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Strategic Gaming Analysis for Electric Power
Systems: An MPEC Approach

Benjamin F. Hobbs, Member, IEEE, Carolyn B. Metzler, and Jong-Shi Pang

Abstract—Transmission constraints and market concentration
may prevent power markets from being fully competitive, allowing
firms to exercise market power and raise prices above marginal
cost. We present a strategic gaming model for analyzing such
markets; it represents an oligopolistic market economy consisting
of several dominant firms in an electric power network. Each
generating firm submits bids to an ISO, choosing its bids to
maximize profits subject to anticipated reactions by rival firms.
The single-firm model is formulated as a Mathematical Program
with Equilibrium Constraints (MPEC) with a parameter-depen-
dent spatial price equilibrium problem as the inner problem.
Power flows and pricing strategies are constrained by the ISO’s
linearized DC optimal power flow (OPF) model. A penalty interior
point algorithm is used to compute a local optimal solution of
the MPEC. Numerical examples based on a 30 bus network are
presented, including multi-firm Nash equilibria in which each
player solves an MPEC of the single-firm type.

Index Terms—Game theory, operating economics, deregulation,
algorithms, market models.

I. INTRODUCTION

I N THE next few years, most electric power markets in the
United States will be opened to competition. Competition

will then displace government regulation as the major factor in
determining prices [17]. But if competition is weak, it may fail
to force prices down to marginal cost. For instance, restructuring
in England and Wales allowed two large power companies to
control 79% of the market in 1990. Several analyzes have pre-
sented evidence that the two companies have been able to use
their market power to maintain prices above marginal cost [23],
[33], [34].

Examples of important questions being asked about the price
effects of restructuring include the following (e.g. [23]). What
will happen to prices? How will they be affected by market
power? Do the peculiarities of electric networks offer opportuni-
ties to exercise market power that are absent in other commodity
markets? How are these answers affected by particular market
characteristics and what degree of market power results in sig-
nificant market inefficiencies and inequities that should be mit-
igated? This paper presents a numerical approach for projecting
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the short-run price implications of market power. Long run ef-
fects (firm entry and exit) are not addressed, nor is the question
of what threshold is appropriate for determining whether market
power requires mitigation.

The industrial organization literature is rich with theoretical
and empirical examples that show that peculiarities of markets
can make a large difference in market power [26]. In power
markets, relevant considerations include the system’s physical
characteristics (e.g., transmission bottlenecks and their loca-
tion relative to generation capacity and demand), auction de-
sign (such as multipart bids as in the UK versus single price
auctions as in the California PX-Wilson auction), transmission
pricing, the ability to bypass auctions via bilateral transactions,
whether firms are vertically integrated, and market power miti-
gation (such as “must-run” provisions for California generators
that are needed for voltage support).

There exist at least four distinct approaches to answering
such questions. First areex postanalyzes of existing mar-
kets, such as attempts to empirically determine whether UK
prices have diverged from marginal cost (e.g., [34]). The
other approaches, market concentration analyzes, laboratory
experiments, and modeling, are used inex antestudies of
proposed market structures. Concentration analyzes, such as
the Herfindahl Index used by the U.S. Department of Justice
for merger analyzes, do not address prices directly, but instead
consider whether one or a few firms have a dominant share
of the market. Lab experiments [4], [30], [32] can investigate
subtle interactions of market structure and participant behavior,
especially in dynamic (repeated auction) settings; however,
they often involve naive (student) subjects, and their expense
makes replication, sensitivity analysis, and generalization to
other situations difficult. Using artificial adaptation agents [20],
[28] instead of live subjects in experiments could address these
objections. The final approach, modeling, calculates (usually
static) price equilibria, and is more easily generalized and
analyzed for sensitivity.

Many modeling studies of market power in electricity
markets have already been undertaken. The literature can be
classified in terms of the market mechanisms that are simu-
lated, how the electric network is modeled, and what types of
interactions occur between rival power producers. Relative to
market structures, most modeling studies implicitly or explic-
itly assume that a bidding process supervised by an ISO results
in a set of market clearing prices (e.g., [24]), although bilateral
trading has also been simulated [16]. In terms of network mod-
eling, many studies disregard transmission constraints entirely
[3], [13], [31] or use a transshipment network that ignores
Kirchhoff’s voltage law [5], [9], [16]; however, this means that
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unique opportunities that electric networks provide for market
manipulation are disregarded. To correct this shortcoming,
some studies have used AC [12] or linearized DC [24], [7]
load flow models. Such studies have found, for example, that
small noneconomic generators or phase shifters can be used by
companies to manipulate flows, congesting selected lines so
that competition in local markets is weakened [6], [11], [36].

