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Optimal Generation Mix With Short-Term
Demand Response and Wind Penetration
Cedric De Jonghe, Benjamin F. Hobbs, Fellow, IEEE, and Ronnie Belmans, Fellow, IEEE

Abstract—Demand response, defined as the ability of load to
respond to short-term variations in electricity prices, plays an
increasingly important role in balancing short-term supply and
demand, especially during peak periods and in dealing with fluc-
tuations in renewable energy supplies. However, demand response
has not been included in standard models for defining the optimal
generation technology mix. Three different methodologies are
proposed to integrate short-term responsiveness into a genera-
tion technology mix optimization model considering operational
constraints. Elasticities are included to adjust the demand profile
in response to price changes, including cross-price elasticities
that account for load shifts among hours. As energy efficiency
programs also influence the load profile, interactions of efficiency
investments and demand response are also modeled. Comparison
of model results for a single year optimization with and without
demand response shows peak reduction and valley filling effects,
impacting the optimal amounts and mix of generation capacity.
Increasing demand elasticity also increases the installed amount
of wind capacity, suggesting that demand response yields environ-
mental benefits by facilitating integration of renewable energy.

Index Terms—Demand response, energy efficiency, generation
technology mix, load management, wind power generation.
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Reference energy efficiency expenditures.

Own price elasticities.

Cross price elasticities.

Fixed investment costs.

Generation output level.

Index for generation technologies.

Index for hours.

Quantity weighted average reference price.

Hourly energy price with demand .

Inverse short-term demand response function.

Equilibrium price corresponding to function .

Variable investment costs.

Dual variable of capacity constraint.

Elasticity of demand with respect to energy
efficiency expenditure.

Efficiency-price cross elasticity of demand.

I. INTRODUCTION

L ARGE-SCALE wind power development affects short-
term operation of the electricity system, as well as the

optimal generation technology mix. In operations, wind signifi-
cantly increases the variability of generation. Fluctuations in the
amount of wind power fed into the grid require compensating
changes in the output of flexible generators. As flexibility of
conventional generation technologies is restricted by technical
constraints, such as ramp rates, the increasing need for flexible
generators should be considered when defining the optimal gen-
eration technology mix.

Demand response can be another source of this needed
flexibility. Integration of smart grid technologies in the power
system creates opportunities to more efficiently balance supply
and demand. In 1988, Schweppe [1] proposed real-time pricing
to incent consumers to modify their loads in response to system
conditions, for example trimming peak loads or shifting them
to off-peak periods. Although Schweppe’s vision has gone
largely unfulfilled, interest in demand response has grown
recently in part because such response can also help power
systems adapt to short-term variations in renewable energy
supplies [2]. Unfortunately, a lack of real-time billing has
prevented most consumers from seeing and responding to
real-time prices, resulting in inelastic demand in short-term
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[3]. Consequently, traditional models have disregarded demand
response, suggesting the optimal generation technology mix
given projected load levels, and neglecting the potential for
short-term demand elasticity to trim peak loads and manage re-
newable energy fluctuations. But because demand response will
be increasingly important in the future, these models need to
be enhanced in two ways. First, dynamic operating constraints
should be included, in order to value the flexibility contributed
by both new demand- and supply-side resources in the face of
increased penetration of renewables. Second, the representation
of demand should include own- and cross-price elasticities,
respectively allowing consumers to adjust consumption or shift
it in time.

This paper is organized as follows. First, in Section II, we re-
view how models can define the optimal generation technology
mix. Then in Section III, three methods are suggested to inte-
grate the short-term demand response into a linear program-
ming (LP)-based model. This model represents generator oper-
ating flexibility by including chronologic dispatch constraints.
The model is also extended to account for investments in en-
ergy efficiency, and their potential impact on the amount of de-
mand response. Results of an example application are presented
in Section IV, followed by conclusions in Section V.

II. LITERATURE REVIEW

The LP formulation of the investment and operating cost min-
imization problem was first presented in [4] and offers solutions
relevant to a regulated market or central planning context. These
models define the optimal type, timing, and, in some cases, lo-
cation of new plants, considering a time horizon of 20 years or
more [5].

