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Abstract: Load forecast errors can yield suboptimal unit com- 
mitment decisions. The economic cost of inaccurate forecasts is 
assessed by a combination of forecast simulation, unit Commitment 
optimization, and economic dispatch modeling for several different 

costs and, perhaps, maintenance expenses, . expensive power may have been purchased which wasn't 
needed, or a profitable opportunity to sell bulk power 

have heen soumed. ., generationiload systems. The forecast simulation preserves the 
error distributions and correlations actually experienced by users of 
a neural net-based forecasting system. Underforecasts result in pur- 
chases of expensive peaking or spot market power; overforecasts 
inflate start-up and fixed costs because too much capacity is com- 
mitted. The value nf imnroved accuracv is found to denend on load 

hydropower may have bken produced which would have 

* overly high real-time prices might have been quoted, 

unnecessary interruptions or load controls might be in- 

been more valuable if generated at a later time, 

sales, Or 

I ~~~~ ~ ~~~~~~ 

and eenerator characteiistics: for the systems considered here, a voked, annoying consumers and lowering revenue. - 
reduction of 1% in mean absolute percentage error (MAPE) de- 
creases variable generation costs by approximately 0.1 %-0.3% 
when MAPE is in the range of 3%-5%. These values are broadly 
consistent with the results of a survey of 19 utilities, using estimates 
obtained by simpler methods. A conservative estimate is that a 1 % 
reduction in forecasting error for a 10,000 MW utilily can save up 
to $1.6 million annually. 

Keywords: Load forecasting, power system economics, power 
generation dispatch 

1. INTRODUCTION 

Electric utilities make many short-term resource commit- 
ments that require forecasts of loads from a few minutes to 
one week ahead of time. Such decisions can include: 

commitment of generating units, 
short run hydropower scheduling, 
economic dispatch of committed units, 
predictive automatic generation control, 
spinning reserve, 
fuel allocation, 
short-term energy purchases and sales, 
real-time prices, 
load interruption, 
load control, 
generator and transmission line maintenance, and 
available transmission capability. 

Forecast errors result in increased costs, or "regret." For 
instance, if loads turn out to he lower than forecast, then: 

units may have been unnecessarily committed, raising fuel 

PE-353-PWRS-1-09-1998 A paper recommended and approved by 
the IEEE Power System Analysis, Computing and Economics 
Committee of the iEEE Power Engineering Society for publication in the 
IEEE Transadions on Power Systems. Manuscript submilied 
December 31, 1997: made available for printing O d O b e r  7, 1998. 

0885-8950/99/$10 

On the other hand, if loads are greater than anticipated, the 
following types of regret might result: 

Insufficient resources may be available for meeting securi- 
ty constraints, such as spinning reserve margins, thus 
endangering system reliability. (Zhai et al. [I] have ana- 
lyzed the effect of load uncertainties on the probability of 
having insufficient committed capacity to compensate for 
unit failures and/or unanticipated load variation. Here, we 
examine not just these risks but also economic risks.) 
To meet the unanticipated load increase, uneconomic 
generation or purchases of spot power might be necessary. 
Alternatively, load interruptions or controls might be 
invoked that could have been avoided had the load been 
perfectly forecast. 
Commitments to sell power may have been made at a 
price less than the value of that power to the utility. 
Too low real-time prices might have been quoted, result- 
ing in revenue falling short of the utility's cost. 

The value of more accurate forecasts is the amount by which 
their use would reduce these various sources of regret. 

The economic value of improved short-term forecasts is of 
particular interest now because of the recent development of 
new forecasting methods. These methods include artificial 
neural nets (ANNs), state-space approaches, stochastic 
models, and expert systems, in addition to refinements of 
traditional time series and regression methods. ANNs are a 
particularly promising approach because they do not require 
adoption of a particular functional relationship between inputs 
and outputs, and because of their ability to adapt as new data 
becomes available [Z] . 

Proponents of these new methods argue that the more 
accurate forecasts those methods yield are valuable for the 
sorts of reasons just listed [e.g., 31. But the worth of im- 
proved accuracy is rarely quantified, and so it has been diffi- 
cult to compare the costs of new methods with their benefits. 