A crucial difference among models is the type of interaction
that is assumed among rival generators. The interactions range
from intense competition to collusion. Collusion has been mod-
eled, for example, as a cooperative Nash bargaining game [5]
and as limit-pricing, where existing firms collude to prevent new
firms from entering [16]. Another uncompetitive situation is a
Stackelberg game, in which a leader with market power manip-
ulates prices, generation capacity, or transmission capacity in
order to maximize profits, subject to the anticipated reactions
of naive followers who believe they cannot affect prices [15].

In more competitive models, the type of interaction can often
be summarized in terms of a firm’s “conjectural variations”:
what does each firm assume about its rivals’ responses to its ac-
tions? The most intense competition results from Bertrand com-
petition [16], [36], in which each firm believes that its rivals
will not alter their prices. Less intense, and more commonly as-
sumed, is Cournot competition, where rivals are presumed to
hold their output fixed [3], [10], [11], [37]. As an example of
the results of such an analysis, Oren [24] shows that under one
particular set of Cournot assumptions, generators will set out-
puts in order to destroy the value of transmission congestion
charges. However, the Cournot and Bertrand conjectures seem
naive for ISO-type auctions, in which firms bid a (generally)
upward sloping supply curve. A more reasonable conjecture for
a firm would be that if it changes its bid curve, other firms
would not alter theirs. This is termed supply function compe-
tition [19], and is the basis of several power market models [7],
[12], [14], [25], [31], [36]. The resulting price equilibria gener-
ally lie between the Bertrand and Cournot extremes; however,
these supply function models are either designed for very simple
systems (e.g., 1 or 3 nodes) or use a grid search approach to
find the optimal pricing strategy for each firm, which drastically
limits the number of bidding strategies that can be considered.

The models presented below make two contributions. First,
unlike previous approaches, they calculate an oligopolistic price
equilibria for general linearized DC networks using the supply
function conjectural variation, while considering a continuous
range of bidding strategies for each supplier. The resulting op-
timization problem for each generating firm is a two level pro-
gram [1], in which the upper (leader) level chooses the param-
eters of the firm’s bid curve and the lower (follower) level sim-
ulates the market-clearing algorithm of the ISO. Such bilevel
problems are inherently nonconvex and more difficult to solve
than normal mathematical programs, as pointed out in [11]. The
second contribution is that an advanced interior point algorithm
is used to solve the bilevel problem. Although no algorithm
(short of complete enumeration) can guarantee optimal solu-
tions to nonconvex problems, computational experience indi-
cates that the approach is effective and efficient in finding good
solutions.

Fig. 1. Marginal cost (supply) function and bid curve.

II. M ARKET ASSUMPTIONS

In our models, there are a number of generating firms, each
owning some number of units. Each unit submits an hourly bid
to provide power to an independent system operator (ISO). Each
bid is in the form of a linear nondecreasing marginal price func-
tion ($/MWh). Demand is represented as a downward sloping
curve, so demand bidding can also be included. The ISO then
decides how much power to buy from which units, how much
power to deliver to consumers, and what prices to charge, based
upon an optimal power flow (OPF) calculation a la Schweppe
et al. [27]. The bids, rather than the true cost functions, are what
the ISO uses in its OPF. The units determine their own bids.
By deviating their bids from marginal cost (unbeknownst to the
outside world), a firm may be able to increase its profit (Fig. 1);
in general, optimal bids will differ from marginal cost. A Nash
supply function equilibrium will occur when no company has
any incentive to unilaterally change its bids. The extent to which
the equilibrium bids exceed marginal cost is a measure of market
power (the so-called Lerner index).