The basic model formulation has been extended in the past
two decades to include variables and constraints that account
for the following features: optimal plant scheduling, system se-
curity, installed reserve margins [6], and regulatory constraints
such as emissions caps. Resource attributes such as must-run ca-
pacity, operating reserve capabilities, and requirements for pe-
riodic maintenance [7] can also be added.

Although LP models have been successful because of their
ability to model large problems, mixed integer programming
must be used when binary variables are associated with invest-
ment projects or non-convexities, such as minimum run levels
and minimum up- and downtimes.

Stochasticity has also been incorporated, accounting for
random plant outages and uncertain scenarios concerning
economic and technology drivers [8]. By adding uncertainties
(standard deviations) and correlations of different cost compo-
nents, optimal risk-cost portfolios can be found [9].

In general, the above-mentioned investment models un-
dertake a sophisticated supply-side analysis while greatly
simplifying the demand-side. Demand distributions are typi-
cally described by a load duration curve, constructed by sorting
load in order of decreasing hourly values, or an approximation
based on discrete load steps [8]. This representation loses
information about critical low and high load situations, as
well as chronologic hourly variability. Load chronology was

disregarded under the assumption, held for many years, that
interperiod operating constraints are unimportant to investment
decision making. However, this assumption is no longer tenable
when there is a large amount of variable energy.

In the 1970s, the energy crisis triggered public awareness of
the potential benefits of energy conservation, and utilities recog-
nized that demand-side options could be seen as an alternative
for satisfying customers’ demand. The challenge in the 1980s
for the utilities was to integrate the concept of influencing de-
mand into traditional planning models [10]. The paradigm of
integrated resource planning (IRP) resulted [11]. Energy effi-
ciency is the most widely pursued type of demand-side man-
agement (DSM) [10], while peak clipping programs were also
important. These programs can be driven by utility or govern-
mental DSM subsidies, or result simply from consumers re-
sponding to higher average prices by making investments in
equipment that reduces consumption. Such investments can be
viewed as a long-term demand response to average price levels.

A few early IRP models included this long-term price re-
sponse [12], without considering how consumers might respond
in the short-term to hourly varying prices. This was valid as
long as consumers did not see spot prices, which used to be
the case. However, as demand response programs become
more common, this assumption is no longer valid. A more
sophisticated example of this type of model considered the
time lag or response gap until the next invoice period, resulting
in medium-term consumption adjustments [13]. More recently,
economists have considered the benefits of enabling consumers
to see and react to short-term prices. The impact of varying the
share of customers who respond to short-term prices is explored
in [14]. Long-term efficiency gains from implementing demand
response along with real-time tariff structures are calculated
in [14] and some degree of demand elasticity is included in
[15]. A supply function equilibrium approach is used in [16] to
model oligopolistic competition in a capacity expansion model,
in an elaboration of the more traditional approach of assuming
perfect competition. Special attention is paid to electricity
prices and the resulting optimal installed generation capacities.

However, these papers treat generation in simplified manner,
disregarding short-term operational and interperiod constraints.
Further, none of the above models considered how DSM pro-
grams interact with demand response; by decreasing overall
loads, aggressive efficiency programs may lower the extent
to which consumers can adjust consumption in response to
short-term price variations.

This review of the literature indicates that there have been no
generation technology mix models that simultaneously integrate
energy efficiency programs, demand response to hourly varying
prices, and dynamic operating constraints. In the next section,
we propose such a model.

III. MODEL DESCRIPTION

A. Basic Model With Operational Constraints

First we describe a basic cost minimization model that ex-
cludes demand response. This cost minimization model can be
viewed as either or both of the following situations:
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• a simulation of a perfectly competitive market in which
all market parties are price-takers, and demand in hour

is fixed (perfectly inelastic); in this case, the de-
cision makers are individual generation companies who
react to the market prices.