To better understand the benefits of improved short-term 
load forecasts, we undertook two studies to estimate this 
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value for a particular neural net-based load forecasting 
system, ANNSTLF [4,5]. 

The first of these studies was a survey of 28 utilities that 
are members of the EPRI ANNSTLF users' group 161. Of 
the 19 utilities that compared the accuracy of ANNSTLF to 
other methods, 18 have found that ANNSTLF has significant- 
ly improved forecast accuracy, in some cases by several per- 
centage points. Nineteen utilities claimed significant 
economic benefits from using ANNSTLF. A conservative 
estimate of these benefits is an average of $8OO,OOO/utility, 
mostly stemming from improved unit commitment and power 
transactions. However, just four of those utilities actually 
quantified the commitment benefits. They concluded that a 
1% reduction in mean absolute percentage error (MAPE) 
would translate into a $1.7, $28, $42, or $143 annual benefit 
per peak MW of demand (depending upon the utility). The 
highest value represents approximately 0.15% of that utility's 
variable generation costs; it results from an annual savings of 
$7.6M for a utility with a peak load of 35 GW for whom 
ANNSTLF lowered MAPE by 1.5 % . 

However, the above estimates were obtained by 
spreadsheet calculations making simple assumptions about 
how much would be saved by avoiding excessive power 
purchases (due to underforecasts), and how many unneces- 
sary unit startups (due to overforecasts) would be avoided. 
To verify the reasonableness of those estimates, and to ex- 
plore their sensitivity to various assumptions, a second study 
involving a detailed simulation analysis has been undertaken. 
The methodology and results of the latter study are the sub- 
ject of this paper. 

In the remainder of paper, we discuss the methodology 
used (Section Z), the case study utilities (Section 3), and the 
results (Section 4). 

2. METHODOLOGY 

The elements of the short-term decision problem can be 
structured as a decision tree (Fig. 1). A basic tree would 
start with a decision node representing "here-and-now'' deci- 
sions that must be made before the future is perfectly known. 
Unit commitment would be an example of such a decision, 
Then in each hour (or some other appropriate period of 
time), a set of chance nodes would represent the realization 
of the actual load. A last set of decision nodes would then 
represent "recourse" decisions that can be postponed until 
after the true load is known. '"Recourse" decisions would 
include real-time dispatch in which the exact level of opera- 
tion of committed units can be altered in response to observ- 
ed changes in load. Rescheduling of units that can be 
ramped up quickly is also a possibility [l]. A path through 
the tree represents a particular sequence of decisions and 
loads; at the end of each path is the cost associated with 
those choices and outcomes. After structuring the problem in 
this manner, the benefit of improved forecasts can be 
assessed by first examining how better information would 
alter here-and-now decisions and then calculating the expect- 
ed cost savings. 

We consider the use of short-term forecasts for unit com- 
mitment and evaluation of power saldpurchases, as they are 

Time I 

' R e c o u r s e '  T rue  L o a d s  
[ U n i t  C o m m i l m e n l ]  Rea l ized  [Unit D i s p a t c h ]  

D e c i s i o n s  D e c i s i o n s  

' H e r e . a n d  Now' 

Fig. 1. Decision tree for valuing forecast accuracy 

the most common application of such forecasts [7]. Our 
survey found that 13 of the responding utilities ranked unit 
commitment and dispatch as the most important use of fore- 
casts, while 7 mentioned transactions as having the highest 
importance. 

In this study, unit commitment is the here-and-now deci- 
sion, and unit dispatch and spot market purchases are the 
recourse decisions. We also allow for recommitment of 
more costly combustion turbines as a recourse decision, since 
they can ramp up quickly relative to thermal units. (Alterna- 
tively, the cost of turbine power could be interpreted as a 
proxy for the cost of spot purchases to make up for capacity 
shortfalls.) There are assumed to be 25 decision points in the 
decision tree: the unit commitment decision (assumed to take 
place the previous day) and 24 hourly dispatch decisions. 
The information available at the time of the unit commitment 
decision is the 24 hour load forecast for the next day, while 
at the time of dispatch, the true load in that hour is assumed 
to be known. The only random variable is load itself. 

