is a feasible solution to DPA. 

Proof.  A feasible solution to (1) is obtained with 𝑑'(∗ = 𝑝'(∗ = 𝑧'(∗ = 0 and 𝑀𝑆 = 0. From the 

optimization of (1) and summing together (3b), (3d), and (3e), we have 𝑀𝑆∗ = Π''∈Q +

Ψ' ≥ 0'∈9 . 

From complementary slackness of (1c) with the binary fixed at its optimal value, there are three 

possible cases for the values of 𝑝'(∗ , 𝛽'()*+∗, and 𝛽'()',∗:  

(1) if 𝑝'(∗ = 𝑝')*+, then 𝛽'()*+∗ > 0 and 𝛽'()',∗ = 0; 

(2) if 𝑝'(∗ = 𝑝')',, then 𝛽'()*+∗ = 0 and 𝛽'()',∗ > 0; 

(3) if 𝑝'(∗ ∈ 𝑝')',, 𝑝')*+ , then 𝛽'()*+∗ = 𝛽'()',∗ = 0. 

Therefore 𝑝'(∗ 𝛽'()*+∗ − 𝛽'()',∗ = 𝑝'()*+𝛽'()*+∗ − 𝑝'()',𝛽'()',∗. From complementary slackness of 

(2c), 𝑝'(∗ 𝜆(∗ − 𝑐'( = 𝑝'(∗ 𝛽'()*+∗ − 𝛽'()',∗ . As shown in (2n), 𝛿'Rc
<∗ + 𝛿'Rd

]∗  is the linear surplus of 

generator 𝑖 ∈ 𝐺. From complementary slackness of (2b), 𝑑'(∗ 𝑏'( − 𝜆(∗ = 𝑑'(∗ 𝛼'()*+∗, and 

𝑑'(∗ 𝛼'()*+∗ ≥ 0 since 𝑑'(∗  and 𝛼'()*+∗ are both nonnegative. 

We partition 𝑖 ∈ 𝐺 into three sets 𝐺t = 𝑖 ∈ 𝐺: 𝛿'Rc
<∗ + 𝛿'Rd

]∗ ≥ 0	and	𝑢'Rc
∗ = 1 , 𝐺tt =

𝑖 ∈ 𝐺: 𝛿'Rc
<∗ + 𝛿'Rd

]∗ < 0	and	𝑢'Rc
∗ = 1 , and 𝐺ttt = 𝑖 ∈ 𝐺:	𝑢'(∗ = 0 . 𝛱' = 0	for all 𝑖 ∈ 𝐺ttt. 

𝑀𝑆∗ = 𝛱''∈Q + 𝛹''∈9   

    = 𝛱''∈Qt + 𝛱''∈Qtt + 𝛹''∈9 ≥ 0  

    = 𝛱''∈Qt + 𝛹''∈9 ≥ − 𝛱''∈Qtt   

Let 𝜆(hij = 𝜆(∗ and use the previously mentioned complementary slackness conditions to see that  

𝛱' = 𝛿'Rc
<∗ + 𝛿'Rd

]∗ + 𝑝'(∗ 𝑢'(
= − 𝑝'(∗ 𝑢'(@(∈R  and 𝛹' = 	𝑑'(∗ 𝛼'()*+∗ + 𝑑'(∗ 𝑢'(

=? − 𝑑'(∗ 𝑢'(@?(∈R . 

Let 𝑢'(
= = 𝑢'(

=? = 0 on the LHS, 𝑢'(@ = 0 on the RHS, and substituting for 𝛱' and 𝛹': 



 19 

𝛿'Rc
<∗ + 𝛿'Rd

]∗ − 𝑝'(∗ 𝑢'(@(∈R'∈Qx + 𝑑'(∗ 𝛼'()*+∗ − 𝑑'(∗ 𝑢'(@?'∈9,R   

≥ − 𝛿'Rc
<∗ + 𝛿'Rd

]∗ + 𝑝'(∗ 𝑢'(
=

(∈R'∈Qtt   

Then we can select payments and charges. For all 𝑖 ∈ 𝐺tt, let 𝑝'(∗ 𝑢'(
=

(∈R = − 𝛿'Rc
<∗ + 𝛿'Rd

]∗ > 0. 