• an optimization model for a vertically integrated utility.
The model is a static, single node LP model; extensions to in-

clude transmission and multiple years are straight forward, al-
though they increase problem size [6], [8]. On the one hand,
a static optimization allows us to address the question of op-
timal generation technology mix, exploring the effects of in-
cluding a large share of variable renewable power generation
and an elastic demand-side. In an actual planning problem, mul-
tiple years over a planning horizon would be considered in a
fully dynamic model; there is no obstacle to doing so. Such a
model would consider an existing fleet of plants as well decom-
missioning of older generation plants. It could also help illus-
trate how a transition toward more renewables and simultane-
ously a more responsive demand-side would occur. A multiple
year optimization would also allow consideration of the tech-
nology-specific lead time for construction.

The cost minimization objective function is subject to a
system energy balance constraint (supply in each hour equals
demand), as well as capacity and operational constraints. With
a fixed demand profile, the model pursues the reduction of
system costs , including fixed and variable
costs for each technology . The installed generation capacity

and generation output in hour are decision
variables, respectively representing the optimal investment
decisions and plant scheduling.1 The system cost minimization
instantaneously satisfies the system energy balance require-
ment and is subject to constraints among which chronological
constraints that account for the need for operational flexibility.

The application considers four thermal generation technolo-
gies. Consideration of more types of generation technologies
would be appropriate in a real study. However, since broad tech-
nology classes are considered, no fundamentally different in-
sights would be obtained. Therefore, in the interest of simplicity
and transparency, the number of generation options considered
has been limited. Wind power is modeled as an hourly profile
(% of capacity), multiplied by a decision variable representing
installed capacity (MW). Hourly variability is incorporated, as-
suming perfectly predictable output. Energy storage, using a
pumped hydro facility, can be used to ensure the system en-
ergy balance. Excess wind power injections can even be cur-
tailed. Generation output is restricted by a must-run constraint
for base and mid load generation technologies. Forced outages
are handled by derating, a common approach in linear program-

1Lumpy investment constraints, utilizing binary variables, are not included.
Even though lumpiness better represents reality, because power plants come in
discrete and indivisible sizes, binary variables require mixed integer optimiza-
tion modeling. Mixed integer models are harder to solve, limiting the number
of time steps that can be included into the model defining the optimal genera-
tion technology mix. Thus, the decision to include binary variables is based on a
tradeoff between the need for realistic generator sizes versus the need for more
realistic production costing through consideration of more hours. Because our
system is relatively large, the impact of disregarding lumpiness constraints is
less than it would be for smaller systems.

ming and especially in capacity expansion. As an exception,
probability production costing models, which account for the
effect upon expected generation costs and customer outages of
random plant forced outages, have been incorporated into the
LP approach by decomposition methods [17], [18]. Also peri-
odic maintenance could be handled by the usual means of der-
ating capacity during months in which such maintenance takes
place. Ramping constraints are included, limiting hour-to-hour
output changes. Finally, positive and negative balancing require-
ment constraints are included enforcing upward and downward
generation flexibility, respectively. Balancing requirements de-
pend on the amount of projected wind power injections. The full
model is presented in [19]; to explain how we include demand
response, we use the below simplified version:

(1)

(2)

(3)

B. Representing Short-Term Demand Response

This subsection illustrates how a short-term demand func-
tion with cross-elasticities is constructed, which we then include
in the optimal generation technology mix model. To represent
short-term demand response, elastic demand functions have to
be calibrated for each hour. We express quantity demanded as
a function of the energy portion of the retail price (excluding
fixed charges, such as transmission and distribution).2 This is
done by defining a reference price and quantity demanded for
each hour , and then using elasticity assumptions
to fit a demand curve through that price-quantity pair. The ref-
erence quantity demanded is based on a load forecast. The ref-
erence price is obtained by applying the LP model to the ref-
erence demand levels. The reference price , assumed to be
the same in all hours, is the quantity weighted average of the
hourly (marginal) energy prices over the time horizon
[(4), below]. Those hourly marginal energy prices correspond
to the dual variable of (2).