We obtain decisions and outcomes via two models: 
1. A unit commitment model [SI, which uses Lagrangian 

relaxation to calculate a least cost unit commitment sche- 
dule based on the forecasted load. As is typical with 
Lagrangian algorithms, the model finds an optimal dual 
solution and then uses heuristics to construct a feasible 
primal schedule. The particular implementation in [8] 
produces multiple feasible primal solutions. To ensure 
that a good schedule is obtained for a given projected 
load, all the solutions for all load profiles (i.e., for all 
values of X, defined below) for a given day are pooled. 
Then each solution is tested against the given projected 
load using the recourse model, described next. The 
schedule that performs best in the recourse model for the 
given load is then selected. 

2. A recourse model, which in each hour optimizes the 
dispatch of the units and commitment of the combustion 
turbines, subject to the constraint that the commitment 
schedule for all other units is fixed at the values deter- 
mined in the unit commitment model. This recourse 
program is formulated as a quadratic program (QP) with 
the following structure: 
- an objective function in which cost is expressed as a 
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convex quadratic function of each unit’s generation 
(for simplicity, it is assumed that any costs for com- 
mitting the combustion turbines aside from the vari- 
able generation cost are negligible); 
decision variables representing generation from each 
unit, including combustion turbines; and 
constraints, consisting of bounds upon each unit’s 
generation based upon their capacity, minimum run 
levels, and maximum ramp rates, considering the 
previous hour’s generation. 

The recourse model is solved using the commercial optimiza- 
tion package IMSL; for the few cases in which IMSL fails to 
find a feasible solution, we instead apply Lemke’s algorithm. 

By subtracting the first of the below quantities from the 
second, the cost of inaccurate forecasts is obtained: 
1. the cost the true load were known at the time that unit 

commitments were made, which is usually less than: 
2. the actual cost of dispatching the system (from the 

recourse model based upon the true load) plus the start- 
up and other fixed costs of committing the units (from 
the Baldick model, based on the forecast load). 

The procedure is described more specifically in Section 4. It 
is repeated for all days in the load forecast data base (in the 
case of the utilities below, about 440 days). It is then repeat- 
ed’for each of several different levels of the mean forecast 
error. This allows us to determine how the expected eco- 
nomic cost of inaccurate forecasts will change as the accura- 
cy of load forecasts change. 

In particular, we adopted the following procedure to simu- 
late alternative levels of forecast accuracy. A revised fore- 
cast LF‘ is obtained as a weighted combination of the true 
load LT and the utility’s forecast L‘; as follows: 

L F ’  = LT + X(LF - LT). (1) 

The mean error (either root mean square or mean absolute 
percent) of the new forecast LF’ is 1x1 100% of the original 
forecast LF. Thus, an increase in I hl simulates a worsening 
of accuracy, while a smaller JhJ represents an improvement. 
In the analyses of this paper, X is varied from -2 to +2 to 
simulate different degrees and directions of error. If I X I  > 1, 
this results in forecasts with greater error than the original 
forecasts, while I XI < 1 implies less error (with the extreme 
case X=O implying a perfect forecast). A X < O  changes the 
sign of the error; e.g., if the original forecast exceeded the 
ttue load, the revised forecast would understate it. 

Our methodology is similar to that of Ranaweera et al. 
[9], with two important differences. First, their study assum- 
ed that forecast errors were distributed randomly and inde- 
pendently from hour to hour; our study is instead based on 
the actual distribution of errors, which for the two utilities 
we studied shows a high autocorrelation (0.96 in one case). 
Second, we consider a wider range of conditions, including 
several generation systems and two different utilities’ loads. 