This satisfies (3f) for 𝑖 ∈ 𝐺tt. For all 𝑖 ∈ 𝐺t select 𝑢'(@  and 𝑢'(@? such that,  

𝑝'∗𝑢'@'∈Qt + 𝑑'∗𝑢'@?'∈9(∈R = 𝑝'(∗ 𝑢'(
=

'∈Qxx(∈R ,  

𝑝'(∗ 𝑢'(@(∈R ≤ 𝛿'Rc
<∗ + 𝛿'Rd

]∗  for 𝑖 ∈ 𝐺t, and  

𝑑'(∗ 𝑢'(@?(∈R ≤ 𝑑'(∗ 𝛼'()*+(∈R  for 𝑖 ∈ 𝐷.  

The selection criteria are equivalent to (3b), (3g) and (3h).  

From strong duality of (1) and (2), we know that 𝑀𝑆∗ = 𝛿'Rc
<∗ + 𝛿'Rd

]∗
'∈Q +

𝑑'(∗ 𝛼'()*+∗'∈9,(∈R ≥ 0, and we also have 𝛿'Rc
<∗ + 𝛿'Rd

]∗
'∈Qx + 𝑑'(∗ 𝛼'()*+∗'∈9,(∈R ≥

− 𝛿'Rc
<∗ + 𝛿'Rd

]∗
'∈Qtt . Therefore, the generators 𝑖 ∈ 𝐺t and demands 𝑖 ∈ 𝐷 have enough linear 

surplus to satisfy (3g) and (3h). Constraints (3b), (3d), (3e), and (3i) are satisfied by the 

construction. 

For 𝑑'R∗ = 0, complementary slackness requires	𝜆(∗ ≥ 𝑏'(, so (3f) is satisfied and the DPA has a 

feasible solution. ∎	

VI.  RESULTS 

We explore several examples to illustrate the capability and flexibility of the DPA. The first 

two examples show a one period model, demonstrating a payment and charge between demand 

and a comparison to popular examples in the literature. The next examples are multi-period 

models.   
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A.  Single bus, single time period examples 

One single period example can be found in [4], showing the resulting price increases just high 

enough to cover the fixed costs of both generators with an uplift payment and charge levied on 

the customers. Using data from a MISO sample problem [27], we can look at a range of demand 

levels for a single period problem. The generator costs are in Table II, and the single demand has 

a value of $100/MWh. Fig. 1 shows the clearing price for three different pricing methods for 

demand from 0 MW – 350 MW. The dispatch LMP (𝜆∗) spikes when moving from the cheaper 

generators to the more expensive (A to C), since it must turn on the most expensive generator 

(D) to match demand. The ELMP is monotonically non-decreasing with demand, forming steps 

when the expensive generator is needed. Similar to the dispatch LMP, the DPA price also spikes 

when the expensive generator is dispatched. The prices then decrease, showing quantity 

discounts as the generator reaches it maximum. There are no uplift payments needed with the 

DPA, while there are payments required from the LMP and ELMP.  

TABLE II 
GENERATOR COSTS 

Gen Marginal cost ($/MWh) Startup cost ($) Pmin (MW) Pmax (MW) 
A 50 500 20 100 
B 52 500 20 100 
C 55 500 20 100 
D 65 40 5 50 

 

 
Fig. 1 Increasing demand with three different pricing methods 

 

40

45

50

55

60

65

70

75

0 50 100 150 200 250 300 350

LM
P 

($
/M

W
h)

Demand 1 (MW)

LMP

ELMP

DPA LMP



 21 

We simulated other small test examples with similar results. A benchmark example created by 

Scarf in [28] has been used to demonstrate the versatility of pricing methods. The DPA is 

compared with a traditional LMP and uplift in Fig. 2. The figure shows the changes in price as 

demand quantity increases. The prices and resulting uplift payments are shown with blue solid 

and dashed lines, while the DPA prices and uplift are shown in black and orange. There are no 

uplift payments made at any demand level, and prices oscillate between $6/MWh and $7/MWh, 

the latter being the price of the generator with a high marginal cost and no startup cost. 

