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Abstract - A multiarea power system consists of several 
areas (subsystems) interccnnected by a transmission network In 
estimating expected generation costs for such systems, transinis- 
sion capacity limits of the network should be recognized. Trans- 
portation network models have generally been used becausl: of 
their simplicity, but they only enforce Kirchhoff's current law. 
AC power flow modeling of the transmission network, which 
recognizes thermal, voltage and stability constraints, is theoreti- 
cally best, but is too unwieldy for assessing expected costs. The 
so-called "DC" linearized network model is adopted here as a 
compromise, as it enforces both Kirchhoff's current and voltage 
laws while its linearity facilitates incorporation in probabilistic 
production costing models. In this paper, we generalize a boiind- 
ing-based multiarea probabilistic production costing model to 
include loop tlow and resistance losses based on the DC network 
model. This is the first multiarea model based on efficient icon- 
volution methods for production costing that also includes loop 
flows and resistance losses. Computational examples are present- 
ed to highlight the modeling and solution procedures. 

Keywords - Production costing, generation, power flow, 
transmission, stochastic optimization, economics 

I. INTRODUCTION 
Deregulated power markets require utilities to consider 

the impact of transmission constraints on transactions, 
generation costs, and long range planning. Models are 
needed that can estimate expected total and marginal pro- 
duction costs for a multiarea generation system over the 
entire range of possible generator outage and load scenlari- 
os. Unlike widely used single-area production costing 
models, multiarea models explicitly consider transmission 
capacity limits. In multiarea models, the busses are 
grouped into different areas (subsystems) that are connect- 
ed by a transmission network. 

Which transmission network model is adopted car1 be 
crucial in multiarea production costing. AC power-flow 
modeling of the transmission network, which can recognize 
thermal, voltage and stability constraints, is theoretically 
the best. But it demands tremendous computation effort 
and is therefore impractical for modeling the wide range of 
load and outage scenarios considered in probabilistic pro- 
duction costing. An alternative approach is to repeatedly 
use AC power flow and stability programs under various 
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contingencies to determine the transfer capability of the 
transmission lines [l] ,  and then apply these limits upon 
individual transmission link flows in a transportation net- 
work model. But in transportation models, power flow is 
modeled like 'apples being hauled in carts,' in F. 
Schweppe's phrase. This is because the transportation 
network only enforces Kiirchhoff's current law (KCL) [2]. 
As a result, Kirchhoff's voltage law (KVL) will likely be 
violated and loop flows disregarded, causing the power 
transmission capability of a network to be overestimated. 

A reasonable comproimise between computational tract- 
ability and the need for a more realistic representation is 
the linearized "DC" approximation of the AC load flow 
equations [3,4,5]. The approximation enforces both KCL 
and KVL. Because the approximation is linear, the compu- 
tational effort required by the resulting production costing 
model is acceptable. Most previous multiarea production 
costing models have been based on the transportation net- 
work model [2,6,7,8]. But as Lee [2] points out, there is a 
need for both transportation network (capacity flow) and 
DC network (DC flow) models; a preference towards one 
or the other can be based on the particular application. 
Lee [2] presents a multiarea model with DC load flow con- 
straints which he is able to solve for a small system. In 
[9], convolution methods are used to calculate the probabil- 
ity distribution of flows over selected transmission lines in 
large systems by taking advantage of the fact that flows in 
linearized models can be expressed as a linear function of 
the generation of individual units. However, that method 
cannot impose limits on flows. Such limits can be imposed 
in DC-based chronologic models, such as GE MAPS [lo], 
which naturally lend themselves to probabilistic analysis 
using Monte Carlo methods [ 111. 

The computational intensity of the Monte Carlo ap- 
proach has motivated our exploration of effective load 
duration curve (LDC) approaches [e.g., 121 to multiarea 
probabilistic production costing with DC load flow con- 
straints. Our purpose here is to present a practical method 
for including DC constraints in probabilistic production 
costing models for large systems. In the next section, we 
summarize the linearized DC approximation used in our 
model. Then in Section 111, we incorporate the derived DC 
model (as additional constraints) into the multiarea produc- 
t ion  costing prob lem formulation. A direct solution ap- 
proach to the probabilistic production costing problem is 
discussed. In Section IV, the bounding-based solution ap- 
proach to the DC flow-based production costing problem is 
presented. The bounding approach originally adopted a 
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transportation network model [7], and has been used to 
estimate expected production costs for systems with as 
many as five areas and 132 units [13]. Incorporation of 
the DC flow model in the bounding approach requires only 
data on line impedances, additional linear constraints to 
enforce KVL, and minor modifications to the solution 
algorithms. A simple case study is presented to illustrate 
the mechanics of the method in Section V, along with an 
application to a 42 unit, four area system. Extensions of 
the model are summarized in Section VI, including repre- 
sentation of resistance losses and varying loads. 