3. CASE STUDY UTILITIES 

Two utilities provided ANNSTLF forecasts and true loads. 
Table 1 presents summary data concerning those loads and 

.. 
Jan. I -March 30, 1996 

forecasts. Several different generation systems were consid- 
ered. All are based on the systems defined by Bard [lo] and 
Shaw [ l l ] ,  with some modifications. Table 2, for instance, 
shows cost and capacity data for our modified Bard system. 
A minimum spinning reserve margin of 3%-5%, depending 
on the system, is required. The Shaw system has 13 units 
with 6425 MW of capacity. It differs from the Bard system 
in that marginal costs vary more among the units (a  varies 
from 6.05 to 14.62 $/MWh, several times its range in Table 
2). Additional generation systems were defined by replicat- 
ing the Shaw system (26 rather than 13 units), by modifying 
start-up and fixed costs of the Bard system (doubling and 
quadrupling them), and by altering the cost of combustion 
turbine energy. Our purpose in testing several systems is to 
determine how sensitive the value of forecast accuracy is to 
particular characteristics of the generation system. 

Table 1. Load Data 

11 Svstern: I1 Northeastern utilitv: I Southern utilitv: il .. 
Jan. 1 - Dec. 10, 1995 

5.4% (MAPE) 

II 11 0.88 frnean dailv) 10.84 (mean dailv) 11 
5.6% (RMSE) 
3.9% (MAPE) 

4. APPLICATION RESULTS 

The economic cost of inaccurate forecasts was obtained by 
applying the models, load data, and generator data sets de- 
scribed above in 3 steps: 
1. For each day in the load data base and for each value of 

X considered (-2 to +2, in increments of 0.25), the 
Baldick [8] unit commitment model was used to create a 
commitment schedule based on the forecast loads. 

2. For each hour of each day and for each A, the scheduled 
units are dispatched against the actual load using the QP 
recourse model, yielding the actual dispatch cost. When 
summed over the 24 hour day, and then added to the 
start-up costs from the unit commitment model, this 
yields the actual daily production cost. 

3. For each day and each X+O, actual daily production 
costs are compared to the costs for X=O (zero forecast 
error), giving the cost increase due to forecast error. 
This cost is usually positive because the unit commitment 
has been optimized for the incorrect loads. (However, 
because unit commitment ignores uncertainty in loads, it 
may fail to identify the unit commitment that minimizes 
expected cost. Ideally, stochastic optimization should be 
used [12]; however, we instead simulate the prevailing 
utility practice of solving deterministic models. Because 
expected costs are not minimized by such models, it is 
possible for more accurate forecasts to yield higher costs; 
yet this occurs only occasionally in our simulations.) 

In the subsections below, several groups of results are 
summarized. First, costs for three different commitment 
schedules for a single day are presented to illustrate why 
forecast inaccuracies inflict economic penalties. Then aver- 
age results for four systems (Shaw and Bard systems for the 
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Fig. 2. Generation cost of three different unit commitment schedules 
under varying loads 

southern and northeastern utilities) are presented. The distri- 
bution of errors is subsequently discussed, including an anal- 
ysis of the effects of underforecast versus overforecast er- 
rors. Finally, we present sensitivity analyses in which gener- 
ator characteristics are varied, including system size, backup 
power costs, and start-up and other commitment costs. 

4.1. Example of Inaccuracy Penalty 
In this subsection, an illustration of the cost penalties that 

can occur as a result of forecast inaccuracy is presented. 
The southern Bard system is used as an example. On Jan. 2, 
1995, that utility's load was overforecast by 15.5%, on aver- 
age. As a result, unit commitments based on the forecast 
would not have minimized cost. Fig. 2 illustrates the costs 
resulting from three distinct unit commitment schedules as a 
function of the load. Alternative load profiles are represent- 
ed by the scaling factor A, where A = 0 stands for the true 
load, A=-2 represents a lower load (31% below the true 
load), and A =  +2 is a higher load (31 % above the true load). 
For the high load, the schedule represented by the dashed 
line is best; for the low load, the dotted line is superior; and, 

Fig. 3. Increase in variable production costs due to inaccurate load 
forecasts, averaged over year, for four systems 

finally, for the true load, the solid line schedule has the 
lowest cost. The schedules differ in the number and timing 
of start-ups and shut-downs. 