In this model, we assume that firms only manipulate the in-
tercept of the bid functions, and not its slope. There are sev-
eral reasons for this assumption. First, slopes of marginal cost
functions for individual generators are usually very shallow, so
the very steep slopes that would result from manipulating just

would not be credible. Second, the steepness of an aggregate
bid curve for an entire firm can be manipulated by having dif-
ferent markups for different units. Finally, if both and
can be chosen, we have found that unique solutions rarely exist;
in general, the literature recognizes that if bid functions can as-
sume any form, unique equilibria exist only under very restric-
tive conditions [14], [25].

We have developed two supply function-based models that
represent the interactions of the firms, analogous to the Cournot
model of Cardell et al. [11]. The first is a bilevel model that rep-
resents the individual firm’s problem: it determines the bids that
are profit maximizing for that firm, while the other firms’ bids
are held constant (see also [8]). The second model coordinates
the results of individual firm models in an attempt to find an
equilibrium for all generators’ bids.

The single-firm model can be phrased as follows. There are a
number of dominant firms in the market, each making bids to the
ISO. The model tries to determine the optimal bids for one firm.
This firm can be thought of as a leader of a Stackelberg game,
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and the leader calculates its bids based on what it anticipates
the other firms would do. The other firms’ assumed reactions are
based on their bids, and are considered by solving one quadratic
program representing the ISO’s (linearized) OPF problem.

The model presented in [11] is similar to ours, except for
three differences. The first difference is that in [11], the quan-
tities supplied by the rival generating units are fixed (Cournot
assumption). We instead consider their reactions based on their
bid curves (a possibility suggested in [11]), which we have ar-
gued is a more realistic conjectural variation. A second differ-
ence is that Cardell et al. allow generators to also demand power
and own transmission congestion contracts; this is a generaliza-
tion that is easily accommodated in our framework.

Third, the methods used to solve the problem differ. Cardell et
al. [11] solved their model using GAMS, an optimization soft-
ware package, solving the problem a number of times using dif-
ferent penalty parameters in each run until the equilibrium con-
ditions are approximately satisfied. We instead use an interior
point algorithm to find an equilibrium point. Note that the al-
gorithm presented below could also be used to efficiently solve
single firm models based on other conjectural variations, such
as the Cournot assumption in [11].

III. M ATHEMATICAL FORMULATION

Mathematically, the electric power market can be formulated
as an oligopolistic market equilibrium model on a network con-
sisting of the node set and arc set . There are several dom-
inant firms in the market, each controlling a certain number of
units with quadratic supply curves. In this section, we give the
precise formulation of the single-firm problem. The following
section describes an algorithm to solve the single-firm problem
along with numerical results.

A. The Single-Firm Problem

In essence, the single-firm problem is a two-level constrained
optimization problem [1] in which the dominant firm in ques-
tion takes as inputs its perceived market conditions (including
any competitor firms’ bids and supply and demand functions)
and maximizes profit under a set of spatial price equilibrium
constraints. In the terminology of a bilevel optimization
problem, the first-level variables consist of the firm’s bids and
the second-level problem is the ISO’s single commodity spatial
price equilibrium (SPE) problem including additional con-
straints due to Kirchhoff’s voltage law [35]. The SPE/Kirchhoff
second-level problem (actually, an OPF problem) is parame-
trized by the firm’s bids which are restricted by given bounds;
such bounds constitute the first-level constraints. The first-level
objective is the firm’s profit, equal to its revenues less its costs.

There are two equivalent ways of stating the second-level
parametric problem: either in the form of a (parametric) convex
quadratic program or as a (parametric) linear complimentarily
problem (LCP). In the latter form, the resulting two-level opti-
mization problem is an instance of a mathematical program with
equilibrium constraints (MPEC); this is a class of constrained
optimization problems that is the subject of a recent comprehen-
sive study [21]. In what follows, we will give both formulations

of the second-level problem and identify the overall MPEC for-
mulation of the single-firm decision problem.

The single-firm problem focuses on a dominant firm denoted
. The supply and demand functions are assumed to be sepa-

rable and affine. The following is the notation used in the for-
mulation of this problem.

Indices:
nodes (busses) in the network
arc from to
Kirchhoff voltage loops in the network.