11. DC POWER FLOW MODEL 
A network (with M nodes) is used to 

represent the grid connecting the areas of a M-area power 
system. Any pair of nodes {m,n} may be connected by a 
transmission link mn (which might represent several physi- 
cal lines between these areas). The power injection, volt- 
age, etc., of an area are assumed to be unique--which of 
course disregards voltage differences and transmission 
constraints within an area. Based on the real and reactive 
power injections in the areas, the real and reactive power 
flows can be computed based on standard AC power flow 
equations for each line [4,5]. However, for probabilistic 
production costing of large systems, this computationally 
intensive approach is impractical because the nonlinear AC 
flow equations would need to be solved numerous times. 

As an alternative, the DC "linear power flow model" is 
sometimes used [4,5]. It consists of a set of linear equa- 
tions obtained from the AC model by assuming: 
(a) per unit (P.u.) voltages in all areas have magnitude 1; 
(b) the resistances r,,,,, of the transmission lines are relative- 

ly small compared to the reactances xnm; and 
(c) the differences in bus voltage angles 0, across the lines 

are small, i.e., sin(O,-B,,) = O,,-O, and cos(O,-O,) = 1. 
With these assumptions, reactive power can be disregarded 
in calculating real power flows. As a result, real power 
flow P,,,,, from m to 11, n>m, in p.u., can be calculated as: 

Under the DC assumptions, node m ' s  KCL equation is: 

Basic Model. 

p,, = (0, -en> /x,m, Vm I1 (1) 

P, = -E P & +  P~ m=1,2, ..., M (2) 
? ? - I  M 

k=l  I;=,?L+l 
where P, is the net power injection from node m into the 
network. Now, let Z be the number of flows P, (i.e., the 
number of branches in the network, since Pm=-Pm). 
Equation (2) involves only M-1 independent equations, 
since the equation for node M i s  just the sum of the equa- 
tions for nodes P,..,M-I. Thus, if we arbitrarily define 
19,=0, that equation plus (1),(2) gives Z+M independent 
equations. Fixing the power injections P,,, and the reactan- 
ces x,, these Z+M equations can be used to solve for the 
2 P,'s and the M 0,'s. These equations represent the DC 
power flow model of our transmission network, which 
satisfies both KCL and KVL. 

P, in turn can be expressed in terms of the generation 
and load variables for our multiarea costing model [7]: 

P," = gi + uen, - Ln, rn = 1,2,. . . , M (3) 
i€ i (m)  

where i(m) is the set of indices of generation units located 

in area m,  g, is the generation of unit i ,  L, is the load 
(power demand) in area m, and ue, is the unserved energy 
at m. Thus (2) becomes: 

,-I A4 

(4) g i + u e m + C P h -  Pd=Lm m=1,2,..,M 
iEi(m) k=l k=m+I 

Equations (1),(4) and Om=O also constitute a DC load flow 
model, and can be solved for flows and angles if the gener- 
ation, loads, and unserved energy are given. 

Eliminating 0, These linear equations could be in- 
cluded directly in the probabilistic production costing mod- 
el of Sections 111 and IV. Constraints could then be added 
to limit power flows over individual lines and through 
interfaces. But to reduce the model's size, it is helpful to 
eliminate the 8, variables. Schweppe et al. [4] present a 
compact way of doing so, involving matrix manipulations 
of (1) and (2). However, we prefer an altemative formula- 
tion that eliminates the e,,, while preserving KCL in the 
form (4). This fits our model because the upper bound in 
our solution procedure (Section IV) exploits the dual vari- 
able for that constraint. 