The figure shows that choosing the wrong schedule, which 
would result from having the wrong forecast, can impose 
large cost penalties. In particular, forecasting a low load 
(A=-2) but realizing a middle load (A=O) results in costs 
being more than 15% higher than necessary ($680,000 rather 
than the optimal $591,000). Meanwhile, forecasting a high 
load (A=+2) but realizing the middle load incurs a 1.9% 
penalty (a cost of $602,000 rather than $591,000). 

4.2. Average Costs of Forecast Inaccuracy 
In Fig. 3,  the production cost increase due to forecast 

inaccuracy, averaged across all days, is shown as a function 
of MAPE for each of the four possible combinations of loads 
(southern vs. northeastern) and generation systems (Bard vs. 
Shaw). Each point is obtained from a distinct value of I A I . 
(Because the results for A and -A are similar, they are com- 
bined, and only the average results for I X I are presented.) 

The curves show, as anticipated, that production costs 
increase as accuracy worsens. At a MAPE of 3 % ,  for 
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instance, inaccurate forecasts inflate production costs by 
0.1% to 0.25%. Increasing MAPE to 5% causes this cost 
penalty to rise to between 0.35% and 0.85%. All values 
differ significantly from zero (p <0.01). The southern sys- 
tem’s penalties are double those of the northeastern system. 
This may be due in part to its lower daily load factor, which 
implies more start ups and shut downs over the day. Mean- 
while, the Bard system, whose costs are more uniform across 
generating units, has higher penalties than the Shaw system 
for both the northeast and the south. Thus, these few exam- 
ples show that penalties for forecast inaccuracy can vary sub- 
stantially among utilities, just as reported in our survey [61. 

To make these values more concrete, consider a 5000 
MW (peak) system with a $20 mean variable production cost, 
a 0.6 load factor, and a 5% MAPE for its forecasts. The 
above figures imply that the economic loss due to inaccuracy 
is between $1.8M and $4.5M annually. 

The curves of Fig. 3 are convex in most places, implying 
that a 1 % worsening in accuracy imposes more of a penalty 
for a system that is already inaccurate. If MAPE is between 
3% and 5%,  a 1% change in MAPE changes variable pro- 
duction costs by 0.12% to 0.3%. For the system of the 
previous paragraph, this implies that improved accuracy is 
worth about $0.6M to $1.6M annually per 1 % improvement, 
or $125 to $315/peak MW/year. 

These estimates of the worth of better forecasts can be 
compared to values reported elsewhere. As mentioned in 
Section I ,  four utilities we surveyed have estimated values of 
between $1.7 and $143/peak MW/yr for a 1% improvement 
in MAPE [6]. Using a similarly simple methodology, Wis- 
consin Electric [I31 calculated a value of over $200/peak 
MW/yr. The lowest of those values are too conservative, 
because they did not consider the full range of benefits aris- 
ing from avoiding overcommitments and purchases of back- 
up power. The higher values are more comprehensive, but 
did not explicitly model how commitment schedules would be 
altered as accuracy improved, and so may be inaccurate. 

In another study, Erwin et al. [I41 report that a 200 MW 
improvement in forecast accuracy for the Southern Compa- 
nies resulted in savings of $3.6M/year. At a load factor of 
0.6 and an average variable cost of DO/MWh, this is equiva- 
lent to 0.17% reduction in cost (over $150 per peak MW) for 
each 1 % improvement in forecast accuracy. Meanwhile, an 
estimate that cost will fall by roughly 0.2% per 1% improve- 
ment can be inferred from the statement that EIOMlyr would 
be saved if accuracy was improved by 1 % for the UK system 
in 1984 [15]. The latter estimate was based solely on fixed 
cost savings resulting from avoiding overcommitment. 