Sets in the problem:
set of all nodes
set of all arcs
set of nodes with generators under control of firm
set of all nodes with generators
set of all demand nodes
set of Kirchhoff’s voltage loops
ordered set of arcs (clockwise) associated with loop

In practice, the sets and are not necessarily disjoint and
their union could be a proper subset of. If there are multiple
units at a node, artificial nodes could be defined so that there
is only one unit at each node, so this is the case that we will
consider. In the linearized DC models [27], [35], the Kirchhoff
loops ensure the uniqueness of the net flow on each arc in the
solution to the second-level problem, for fixed but arbitrary first-
level inputs. Thus if is the number of undirected arcs and

is the number of nodes in the network, then the number of
(independent) loops needed is .

Parameters:
intercept and slope of supply (marginal cost) func-
tion for the generator at node

intercept and slope of demand function
for consumers at node

upper bound of the bid for the unit at node
upper bound of production capacity for the unit at
node
maximum transmission capacity on arc
reactance on arc . In the DC model, resistance
is assumed negligible relative to reactance, and is
ignored.

1 corresponding to the orientation of arcin loop
.

By dropping the subscriptsand , we will use the same letters
to denote the vectors of the above parameters; for instance
denotes the vector of for . This convention applies
also to the variables introduced below.

First-level decision variables of firm:
bid for the unit at

Primal variables in 2nd-level SPE/OPF:
quantity of power generated by the unit at node
quantity of power demanded at node
MW transmitted from to

Throughout, it is understood that for all and
for all ; thus these supply and demand variables

can be taken to be defined at all nodes in the network.
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Dual variables in 2nd-level SPE/OPF:
marginal cost at node
marginal value of generation capacity for unit at
node
marginal value of transmission capacity, arc
shadow price for Kirchhoff voltage law, loop

Let for all nodes be fixed at the levels previously
bid by the rival firms, so that is a variable only for .
The second-level SPE/OPF problem is formally stated as the
following convex quadratic program in variables , , and

, parametrized by bids for .

• Objective function: maximization of social welfare (con-
sumer surplus minus apparent costs)

(1)

• Nonnegative demand and transmission variables: for all
nodes and arcs ,

(2)

• Lower bounds for supply variables: for all ,

(3)

• Capacity constraints for transmission and supply vari-
ables: for all nodes and arcs ,

(4)

(5)

• Conservation constraints: for all ,

(6)

• Kirchhoff’s voltage law: for all ,

(7)

We introduce some matrices in order to write the above for-
mulation in vector-matrix notation. Let denote the (node, arc)
incidence matrix of the electric network; i.e.,

if for some
if for some
otherwise.

Let denote the (arc, loop) incidence matrix of signed reac-
tance coefficients; i.e.,

if
otherwise.

Forming the Karush-Kuhn-Tucker optimality conditions for
the above primal problem and using the dual variables, ,
and , we obtain the following mixed linear complimentarily
formulation of the second-level problem. (The notation

means that two vectorsand are perpendicular, and diag()
is a diagonal matrix whose diagonal entries are the components
of the vector .)

diag
diag

free
free

(8)

The loops in are determined so that if denotes the net
flow on the undirected arc in the network, then for all fixed
but arbitrary vectors , the quadratic program (1)–(7) has a
unique solution in the supply and demand quantities and

and net flows . A useful property of this solution is pre-
sented in the proposition below which follows easily from some
well-known sensitivity results for convex quadratic programs;
see [21] for instance.

Proposition.: For each vector or, there exists a unique
globally optimal solution of the quadratic program (1)–(7),
denoted ( ), with denoting the
vector of net flows on the arcs; furthermore, this solution is a
piecewise linear function in .

With the second-level problem defined, we may now com-
plete the first-level problem that firm solves in order to deter-
mine its bids and other decision variables. Specifically, taking

for all as given, firm computes a vector of bids
, a vector of supplies , a vector of de-

mands , and a vector of flows in order to maximize its
profit:

maximize

subject to
and the mixed LCP (8).

(9)

The above constrained optimization problem is an instance
of an MPEC, more specifically, a mathematical program
with linear complimentarily constraints [21]. In the above
form, the objective function is neither convex nor concave
in its arguments, because of the bilinear term . For
various reasons, it would be useful to reformulate the objective
function as a concave function. This reformulation is indeed
possible by exploiting the constraints in the system (8). This
equivalent resulting objective function, which we will refer
to as , is used in the computational
procedure for solving firm ’s profit maximization problem
(9):
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(10)

IV. THE SINGLE-FIRM ALGORITHM

A. PIPA

To solve the single-firm problem, we use a penalty interior
point algorithm (PIPA). In this section, we will give a brief de-
scription of PIPA. See [21] for more details.