This approach develops KVL analogues which, togeth- 
er with the KCL equations (4), are a DC load flow model. 
2-(M-1) independent KVL equations are required and can 
be directly written as follows. Since the network of our 
power system is a connected graph, a tree can always be 
specified for this network. Denote this tree by r. The 
remaining 2-A4 + 1 links mn # r define the corresponding 
"cotree." Each link on the cotree defines a loop with some 
branches from the tree 7 .  For a loop consisting of link 
mn # 7 and links nm,, t r i p z ,  . . . , m,p E 7 ,  we can express 
its KVL as follows: 

By ( I ) ,  we can rewrite (5) as follows: 

More generally, let rs E B,, be the set of links on the loop 
(including mn itself) associated with branch " 7 ,  As- 
sume that in each rs, r and s occur in the order in which 
they are encountered around the loop. Then the 2-(M-1) 
KVL equations can be expressed as: 

xrSprs = O  m n 4 r  (7) 
rs E Bn, 

Equations (4),(7) constitute the Z equations of the DC load 
flow model, and uniquely determine the Z flows P,,. 

111. PRODUCTION COSTING & DC POWER FLOW 
In this section, we formulate the 

multiarea electric power system production costing problem 
based on the DC transmission network model of Section 11. 

Consider a power system with I generation units locat- 
ed in M areas which are connected by a transmission grid 
that can be represented by the aforementioned DC flow 
network. The following assumptions are made to simplify 
presentation of the basic method, although most are not 
necessary for the algorithm of the next section [13]. For 

Model Definition. 
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the expected flow on each, tieline. 
Now consider 

the solution of the probabilistic production costing problem 
(8)-(13). Similar to the development in 171, a direct yet 
impractical approach is to compute Cfl) for each possible 
value of state X ,  where 

Solution by Exhaustive Enumeration. 
planning purposes, the marginal cost for each unit is con- 
sidered constant over its range of output and unit outages 
are independent. Also assume that unit commitment ,and 
minimum run considerations can be ignored, that transnlis- 
sion outages are negligible (from the point of view of 
expected production costs), and--for the moment--that loads 
in each area are constant. Define the system outage slate 
X= {&}, a vector of dimension I ,  in which X,= fraction of 
capacity of generation unit i that is available, i=1,2, ..., 1. 
Thus X,= 1 indicates that unit i is available, while X,=O 
means that i is on outage. These assumptions yield the 
following multiarea production costing problem, which is a 
stochastic linear program (LP): 

r 7 

I I I  M I 1 (8) 
E{C(X)} = E  Min Cigi +E CUE,,uem I g, t ,ue  [Z m=l 

subject to: 
KCL: 

t: g i + u e m + c  n f m  (t,,-t,,J=L,, m=1,2,. . ,M ( 9 )  
i Ei(m)  

K K :  

xrs(trs - t,) = 0 mn 4 r (10) 

(11) 

(12) 

TSEBmn 

Lower and (random) upper bounds on generation: 

Flow upper bounds: 

Nonnegativity of unserved energy: 

0 I gi 5 XiCAPi i = 1,2 ,..., I 

0 I tm I T,,,, n,m = 1,2, ... ,M 

ue,,:>O m=1,2 ,..., M (13) 
where: 
Cf l )=  minimum cost achievable, given outage state X 
Ci= variable generation cost ($/MWh) of unit i 
CUE,,= social cost of unserved energy ($/MWh), area. m 
CAPi= capacity (MW) of generation unit i 
E{ ) = expectation operator 
g= {g,} = vector of power generation 
ue= {uqn} = vector of unserved demands 
t= { tmt}  = vector of nonnegative (artificial) flows. The use 

of nonnegative flows f,,,,, (instead of unrestricted 
Prim) in (9), (10) and (12) is necessary because we 
use LP (Simplex) algorithms to solve the problem. 
The DC load flow model has been converted by 
substituting t,,-t,, for P,, in (4),(7). 
real power transfer capacity from area m to area 
n. Since volt-ampere flows typically exceed real 
power flows by 5 %  to 15% (depending on the 
power angles), T,, should be lowered by a small 
amount (say, 10%) if it is based on VA rather 
than real power limits. 

To put it another way, the expected production cost is the 
optimal value of the objective function of a stochastic op- 
timization problem in which the decision variables are 
generation and power flows. The constraints include KCL 
(9), KVL (lo), and bounds upon the variables. (Cons- 
traints can also be put upon selected sums of the t,,, to 
represent interface flow limits.) By solving this problem, 
we can obtain the expected production cost, the expected 
generation of each unit, the marginal cost of each area, and 

Tm= 

subject to (9)-(13). Recognizing that this is a deterministic 
LP, the algorithm is conceptually straightforward. Then 
the expected production cost E{C(X)) can be calculated as 

where P(x) is the probability that the outage state takes 
value X .  Since we assume that the outages of the genera- 
tion units are independent, this probability can be calculat- 
ed as the product 

E{C(X))  = P(X)C(X) (15) 

. .  

where 0 I r i s  1 is the forced outage rate (FOR) of unit i ,  
and P(X,=O)=ri, P(X,=I)= 1-ri. Of course, this straight- 
forward approach is infe:asible for large systems, as the 
number of LPs that need to be solved is 2'. Another solu- 
tion method must be sought. In the next section, we sum- 
marize a practical approach based on calculating upper and 
lower bounds to the true expected cost, building upon [7]. 