 
Fig. 2 Prices resulting from the modified Scarf example compared with the traditional method of 
determining prices and uplift payments 
 
B.  Multi-period Examples 

The single period examples demonstrate the prices across varying demand levels, while the 

following multi-period examples focus on the prices and payments across time. The generator 

characteristics are found in Table III, and the demand value and quantity, and reserve data are 

found in Table IV.  

TABLE III 
GENERATOR DATA 

Gen 
Marginal cost 

($/MWh) 
Startup cost 

($) 
No Load cost 

($/h) 
Pmin 

(MW) 
Pmax 

(MW) 
A 30 900 100 200 1200 
B 50 600 100 50 80 

TABLE IV 
HOURLY DATA 

 1 2 3 4 5 6 7 8 
Demand 1, Value 

$200/MWh 510 528 546 573 582 588 594 564 

0
1
2
3
4
5
6
7
8

3 23 43 63 83 103 123 143
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Demand 2, Value 
$80/MWh 340 352 364 382 388 392 396 376 

Reserve (MW) 85 20 20 20 20 20 20 20 
 

The resulting prices are in Table V, showing the difference between the two types of DPA 

conditioning and the traditional LMP, 𝜆(∗. In the first conditioned DPA price, 𝜆(hij, the penalties 

are imposed in every period, while 𝜆(hijt imposes a single penalty on all periods. The impact is 

uniform prices for all periods compared to a higher price in a single period. Another notable 

impact is on uplift payments. The dispatch LMP imposes a $1700 uplift payment on the system, 

while both conditioned DPA prices incur no uplift. This is an example where a the DPA 

produces a single market clearing price, and there is no need to follow uplift allocation 

guidelines.  

TABLE V 
 PRICES & PAYMENTS 

 1 2 3 4 5 6 7 8 Uplift 
($) 

𝜆(∗ 30 30 30 30 30 30 30 30 1700 
𝜆(hij 30.23 30.23 30.23 30.23 30.23 30.23 30.23 30.23 0 
𝜆(hijt 30 30 30 30 30 30 31.72 30 0 

 

    1)  Increased demand 

The following example uses the same generator data shown in Table III, increased demand 

shown in Table VI, and higher values of 𝑐<= and 𝑐?,. The resulting prices from the DPA match 

the dispatch LMP, as shown in Table VII. Necessarily, the total uplift payments are the same; 

however, the DPA allocates the uplift to the last period with a payment of $46/MWh to 

Generator B provided by a $4/MWh charge to Demand 2. If maintaining prices similar to the 

dispatch LMP is preferable to a system operator, this example shows conditioning the penalty 

factor can produce DPA prices that are identical to dispatch prices while allocating dispatch to 

particular participants.  
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TABLE VI 
HOURLY DATA 

 1 2 3 4 5 6 7 8 

Demand 1, Value 
$200/MWh 600 608 626 653 662 668 674 644 

Demand 2, Value 
$80/MWh 510 528 546 573 582 588 594 564 

TABLE VII 
 PRICES & PAYMENTS 

 1 2 3 4 5 6 7 8 Uplift 
($) 

𝜆(∗ 30 30 30 30 30 50 80 30 2300 
𝜆(hij 30 30 30 30 30 50 80 30* 2300 

 *uplift allocated to Gen. B and Dem. 2 
  

    2)  RTS test case 

Finally, we examine the generation from a modified single zone RTS96 test case [29]. The 

generator characteristics and load data are found in Table VIII and Fig. 2. All generators were 

located at a single node with 24 hourly simulations. The resulting generator profits and demand 

value are in Table IX. As expected, the total social welfare remains the same between the two 

simulations. In order to reduce uplift and provide proper incentives for investment, there is a 

transfer of surplus between consumers and producers. With zero uplift, the price provides a 

transparent indicator for investment; it allows investors to evaluate if their unit could enter the 

dispatch. While the only guaranteed method of analysis for market entry would involve 

rerunning the dispatch with the potential unit, the transparency of the DPA price sends a more 

efficient signal than a marginal pricing method alone.  