In other words, the reference price-quantity pair is the anchor
of a linear demand function (Fig. 1). The slope of the function is
determined by the price elasticity assumptions, including both
own-price elasticities and cross-price elasticities ,
with hours not equal to . The inclusion of price elasticities
yields a short-term demand response function [(5), below]
that expresses quantity demanded as a function of rela-
tive deviations from the reference price level . Inverting
the function gives the inverse demand function (6), ex-

2Price elasticities describe the percent change in quantity demanded in re-
sponse to a 1% change in retail price. If instead expressed as a function of per-
cent changes in bulk prices, the elasticities are smaller (as a given�/MWh price
change would be a higher percentage of bulk prices than of retail prices).
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Fig. 1. Construction of a short-term elastic demand function for hour � .

pressing the equilibrium price . We use this form in our
model, with parameters and , after simplification:

(4)

(5)

(6)

with parameters

(7)

(8)

C. Methods to Include Short-Term Demand Response

When short-term demand response is integrated into the gen-
eration technology mix model, minimization of generation costs
does not yield sensible results, because that would disregard the
benefits consumers receive from electricity consumption [20].

Three different methods to integrate short-term demand elas-
ticity into an LP investment model are presented below. Ex-
cept for possible numerical approximation errors, each yields
a solution that corresponds with the equilibrium conditions that
supply equals consumption and that the marginal value of con-
sumption (price) from the demand function equals the marginal
cost of supply in each period (accounting for both marginal in-
vestment and operations costs). The demand function is (5);
supply marginal cost is instead an implicit function that is cal-
culated by the LP.

We now summarize how demand response is included by the
three methods by referring to the simplified version of the basic
model [(1)–(3)]. In each method, quantity demanded in
hour is now a decision variable, replacing the basic model’s
fixed demand in the right side of (2). The first method
(complementarity) directly solves a set of mathematical con-
ditions that include the first-order conditions of a version of
(1)–(3) whose objective instead maximizes revenue (price times
quantity sold) minus cost, together with the inverse demand
function (6); together, these form a competitive equilibrium
model. The second (quadratic programming, QP) solves a
version of (1)–(3) in which the objective function is a total

surplus or “pseudo-welfare” function that maximizes the inte-
gral of the inverse demand functions minus cost; the first-order
conditions of that model are equivalent to the complementarity
model. The third approach (PIES algorithm) iteratively solves
a version of (1)–(3) in which the objective is a piecewise linear
approximation of the pseudo welfare function, refining the
approximation in each iteration.

1) Complementarity Programming Method: A first way to
include short-term demand response is by a complementarity
program model structure, representing a competitive equilib-
rium in which energy suppliers and consumers maximize their
individual profits and consumer surplus, respectively, and the
market clears. The complementarity model solves a system of
conditions including each market player’s first-order optimality
(Karush-Kuhn-Tucker, KKT) conditions, plus market clearing
(supply = demand) [21]. As this model minimizes the cost of
meeting a particular quantity demanded and accounts for de-
mand response to prices, it can be viewed as a model defining
the optimal generation technology mix.

More specifically, consider a revised version of the supply
model in which (1) is replaced by

(9)

and the only constraint is (3), as (2) is no longer needed. refers
schematically to quantity supplied. The KKT conditions of the
profit maximizing generator (9) for variables and are
given by (10) and (11), respectively. The capacity constraint (3)
of this simplified model is condition (12), with its dual variable
given by , which is the marginal value of capacity for that
plant during that hour. Whenever the capacity of technology
during hour is binding, its marginal value can be positive.
Equation (10) shows that in equilibrium, the hourly energy price

equals the sum of the variable generation cost and capacity
shadow price for each generating unit. If one of the generation
types is basic (i.e., is generating a level strictly between 0 and
its capacity), then the price precisely equals its variable cost.
Meanwhile, the equilibrium conditions for consumers, one con-
dition per hour , are given by (14), which is a generalization
of (6) that prevents load from becoming negative. Finally, the
market clearing condition is (14). The dual associated with the
market clearing condition is the hourly (marginal) energy
price that clears the market. Together, (10)–(14) define a mixed
linear complementarity problem (MCP), in which the problem
is to find non-negative ( , , , and ) and free
variables associated with inequality and equality conditions, re-
spectively [22].