IV. SOLUTION BY BOUNDING-BASED APPROACH 
Our approach to solving (8)-(13) is to construct upper 

and lower bounds on the production cost, and then tighten 
the bounds by partitioninlg the state space until a satisfacto- 
ry approximation is achieved. 

Generally speaking, bounds upon the expected optimal 
cost (8) are defined below [7]: 

(17) Lower bouind: LB = C(E{X)) 

where C(xlt) is the minimum cost of production and un- 
served load under generator state X ,  given transmission 
flows t .  That is, cost is optimized for a fixed set of flows. 

Lower bound computation. The lower bound (17) is 
the "derating cost" and can be computed by solving a LP. 
The derating cost C(E{X)) is the solution of the following 
optimization problem: 

Upper bound: UB = Mint E{ C(Xl t ) }  (18) 

M 

C(E{X})  = Min Cigi + E CUD,,,UC,~, 
b>f.ue i=l m=I 

subject to 

0 I gi I E{Xi}iCAPi = (1 -r,)CAp, vi (20) 

along with constraints (9,10,12,13). This is a deterministic 
multiarea production costing problem that uses derated 
capacities for the generation units. It can be shown that this 
gives a lower bound by considering (a) that the optimal 
value of a LP is a convex function of the right hand side of 
the constraints and (b) Jemsen's inequality [7]. Note, how- 
ever, that unlike the case of the transportation network- 
based model [7], a minimum flow network algorithm can- 
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not be used here because of the presence of constraint (10). 
Of course, a general LP code can still be used. 

Upper Bound Computation. Equation (18) is the pro- 
duction cost, given that (a) the same transmission flows t 
are imposed upon all states and (b) t is optimized. This 
equation is an upper bound to E{Cfl))  since the expected 
cost resulting from imposing the same transmission flows t 
on all the states can be no less than the cost that results 
from allowing t to be tailored separately for each state. 

The upper bound (1 8) can be calculated by generalized 
Benders decomposition (GBD), an iterative procedure that 
breaks an optimization problem into a master problem and 
subproblems 1141. As in [7], we define a master problem 
that determines a trial value of flows t ,  and subproblems, 
one per area, that calculate the expected production cost 
and unserved energy for each area, given that value o f t .  
The GBD procedure iterates between the master and sub- 
problems until a convergence criterion is satisfied. 

For the DC flow problem, the master problem in itera- 
tion J of the algorithm can be stated as the following LP: 

Min { c} (21) 
1, c 

subiect to (10) and (12) and 

c= the objective function value (expected production 
cost of the current trial solution). 
area m's expected production cost, as calculated 
by the subproblem for each area m in previous 
iteration j .  
area m ' s  expected dual multiplier, as calculated by 
the subproblem for each area m in iteration j .  It 
equals the expected value of the dual variable to 
the demand constraint (24) (defined below) in that 
subproblem. 
transmission flow from area rri to area n in the 
master problem solution for iteration j .  

In the J"h iteration, the master problem yields flows t = 

t(J)s which are then sent to the subproblems. The subpro- 
blem for area m in iteration J is the familiar single area 
probabilistic production costing problem, just as in our 
transportation network-based model [7]: 

- 
A: = 

tE= 

(23) 
subject to 

0 I gi I XiCAP,,  v i  E i(m) (25) 

uem 2 0 (26) 
The right side of (25) is stochastic because generator avail- 
abilities Xi are random. Here, the flows t:: from iteration 
J ' s  master problem are fixed in iteration J ' s  subproblems. 

Convolution [e.g., 121 for single area probabilistic pro- 
duction costing can be used to solve the subproblems. 
Convolution is necessary because of the random upper 
bounds to generation (25), and Section VI'S extension to 

include random loads. Our GBD algorithm can be proven 
to have finite step convergence in a manner similar to [7]. 