TABLE VIII 
GENERATOR DATA 

Gen Quantity Pmax  
(MW) 

Pmin  
(MW) 

cstartup 
($) 

cmarginal 
($/MWh) 

cnoload  
($/h) 

Oil/CT 4 20 15.8 76 163 1139 
Coal/Steam 4 76 15.2 1061 19.64 131 
Oil/Steam 3 100 25 4754 75.64 840 
Oil/Steam 3 197 68.95 6510 74.75 1160 
Oil/Steam 5 12 2.4 571 94.74 73 

Coal/Steam 2 155 54.25 1696 15.46 253 
Nuclear 2 400 100 2400 5.46 215 
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Fig. 3 Hourly demand for the modified RTS example  

TABLE IX 
SURPLUS & PAYMENTS 

 Traditional LMP DPA 
Generator Profits $2,244,014 $4,765,784 
Consumer Value $5,233,475 $2,711,704 
Uplift $10,768 $0 

 

  
Fig. 4 Hourly price comparison 

VII.  DISCUSSION 

The examples in the previous section show the prices and costs that can result from the DPA. 

While not guaranteed to always occur, there are several common trends in the examples. DPA 

prices tend to be higher than the traditional LMP and the ELMP. This is not surprising due to the 

incorporation of fixed costs, and low or no uplift payments. Higher prices should not be 

perceived as positive or negative; however, when there are no private side payments, there is 

increased transparency in the market. Additionally, compared to pricing mechanisms that are 

non-decreasing (like convex hull), prices are more volatile. Due to fixed costs, DPA prices are 

closer to the average incremental cost of delivering power, which is a decreasing function with 

respect to demand for each generator. As discussed in Section III, volatility should not be 

considered an objectionable trait, rather one that can reveal the true value of producing power.  
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Pricing mechanisms should produce efficient prices, ones that support the optimal schedule. In 

combination with deviation penalties, the DPA prices support the optimal schedule and recover 

all parts of both generation bids and demand offers. The prices also signal points of entry into the 

market. With low or no uplift payments, new entrants can better evaluate if their incremental 

costs are below the clearing price. While this is not a guaranteed point of entry, it provides more 

market information than the traditional LMP. When side payments are needed, the algorithm 

allocates them to both supply and demand in particular periods. The endogenous allocation 

ensures that demand does not pay more than its offer and supply is made whole. In a one-sided 

market (where demand in inelastic), demand will pay any price and revenue adequacy is 

guaranteed. Even in markets today there are elastic bids, a number that is likely to increase as 

markets change in response to the shifting resource mix. 

VIII.  CONCLUSION 

Spot prices should provide proper incentives for both operations and investment. Electricity is 

unlike other commodities due to the fixed costs necessarily incurred during operation and the 

need to physically balance supply and demand. Due to these non-convexities, it is difficult to 

determine the ‘right’ price for electricity. Methods suggested in the literature often consider only 

one aspect of pricing, or are contingent on inelastic demand. In this paper we propose the Dual 

Pricing Algorithm, which brings together many principles surrounding pricing mechanisms: 

maximizing market surplus, revenue neutrality, non-confiscation, transparency, signals for 

market entry, and side payment allocation. The DPA is an ex post pricing scheme that upholds 

these principles and can be adapted to particular system operator needs. It is a linear program, 

making it computationally efficient, and can be incorporated into current ISO software. The 

approach is applied to multiple time horizons and can easily include additional operational 
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constraints, e.g., reserve requirements.  Further work can be done to incorporate these constraints 

and evaluate the algorithm on a large network model. 
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