PIPA solves the following general problem:

minimize
subject to

(11)

To relate this to our model, , ,
, and .

and are all matrices of appropriate dimen-
sions containing the corresponding coefficients for , and
, and and are constant vectors. Note that is symmetric

positive semidefinite, is the negative transpose of , and
is the zero matrix. The result is that this is equivalent to a

convex quadratic program if is fixed.
There are four basic steps to this algorithm.

0. Initialization. Choose an initial point, ( )
such that are strictly positive. There are also
PIPA parameters that must be chosen, but the details are
omitted.

1. Direction Generation. Find a direction (
) by solving the following convex quadratic program.

minimize

subject to

(12)

where for is
a barrier parameter equal to , and are
chosen parameters, andis a chosen positive semidefi-
nite matrix. (In the implementation, is chosen to be the
identity matrix.) The objective function,, is concave and
thus, we can use the Hessian matrix ofto find a “good”
direction.

2. Step Size. A step size is determined by finding the root of
a quadratic polynomial. If the root lies outside the interval
(0, 1), then the value 0.99 is used. A merit function with
a penalized term of the form

where is the penalty parameter and

, is used to guide the progress of the
algorithm.

3. Termination. If the norm of the direction is
smaller than some given tolerance, stop. That is,

, where is the chosen
tolerance. Otherwise, let and go to step 1.

B. Overall Algorithm

While PIPA is the heart of the main algorithm, we have de-
veloped an algorithm that uses PIPA as a subroutine to solve
the single-firm problem. In this case, we also have a subroutine,
fixalpha, that solves the quadratic program, SPE/OPF stated in
Section III, equations (1)–(7).

0. Choose a random seed. [0 pt]
1. Generate three random sets of bids for Firm A. Solve the

SPE/OPF, usingfixalpha, for each set of bids.[0 pt]
2. For each solution found in Step 1, determine the value of

the function, (in (9)), at that point. Let ( ) be
the solution point giving the largest value of[0 pt]

3. For , use ( )
as the initial point and run PIPA, whereis a vector of
all ones. Other positive perturbations could be employed,
but these worked well.[0 pt]

In this case, there will be four final solutions found by PIPA.
After running numerous examples, it seems that the best of these
four solutions will be close to the largest value we can find. This
can be seen in the following section.

C. Single-Firm Results

For the first problem, the generation and transmission data
was based upon [2]. It includes a network with 30 busses(nodes),
41 lines, 12 loops, 6 supply buses, and 21 demand busses. Also
given were generator cost functions, reactances, upper bounds
on the supply quantities, and upper bounds on the transmission
flows. The transmissions limits are set to 60% of the values
assumed in [2] so that at least some limits would be binding in
the solutions. We have split the six supply nodes into two sets, so
that Firm A owns three units and Firm B owns three units. Then,
we solved the single firm problem for both firms, assuming the
other firm bids its marginal costs for all its units ( ). The
generator assumptions are:

We assume the following demand curve at each of the 21
demand busses: where is chosen so that

when equals the value assumed in [2].
This relatively price responsive demand might be reflective of
a market in which demand bidding is active and self generation
is an economic option for many customers.

To solve the single-firm problem for Firm A, we follow the
procedure of Section IV-B. We first start with three random sets
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TABLE I
RESULTS OFMULTI-FIRM ALGORITHM RUN ON A 30 NODE NETWORK

of bids for Firm A, and solved the SPE/OPF for each set. Next,
we chose the solution, ( ) that gives the largest value
when plugged into the profit function,. Note that the vector
is equal to the vector of bids. As an initial point of PIPA, we use
( ), where is a positive perturbation
factor and is a vector of ones. This ensures the positivity of
the and vectors required by PIPA.

In this case, the third run gave us the best objective value of
777.0. We use the solution from this run to start PIPA with

different perturbations.

The optimum profit found was approximately 24.47. We have
done many more runs and have always achieved a similar value.
Obviously, the more runs we do, the more confident we become
that this is a global solution. Also, as a check, we solved the
SPE/OPF for 50 random sets of bids (one for each of A’s units);
none of these solutions yielded a profit over 20. It should be
noted, however, that there could be more than one local optimum
because the MPEC is nonconvex due the complementarily con-
straints.