The two bounds defined above are tightened iteratively 
by partitioning the outage state space and calculating 
bounds for each subset. Three alternative partitioning 
methods are described in [13]; version 1 is most appropri- 
ate for smaller systems, while versions 2 and 3 have been 
found to be more efficient for larger systems. In each 
iteration, the outage space is partitioned further, and recur- 
sive formulas are used to calculate the inputs required by 
the upper and lower bound models. If the resulting updat- 
ed bounds are not tight enough, each subset's bounds are 
compared to decide which subsets need to be further parti- 
tioned. This partition process continues until LB and UB 
are sufficiently close. The convergence of the bounds to 
the true expected production cost ("&-convergence") can be 
proved similar to [7]. Practical convergence experience is 
documented in [ 131 for transportation-based models. 

V. COMPUTATIONAL EXAMPLES 
A. A Simple Example 

To permit the reader to reproduce our method, the DC 
probabilistic production costing model is applied to a sys- 
tem having eight small generating units and three areas. 
The DC flow network is from [5], with x,, = 0.2 p.u., x , ~  
= 0.25 p.u., xI3 = 0.4 p.u., respectively. The generation, 
load and transmission flow limits are drawn from [7]: the 
demand in area 1 is 126 MWh, in area 2 is 81 MWh, and 
in area 3 is 89 MWh. The unit of generation is 100 MW, 
and the unit voltage is 31.6 kV. The bi-directional flow 
limits T,, are: 53 MW between area 1 and area 2, 10 MW 
between areas 1 and 3, and 33 MW between areas 2 and 3. 
The unserved energy penalty CUE,,, is 100 $IMWh for all 
m. Generating unit data are: 

Plant 
1 
2 
3 
4 
5 
6 
7 
8 

Area MW $IMWh FOR 
1 100 10 0.1 
1 50 30 0.05 
1 50 30 0.05 
2 75 15 0.1 
2 50 20 0.05 
3 50 15 0.05 
3 25 40 0.03 
3 25 40 0.03 

Now we formulate a production costing problem for this 
system using the DC power flow network. We specify a 
tree with branches 12 and 13 (7 = {12,13}). Following 
the procedure in Section 11, it is straightforward to obtain 
(9)-( 13), with the KVL constraint (10) being: 

This problem is solved below three times: the first for 
deterministic capacity, the second using exhaustive enumer- 
ation, and the third time with the bounding-based approach. 

Simple Problem, Deterministic Capacity. This is a case 
in which X is not random and is set equal to: 

That is, we calculate the production cost of a scenario with 
unit 6 out and all others available. This problem can be 
solved exactly by linear prograinming using (9)-( 13) and 

0.2(t,,-t,,) + 0.25(t23-t3,) - 0.4(tIj-t,,) = 0 

X = [ 1  1 1 . 1  1 0  1 1IT 
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ty partition subsets were considered in the iterations, far 
less than the 256 needed in exhaustive enumeration, with 
less than ten used in the final partition (iteration 6). In 
practice, only the lower bound model using the final parti- 
tion would be used in subsequent production costing runs. 

(14). The results are as follows, in MW: 
g,= 100, g,=20.44, g3=0, g,=75, 

gs=50, g,=O, g,=25, g,=25 
ue,=O, ue,=O, ue,=0.56 

t12=0, t,,=-15.56, t13=10, t,,=O, tzz28.44,  tj2=0 
Total cost equals 5793.8 $/hour. 
following power injections from the areas: 

We can calculate iihe 

PI 100+20.44-126 = -5.56 
P, 75+50-81 = 44 

P3 = 25+25+0.56-89 = -38.44 
These results of our DC network formulation can be veri- 
fied by checking to see that the original DC power flow 
equation (1) is satisfied. Arbitrarily let node 1 be the 
reference node, so that 8, =O. By (1): 

8~=81-~1Z(t1z-f21)/100 = 0.031 1 
83~81-~,,(tl,-t,l)/100 = -0.04 

(The division by 100 MW in the above is necessary to 
convert the MW power flows to per unit flows, assuming a 
100 MW base). Then as a check, tz-t3, (= 28.44 
MW/100 MW = 0.2844 pu) should equal (8,-8,)/xz I:= 

rO.0311-(-0.04)]/0.25 = 0.2844 pu), which it does. 
Of interest is a comparison of this solution to an AC 

load flow. Assume that the line resistances are 10% of 
their reactances. Assume further that the power angles at 
nodes 2 and 3 are 20" and their real power injections are as 
given above. Finally, let node 1 be the swing bus, whose 
voltage magnitude is 1 p.u. and power production (real and 
imaginary) can vary to ensure that the power injections at 
the other nodes can be maintained. 