Generator KKTs:

(10)

(11)

(12)

Consumer inverse demand:

(13)
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Market clearing:

(14)

The advantage of this method is that more general instances
of the inverse demand function (6) or (13) can be solved, be-
cause the matrix of does not have to be symmetric. The
MCP can be solved by standard complementarity solvers such
as PATH. A disadvantage of those solvers is the limited size of
problems that can be solved, usually an order of magnitude or
more smaller than LP solvers. Another disadvantage is that no
0–1 binary variables can be introduced. Such variables are re-
quired when modeling investment lumpiness.

2) Quadratic Programming Method: A second way to inte-
grate short-term demand response in the model is QP [23]. Con-
tinuous QP models (without binary variables) can be shown to
be a subset of MCP models, since the QP’s KKT conditions
are an MCP [22]. An MCP with short-term demand response
(10)–(14) can be reformulated as a QP if demand and/or supply
functions are linear and the coefficient matrix (8) is sym-
metric. This integrability condition allows construction of an
objective function whose derivative is the inverse demand func-
tion (6). If this condition is unsatisfied, the model should be
solved as an MCP, or it might be possible to construct a sym-
metric matrix that closely approximates the actual matrix.

The QP problem can be seen as a market equilibrium problem
among producers and consumers, each maximizing their sur-
plus. Consistent with Samuelson’s principle [24], under our as-
sumptions, this is the same as maximizing total surplus. The re-
sulting QP is as follows:

(15)

(16)

(17)

The dual variable to (16) is the market price . Compared
to the complementarity method, the QP has the advantage that
adding more constraints does not introduce more dual variables
into the formulation. Additionally, nonlinear optimization soft-
ware is widely availability of nonlinear optimization software,
whereas MCPs need specialized solvers. However, some NLP
solvers may be less robust in finding a global optimum, com-
pared to MCP solvers, but this depends on the problem formu-
lation and NLP solver used. Alternatively, the demand function
has to be integrable in a QP problem, which in the linear case
means that the matrix of need to be symmetric

, this is not a restriction for the complementarity method.

Finally, QPs can include 0–1 binary variables unlike comple-
mentarity problems, but QPs also have the disadvantage of lim-
ited problem size relative to LP solvers.

3) Piecewise Integration (PIES Algorithm): This method
finds the market equilibrium by adding a piecewise linear
approximation of the consumer value function to the basic
model’s objective (1), considering only own-elasticities. The
resulting model is a LP. The approximation accounts for the
marginal effects of changes in quantity upon that surplus. The
LP chooses the optimal hourly demand levels so that the
approximation to total surplus is maximized. The effect of
non-zero cross-price elasticities is considered by iteratively
resolving the LP, in each iteration updating the quantities
demanded using (6). This procedure will converge, assuming
dominance of own-price elasticities (i.e., own-price elasticities
are larger in magnitude than the sum of cross-price elasticities).
The dual of (2) equals the energy price, subject to an approxi-
mation error.

The methodology is introduced in [25] in the context of
national energy models (in particular, the Project Independence
Evaluation System, or PIES), while convergence is mathemat-
ically proven in [26]. Full details of our application of this
methodology to consider short-term demand response when
defining the optimal generation technology mix are given in
[27].

This equilibrium solution is the same as the one obtained by
the MCP and QP methods, as long as own-price elasticities are
dominant. Asymmetric (non-integrable) demand functions can
be considered, which is not possible in the QP method. Since the
PIES method yields an LP, very efficient optimization software
is available, and it is able to solve large versions of this modified
problem (1)–(3). However, unlike the MCP and QP approaches,
it requires the implementation of an iterative solution procedure,
which requires more effort in the form of customized computer
code as opposed to use of standard optimization packages. Addi-
tionally, 0–1 binary variables for unit commitment or new plants
can be included, unlike the complementarity method.