For Firm B, we ran this procedure and the best PIPA results
are seen below. (In this case, we omit the randomly generated
bids.)

The best profit found is 2094, which is two orders of mag-
nitude above A’s profits. This is because of B’s relatively low
marginal costs. These single-firm solutions can be viewed as
Stackelberg equilibria in which one firm (the leader) manipu-
lates its bids in order to maximize profit while the other firm(s)
are a “competitive fringe” who always set their bids equal to
their units’ marginal cost. In the next section, we consider the
case in which two or more firms behave strategically.

These strategic results can be contrasted with the outcome
when each firm bids honestly ( ). In that case, A earns

and B earns compared to the strategic
profits of and .

V. THE MULTI-FIRM PROBLEM

In a game theoretic context, the multi-firm problem can be
phrased as a Nash game with multiple players, each being a
dominant firm with respect to the ISO, able to predict how the
ISO will process the bids of all players. The main feature of this
Nash game is that each player is solving a MPEC, rather than a
standard optimization problem. In this multiple-firm case, each
leader is trying to maximize its profits based on what the market
does as well as what the other dominant firms do. The goal in
the multi-firm problem is to find an “equilibrium,” such that if
any firm changes its actions unilaterally, its profit will decrease.
An equilibrium exists when there is no incentive for any firm to
change its behavior unilaterally. The equilibrium conditions can
be stated as follows:

is a multi-firm equilibrium if

where is the set of bids that solve the
single-firm problem for firm .

It is important to note that, in general, a Nash supply function
equilibrium in pure strategies does not necessarily exist, nor is
it necessarily unique [14], [19]. Indeed, simple examples can be
defined in which an infinite up and down cycling of prices oc-
curs [7]. This results from an Edgeworth-like process in which
rival firms undercut each other’s bids until one realizes that it
is better off conceding defeat. The latter firm then jacks up its
price for the small portion of the market that rivals cannot serve
due to capacity constraints. Borenstein et al. [10] find a sim-
ilar dynamic for a Cournot market. Nash’s theorem guarantees
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that an equilibrium in mixed strategies (in which players choose
bids randomly) still exists. However, we have found that for a
wide range of capacity, demand, and cost conditions on a simple
network, a pure strategy equilibrium does exist and can be com-
puted [7]. Therefore, although the models of this paper cannot
guarantee that an equilibrium will be found, we anticipate that
in most cases they will succeed.

A. Multi-Firm Algorithm

We use a diagonalization algorithm, analogous to that used in
[11], to solve the multi-firm problem. It performs the following
steps for firms:

Initialization:

0. Set all firms’ bids to their supply curve intercept,, for
. Set .

1. For Firm , generate three random sets of bids, then solve
the SPE/OPF for each set, where the bids from [7] Firm

are fixed.
2. Solve the single-firm problem for Firmusing PIPA with

perturbation of 0.4 on the best of the three results from
step 1. Call this solution ( ). Update firm ’s
bids as .

3. If , set and go to step 1.

General Step:

4. Use ( ), for a chosen parameter
, as an initial point and run PIPA to solve the single-firm

problem for Firm , to get a new solution, ( ).
Update Firm ’s bids as . Repeat for .

5. Repeat step 4 until the maximum number of iterations is
reached or a satisfactory solution is found.

B. Multi-Firm Numerical Results

We have applied the algorithm defined in Section IV-C, but
allowing both A and B to behave strategically. We set .
See Table I.

Table I shows nine iterations. The solution has converged to
an equilibrium in which A’s prices and profits are lower than in
the Stackelberg (single-firm) case (Section IV-C). B’s profits,
on the other hand, are greater than in its Stackelberg solution.
This points out that asymmetrics in networks and costs can mean
that alternative assumptions about strategic interactions can af-
fect different firms in different ways.

VI. CONCLUSION

A practical and efficient MPEC-based procedure for cal-
culating oligopolistic price equilibria for an electric power
market has been developed and illustrated. The equilibrium
is a “supply function” equilibrium, in which rival generators
optimize their bid curves under the assumption that other
firms will not change theirs. Future work will investigate the
properties of the algorithm, incorporate resistance losses, and
explore generator strategies under alternate cost, transmission,
and demand conditions.
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