The AC load flow results are similar to the DC ap- 
proximation. The nonlinear AC load flow equations result 
in node 1 absorbing 5.22 MW of real power rather thlan 
the DC model's 5.55 MW. Comparing the AC real power 
flows along the three links with the above DC results, the 
mean absolute percentage error is 0.8 % . By comparison, 
the transportation algorithm can potentially make errors of 
100% or even more by routing all power over one path. 
On average, the DC power flow understates the AC volt- 
ampere flows by 5.8% because it oinits VAR flows. 

Simple Problem, Exliaustive Etiumeratioii. Now let us 
find the expected production cost for this example by com- 
plete state enumeration: the solving of a LP for each of the 
28=256 possible realizations of X ,  followed by calculation 
of the weighted average P(X)C(X). The exact expecfed 
production cost thus obtained is 

E{C(X)] = 5079.1 $/hour 
For the same example but using the transportation network 
model [4], the expected production cost was instead 
5025.8. In general, inserting the KVL constraints (10) of 
the DC model must lead to higher production costs (or at 
least costs that are no lower). This is because additional 
constraints can only shrink the feasible region, and the 
result cannot be a better value of the objective function. 

Simple Problem, Bounding Method. Now let us find 
the expected production for this example by the boundirig- 
based approach described in Section IV. After 6 partitions 
using the first partition method in [13], we have 

UB, = 5082.3; LB, = 5074.1 $/hour 
Thus the error (UB-LB)/E{C(X)) is less than 0.2%. Twen- 

B. A Larger Example 
This system has 4 areas, and a total of 42 units. If we 

denote unit i in area m as having characteristics m-i = 
(CAPi,ri,Ci), the data for the units are as follows: 

unit 1-1=(700,0.3,14), unit 1-2=(700,0.25,16), 
unit 1-3 = (200,O. 05,lS) ~, unit 1-4 = ( 120,O. 02,25), 
unit 1-5 = ( 100,O. 03,259 ~, unit 1-6 = (50,O. 025,30), 
unit 1-7 = (50,O. 025,50) :, unit 1-8 = (50,O. 025,50), 
unit 1-9 = (50 , 0.025,50) ~, unit 1- 10 = (50,O. 025,50), 
unit 2-11=(800,0.25,16), unit 2-12=(650,0.2,18), 
unit 2-13=(150,0.035,30), unit 2-14=(100,0.02,30), 
unit 2- 15 = (80,O. 05,30) ~, unit 2- 16 = (50,O .025,40), 
unit 2-17=(50,0.025,40), unit 2-18=(30,0.025,40), 
unit 2- 19 = (20,O. 025,50), unit 2-20 = (20,O. 025,50), 
unit 3-21=(900,0.2,16): unit 3-22=(600,0.1,18), 
unit 3-23 = ( 100,O. 02,25), unit 3-24 = ( 150,O. 0 1,25), 
unit 3-25=(100,0.01,30), unit 3-26=(50,0.01,35), 
unit 3-27 = (30,0.025,40), unit 3-28 = (20,0.025,40), 
unit 3-29 = (20,O. 025,45), unit 3-30 = (20,O. 025,40), 
unit 3 31 =(20,0.025,50), unit 3-32=(50,0.025,50), 
unit 3133=(20,0.025,50), unit 4-34=(600,0.3,16), 
unit 4-35=(800,0.25,17), unit 4-36=(100,0.02,30), 
unit 4-37 = (100,O. 0 1,30), unit 4-3 8 = (80,O. 02,35), 
unit 4-39 = (50,O. 0 1,40), unit 4-40 = (30,O. 025,45), 
unit 4-41 = (30,O. 025,45), unit 4-42 = (20,O. 025,SO). 