Ranaweera et al. [9] report a slightly lower value of accu- 
racy: decreasing MAPE from 5% to 3% for their 20 gener- 
ator system lowers the penalty of inaccuracy from 0.44% to 
0.27%. This translates to a 0.08% decrease in cost per 1% 
increase in MAPE, which falls below our range. A possible 
reason for their lower estimate is that they assume that fore- 
cast errors are uncorrelated from hour to hour: as a result, if 
too much capacity is committed in one hour because load was 
underforecast, that excess capacity might be useful in the 
next hour when an overforecast might have occurred. Thus, 
the schedule based on the forecast load might still be optimal, 

0.3 

0.2 

0.1 

0 5 10 16 

or near optimal. However, actual errors are highly correlat- 
ed in real systems; for instance, the hourly autocorrelation 
for the southern utility is 0.96. (That is, the correlation 
between the forecast error in hour t with the error in t+l is 
nearly perfect.) Thus, for most days, hours will either be all 
overforecast or all underforecast, or nearly so. As a result, 
schedules based on forecasted loads are less likely to be 
optimal than assumed in [9], and the penalties should be 
larger than they calculated. 

4.3. Distribution of Forecast Errors 
The above annual averages mask large day-to-day varia- 

tions in penalties. For the Southern Sbaw system (MAPE = 
3.9%), daily values range from zero or less (for 35% of the 
days) to a few values over 5% (Fig. 4), with a standard 
deviation of 1.1%. Meanwhile, their mean (Fig. 3) is 
0.35%. As the distribution is highly skewed, less than 5 %  of 
the days account for half of the aggregate annual penalty. 

(Note that negative penalties can occur, as in Fig. 4, 
because Lagrangian relaxation cannot guarantee a global 
optimum. Thus, the commitment obtained by the algorithm 
under an erroneous forecast might be better under the true 
load than the solution obtained assuming instead the true 
load. This cannot occur if global optimality is assured,) 

Further analysis reveals that the bulk of the costs occur 
when loads are underforecast, when it becomes necessary to 
dispatch combustion turbines or buy spot power because 
insufficient thermal capacity has been committed. To demon- 
strate this, we divide the daily results into three groups: 
1. Days in which 20 or more hours were underforecast 

2. Days in which 20 or more hours were overforecast (35% 

3. Days in which forecasts were a mix of over- and 

Fig. 5 shows for the Southern Sbaw system the average cost 
penalty as a function of MAPE for each of the three subsets 
of days. For smaller MAPEs, under- and overforecasts 
impose similar penalties, but for medium and large errors, 

(26% of days), 

of days), and 

underforecasts (39% of days). 
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Fig. 5. Mean cost of inaccurate forecasts for three types of forecast errors 
(Southern Shaw system) 

MAPE 

Fig. 6 .  Effect of back-up (Nrblne or spot market) costs upon the cost of 
inaccurate forecasts (Southern Bard system) 

underforecast costs are more severe. 
For other systems, underforecast costs tend to dominate 

for all MAPEs: for instance, for the Northeastern Bard sys- 
tem, for a MAPE equal to 5.4%, 65% of the annual penalty 
is incurred during underforecast days. In this situation, the 
cost of back-up power when underforecasts occur imposes 
more of a penalty than does incurring unnecessary start-up 
costs due to overforecasts. This result is consistent with the 
simpler analysis performed by the Southern Companies [sum- 
marized in 61, which estimated that underforecasts were re- 
sponsible for two-thirds of the annual economic penalty. 

Statistical analysis of the daily cost penalties for the X= 1 
case reinforces the above conclusions. Various regression 
models including MAPE, level of loads, load factors, and 
number of errors of each type (over- and under-forecast) as 
independent variables were tested. The best models (by an 
adjusted R2 criterion) accounted for over- and underforecasts 
separately and omitted the other variables. For the Southern 
Shaw system, the percent cost increase %C for a given day 
as a function of the MAPE for that day is: 

%C = 0.0954 MAPEt f 0.0200(MAPE)2z R2 = 0.59 
(0.01 16) (0.0009) (2) 

Standard errors for the coefficients are given in parentheses. 
MAPEt is the MAPE that occurs if that day's loads are 
overforecast, on average, and is zero otherwise. MAPE is 
the MAPE when loads are underforecast. For the Northeast- 