D. Impact of Energy Efficiency Programs

Short-term demand response has been integrated into the
generation technology mix optimizing model as elastic demand
functions, as just explained. An approach to including energy
efficiency programs sponsored by government and utilities is
suggested in this section. Pursuing energy efficiency reduces
hourly electricity consumption, but can also impact the re-
sponsiveness of demand. Positive interactions are possible,
e.g., when consumers buy efficient appliances with built-in
demand response capability [28]. But negative interactions can
also occur, e.g., as efficient appliances, when switched off in
response to higher prices, yield smaller load reductions [29].

Since energy efficiency programs are increasingly popular,
it is desirable to extend the elastic linear demand functions in
order to account for interactions with those programs. In our
extension, the elastic demand function is simplified to account
only for own-price elasticities. Our starting point is to view
the linear, hourly demand function (5) as a Taylor series
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approximation with the second and higher order own partial
terms being dropped. However, our representation (18) has a
non-zero second-order interaction term that accounts for the
interactive effect of energy efficiency expenditures (in
terms of its deviation from a reference level of expenditures

) with short-term prices:

(18)

The first derivative with respect to price as well as energy ef-
ficiency expenditure is negative. The last term, the cross second
partial, is used to account for interactive effects. In (19)–(21),
we replace the derivatives with expressions that include price
elasticity of demand , elasticity of demand with respect to
efficiency expenditures, and efficiency-price cross elasticity of
demand , accounting for the impact of efficiency expenditures
on the responsiveness of demand:

(19)

(20)

(21)

Substituting these expressions yields the final form of the de-
mand function, including interactions with energy efficiency:

(22)

Finally, (22) can be inverted to yield the inverse demand func-
tion that corresponds to (6). This allows (22) to be implemented
using any of the three solution approaches. Note that parameter

could be included as a decision variable in the model (e.g.,
as discussed in [6]), but for simplicity we treat it here as a deci-
sion that is exogenous to the model.

IV. CASE STUDY AND RESULTS

A. Data and Assumptions

We take four thermal generation technologies into account,
i.e., base, mid, peak, and high peak load. Ordering technologies
in terms of decreasing capital cost and increasing operating
cost, the first are nuclear and coal units, respectively, whereas
peak and high peak load technologies correspond to combined
cycle gas turbines (CCGT) and oil- or gas-fired open cycle gas
turbines (OCGT). Annualized fixed generation costs in Table I

TABLE I
ANNUALIZED FIXED GENERATION COSTS

are scaled considering a four-week period (672 h).3 Ramp rate
limits are based upon expert judgment concerning flexibility of
the respective technologies. Lower ramp rates are assigned to
base and mid load technologies. Less stringent ramp limits are
assumed for peak and high peak load generation units [19]. A
must-run requirement of 10% of the total installed capacity is
included for base and mid load generation technologies.4 Total
installed generation capacity is derated by 10%, defining the
available capacity after accounting for periodic maintenance
and forced outages. When operating the pumped hydro unit,
offering additional flexibility at the supply-side, a storage
efficiency of 81% is considered.

Historical wind power and demand data on an hourly step
are used (based on Danish data, http://www.energinet.dk). The
wind power time series is multiplied in the model by the amount
of wind power capacity, a decision variable. A range of annual-
ized investment costs for wind are considered, ranging from 100
k /MW/yr up to 140 k /MW/yr, scaled considering the 672-h
period.5 When the system is in an over-generation situation due
to excess wind power energy supply, wind power injections can
be curtailed at the cost of 30 /MWh.6 Full documentation of
the data is found in [19].

Price elasticities of demand are likely to vary across hours
and there is no obstacle to including them into the model. How-
ever, in the absence of data on this variation and in the in-
terest of simplicity of presentation in this illustrative applica-
tion, elasticities are assumed to be time-invariant. In this anal-
ysis, own-price elasticities of demand of 0.10 and 0.20 are
tested. These numbers are comparable to data in [30] and [31],
after rescaling for transmission, distribution, and customer ac-
count charges. We also consider a range of cross-price elas-
ticities, with aggregated magnitudes of 0.08 or 0.16 over the
previous and subsequent 4 h to ensure symmetry. Only a lim-
ited period of load shifting is considered, assuming that con-
sumers shift loads over relatively short few hours. However,

3Annualized investment costs require discount rate assumptions. Those costs
are calculated using a 10% discount rate. Different discount rates may be used
by GENCOs in their decision making, depending on their financial situation and
their business strategy [37].