The hi-directional flow limits are: Tl2=3O0 and T,3= 
TI,= TZ3= T2,= T,=200, in MW. The loads are L, = 1220, 
L,=1285, L3= 1188, and L,,= 1350, in MW. The unserved 
energy penalty CUE,,,= 100 $/MWh for mi= 1,2,3,4. The 
reactances of the network ,are x j4=2  p.u., and x12=x13=x14 
=x2,=x2,=l p.u.. By the procedure developed in section 
11, the corresponding KVL. constraints (15) can be: 

(t24-t42) + (t41-t14) + (t12-t21) = 
2(t43-t.34) + (t31-t13) + (t14-t41) = 

(t12-t21) + 023432) + (t31-t13) = 0 
Using the bounding-based method, the initial iteration 

yields the following initial bounds on the expected cost: 
UBO=113,682; LB,=86,750 $/hour 

Thus the initial gap (UB-LB)/LB is 3 I % . After 8 partitions 
using the first partitioning approach in [13], about 200 
subsets are created, and the gap reduces to 0 .44%, with 

UB,=97,030; LB,=96,606 $/hour 
As a comparison, we also compute the production cost 

for this system but assuinirig a transportation network--i.e., 
where flow paths can be chosen [13]. The initial "gap" 
(UB-LB)/LB is 31 % (UB,==113,681, LBO= 86,750, identi- 
cal to the DC model). After 8 partitions, and the gap falls 
to 0.28% (UB,=95,224, LB,= 94,958). Thus, the trans- 
portation model cost is about 2 %  less than the 

VI. EXTENSIONS: LOSSES AND VARYING LOADS 
Simple extensions of the probabilistic production cost- 

ing model (8)-(13) woulcl increase its realism. For in- 
stance, more complex representations of generators (such 

cost. 
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as must-run levels and partial outages) can be handled 
using standard probabilistic production costing formulations 
[ 121. More complicated transmission formulations are also 
easily included, among them multiple lines between a pair 
of areas and interface constraints that limit the total flow 
over a set of lines. Basically, any transmission constraints 
that can be formulated as linear equalities or inequalities 
upon flows can be included in the model without posing 
difficulties for the probabilistic costing procedure. 

In this section, we discuss two possible extensions in 
more detail: the case of varying loads and the generaliza- 
tion of our DC network model to include resistance losses. 

Including Varying Loads. A generalized version of (8) 
that considers variations in loads is 1131: 

subject to (9)-(13). L is the system load state, which is a 
vector L={L,,,}, with L,  defined as in (3). Since load data 
are usually stored and used in hourly form, we consider L 
to be a discrete random vector with N possible values, each 
representing the load in one hour and having a probability 
of 1IN. N is the number of hours in the period to be simu- 
lated. As a result, the sample space is now the set of all 
possible capacity and load states {X,L}. The probability of 
a particular state is P(X,L).  

To solve this problem, one obvious but inefficient ap- 
proach would be to repeat the production costing calcula- 
tion for each hour in the planning period. The other ex- 
treme is to calculate costs using the average load. Howev- 
er this might badly underestimate the cost. 

A practical approach is to group loads into a few (say, 
H) subsets of fairly similar loads using cluster analysis 
[ 131. Then the H averages of each load cluster are used in 
the lower bound production costing runs, while the load 
distribution within each cluster is used to create the single 
area load duration curves used in the upper bound runs. 
The resulting H estimates of the upper and lower bounds 
are weighted by their corresponding hours to obtain the 
expected production cost. As shown in [13], this proce- 
dure preserves the property that the resulting solutions are 
lower and upper bounds, respectively, to the true expected 
cost. Those results remain applicable here because they 
only require that the constraint set of the models be linear, 
as they are for the DC flow model. 

We anticipate that computational experience will be 
similar to that with the transportation model [13]. With 
that model, we found that 10 or so load clusters capture the 
bulk of the variation in loads, and that little additional 
accuracy is obtained by further subdividing the loads. We 
also found that load variations and capacity outages con- 
tribute roughly equally to the gap between UB and LB, and 
that both load clustering and partitioning of the outage 
space are needed for precise estimates of expected cost. 

Including Resistance Losses. Because resistance losses 
can significantly increase generation costs and line load- 
ings, an important improvement in our DC multiarea prob- 
abilistic production costing model would be their explicit 
inclusion. Under the assumptions made by the DC load 

flow model (Section II), the real power loss PL, due to 
power flow from m to n can be approximated as [4]: 

where E, = complex voltage of node m. Consistent with 
the DC assumption that I E,,, I = I E,,/ = 1 p.u., we get: 

where a,,,,, is the constant term involving r,, and x,. 
As an example, consider the flow of 15.56 MW 

(0.1556 p.u.) on the link between 1 and 2 in the simple 
deterministic example at the start of Section V. If r,, = 

0. lx,,, = 0.02, then = 0.202. Then, by (29), the loss 
on that line is 0.00049 p.u., or 0.049 MW. For the entire 
network in the deterministic problem, if resistances are 
one-tenth the magnitude of the reactances, then the total 
loss obtained by (29) (0.29 MW) is close to the loss from 
the AC load flow model described in that section (0.33 
MW). The difference is primarily due to DC’s model 
disregarding of the effect of VAR flows on losses. 