0 2 4 8 8 i o  12 

MAPE 

plg. 7. Effect of alternative commitment COSIS upon the cost of inaccurate 
farecasts (Northeastern Bard system) 

ern Shaw system, 

%C = 0.00714(MAPEc)2 -!- 0.0262(MAPE)2, R2 = 0.53 
(0.00234) (0.0025) (3) 

These equations show that a change from 3 %  to 5% in 
MAPE has a 1.5- to 4-fold larger impact for underforecasts 
than for overforecasts. This reinforces the result of Fig. 5 
that underforecasts incur a larger penalty for these utilities. 
Also, confirming the results of Fig. 2, a 1% improvement in 
forecast accuracy when MAPE is between 3 % and 5 % drops 
costs by 0.06% to 0.42% (depending on whether over- or 
underforecasts are involved, and which system is considered). 

4.4. Sensitivity to Generation System Characteristics 
In this subsection, the effects of alternative assumptions 

concerning the generation system are examined. 
The first sensitivity analysis concerns the size of the gen- 

erating system. For the Southern Shaw system, this was 
tested by doubling the number of generating units and loads, 
and redoing the analysis. As a result, the economic penalty, 
as a fraction of annual production costs, increases by as 
much as 50%. However, for the Northeastem Shaw system, 
a similar doubling usually, but does not always yield an in- 
crease in the percentage cost penalty. Indeed, in another set 
of simulations, we found that for a simple system consisting 
of identical generating units, the size of the system (MW 
peak and number of units) does not significantly affect the 
percentage penalty. Therefore, we conclude that the use of 
relatively small systems (12 or 13 units) does not cause an 
upwards bias in our estimate of the economic penalty, ex- 
pressed as a percentage of the total production cost. 

The other sensitivity analyses examine two cost assump- 
tions that directly contribute to the penalty: the expense of 
hack-up (combustion turbine or spot market) power, in the 
case of underforecasts: and fixed costs associated with gener- 
ator commitment, for overforecasts. The simple analysis 
performed by Southem Companies [summarized in 61 as- 
sumes that penalties are proportional to these costs: the re- 
sults below show that the relationships are not necessarily 
that simple, hut that they are still strong. 

Fig. 6 shows the impact of varying the cost of back-up 
power from $20 to $40/MWh for the Southern Bard system. 
It turns out that penalties incurred during underforecast days 
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are almost directly proportional to this cost; as underforecast 
costs dominate for that system, the results turn out to be very 
sensitive to this assumption. 

The effect of varying fixed commitment costs is portrayed 
in Fig. 7 for the Northeastern Bard system. These costs 
include the fixed hourly costs F and start up cost terms c and 
d (Table 2) .  Three curves are shown, one representing the 
base case costs, and the other two modeling the situation in 
which commitment costs are doubled and quadrupled. The 
2X cost case is only slightly greater than the 1X (base) case; 
for instance, for a MAPE of 5.4%, the base case penalty is 
0.35%, which rises to 0.45% if commitment costs are dou- 
bled. This relatively modest effect is reasonable, since, as 
pointed out earlier, the costs of overforecasts (and, thus, 
overcommitment) are generally smaller than underforecast 
costs. In the 1X case, 14% of the annual penalty occurs 
during overforecast days, while in the 2X case that percent- 
age rises to 41%. However, if commitment costs are qua- 
drupled (case 4X), Fig. 7 reveals that the annual economic 
penalty is sharply higher; thus the penalty appears to be a 
nonlinear function of commitment costs. 

5. CONCLUSION 

Better information should lead to better decisions; for the 
case of more accurate short-term electric load forecasts, this 
paper has quantified the dollar value of improved unit com- 
mitment decisions. For a typical utility whose annual fuel 
costs amount to several hundred million dollars, a 1 % reduc- 
tion in the average forecast error can save hundreds of thou- 
sands or even millions of dollars. 

Future research should consider benefits that flow from 
improving other types of short-term commitments that are 
becoming increasingly important in restructured power mar- 
kets. Examples include: 

real-time prices, 
available transmission capability, and 
short-term spot sales. 
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