Building upon these results, we propose the following 
generalized DC network production costing with resistance 
losses. There are two differences compared to (8)-(13): (a) 
deduction of the loss associated with t,, from the power 
balance at node n;  and (b) construction of a piecewise 
linearization of the quadratic loss function. The model is: 
minimize expected cost (27), subject to: 

PL, =am jtm-t,I* (29) 

plus constraints (10,11,13). The new notation includes: 

th = MW flow for segment k of the flow tm, k= 1,2, 
..,L. This segmentation is necessary for the 
piecewise linearization. Note that Ck t,:,,, = t,,,,. 
upper bound for segment k of the flow t,,,,, (MW), 
such that E, Tfw, = T?,,,. 
resistance loss factor for segment k of the flow t,”,, 

0 1  fl:v,c < 1. This is the slope of segment k of the 
piecewise linear approximation of (3 1): 

Ktw, = 

pi,, = 

PL, = (32) 

This expression is the loss that occurs if t ,  is positive and 
t,,, is zero. The loss is deducted from the power flowing 
into node m, as shown in (30). Because (29) is a convex 
function, @,:, < p”,’, for k l  < k2. (Note that it will generally 
be suboptimal for a t,,,, and its opposite t,v,L to both be posi- 
tive, since that will inflate losses. In most optimal solu- 
tions, only flows in one direction will appear in the solu- 
tion; thus I t,,,-t,,,,, 1 will equal whichever of the two flows is 
positive. Further, the segments k= 1,2,. . ,L will enter the 
solution in the correct order, since the optimization algo- 
rithm will choose the segments with the lowest loss rates 
first. Thus, (32) will be an approximation to a,m, I t,-t,,I ’.) 

The piecewise linearization has removed the nonlineari- 
ty (quadratic losses), yielding a LP. Since the upper and 
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lower bound models of Section IV can accommodate any 
linear constraints upon transmission flows, the model i:an 
be solved by our bounding approach. Thus, this is the first 
convolution-based multiarea probabilistic production cost- 
ing model to include resistance losses; previously, losses 
have only been included in chronologic models [lo]. 

Returning to the simple deterministic example in Sec- 
tion V,  an implementation of the above method using a 
three piece approximation (L = 3) yields a good approxi- 
mation to the exact DC load flow results (losses of 0 31 
MW, compared to 0.29 MW in the quadratic DC simula- 
tion and 0.33 MW in the AC simulation). As an example 
of the coefficients, if CY,, = 0.0202 for the line between 1 
and 2, and that line's capacity T,, of 53 MW is split into 
three equal segments of T:, = 17.7 MW apiece, then: 

Pi,=&, =0.0036; &,=/3:, =0.011; p:, =p : ,  =0.018. 
These values were obtained by matching the vertices of the 
piecewise approximation with the actual quadratic function. 

As noted above, our piecewise linearization assumes 
that the segments will come into the solution in order of 
increasing &,,. This will occur in the optimal solution if, 
as is usually the case, the marginal cost (spot price) of 
power at a node m is positive. But because of KVL, il is 
possible for the spot price at a m to be negative; i.e., for 
an increase in load at m to result in lower total generat ion 
cost (a simple example is presented in [151). As a result, 
the high loss segments (high /3k) might enter the solut on 
before the low loss segments, which would exaggerate 
losses. Yet negative spot prices/marginal costs are rela- 
tively rare in practice, so for planning purposes we believe 
that this approximation of resistance losses will be a useful 
one. If this problem does occur, it can be readily identi- 
fied by noting if high loss segments for mn are in the solu- 
tion when its low loss segments are not. In that circum- 
stance, the easiest fix is to use a one-piece approximation 
for mn's losses; this inflates losses somewhat, but much 
less so than if mn's segments enter in the wrong order. 

VII. CONCLUSION 
The usefulness of the bounding-based method For 

multiarea probabilistic production costing [7,13] has bcen 
enhanced by the modeling of loop flow phenomena by 
incorporation of a linearized DC load flow model. The 
method is demonstrated on two systems, and extensions to 
random loads and resistance losses are summarized. Re- 
search is now needed on the incorporation of this model 
into procedures for distributed planning of utilities and 
evaluation of power transactions. 
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