4Although this is a low requirement on a per unit basis, it is nevertheless real-
istic when the total installed capacity represents several units. In that case, with
some units being turned off, the 10% must-run requirement for total capacity
would correspond to a higher per unit requirement for the capacity which is still
on.

5The three investment cost levels, 100, 120, and 140 k �/MW/yr and the
resulting wind power installed capacities can be interpreted as a high, medium,
and low wind power integration scenarios, respectively.

6A cost minimizing generator, operating in a perfectly competitive market,
faces an opportunity cost when curtailing wind power if subsidies, such as trad-
able green certificates, are paid per MWh of wind power generation.
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TABLE II
OPTIMAL GENERATION TECHNOLOGY CAPACITY: REFERENCE SCENARIO [MW]

our approach can incorporate other assumptions, such as load
shifting over a longer timeframe or from day to night. Data
about cross-price elasticities over time periods longer than 4 h
are given in [32], whereas demand elasticities within and be-
tween morning, mid-day, evening, and economy periods are dis-
cussed in [33].7 The formulation assumes that consumers have
foreknowledge of hourly prices and reschedule their loads ear-
lier as well as later to avoid high prices. The coefficient matrix is
adjusted slightly to ensure that the integrability condition is sat-
isfied, so the QP method can be used. We solved versions of the
model with symmetric demand functions by all three methods;
their results were the same, as anticipated.

As mentioned above, we express expenditures for energy ef-
ficiency as a percentage of current expenditures . A
0% as well as 50% increased level of expenditures are consid-
ered in separate runs, and both 0.05 and 0.10 values of the
efficiency elasticity parameter are considered. In order to ac-
count for interactions between demand response and energy ef-
ficiency, a 0.0025 and 0.005 efficiency-price cross elasticity of
demand has been assumed as interaction term in (22).

B. Reference Scenario

First, the optimal generation technology mix is calculated for
a reference scenario without real-time demand response. The
optimal capacity levels are shown in Table II for different levels
of wind investment costs. Unsurprisingly, the lowest wind in-
vestment cost assumption (100 k /MW/yr) incents the most
installed wind capacity. By subtracting wind power generation
from initial load levels, a net demand profile is found, illustrated
by the “no response” line in Fig. 2. Wind power curtailment is
allowed in order to eliminate excess injections during high wind
periods, e.g., around hour 27. Consequently, the price would
have plunged to the curtailment cost of 30 /MWh at that time.

The impact of ramping constraints in the model without short-
term demand response is discussed in [19]. Table II shows that
in the highest wind penetration case, base load technologies
are strongly reduced. One possible reason for this is that the
levelized cost of wind power (38 /MWh at an average ca-
pacity factor of 30%) is less than the levelized cost of base load
plants (48 /MWh, at a capacity factor of 90%). However, lev-
elized cost comparisons may be misleading for comparing inter-
mittent and dispatchable generating technologies because they
fail to take into account differences in the production profiles
of intermittent and dispatchable generating technologies. Typi-
cally, levelized cost comparisons overvalue intermittent gener-
ating technologies compared to dispatchable base load gener-

7Including positive cross-price elasticities over a longer timeframe counter-
acts negative own-price elasticities in the respective hour. In order to prevent
from those negative modeling elements, and for illustrative purposes, only a 4
period timeframe is considered.

Fig. 2. Net demand: �0.20 own/�0.16 cross-elasticity (100 k �/MW/yr).

Fig. 3. Price comparison:�0.20 own/�0.16 cross-elasticity (100 k�/MW/yr).

ating technologies [34]. Another explanation is evident in the
partial replacement of base load capacity with mid load gener-
ation technologies. This is because the latter offers more flexi-
bility to deal with the high variability of net demand. Demand
valleys, corresponding to low net demand levels, also reduce
the number of operating hours of base load plants. Therefore,
it is optimal to replace base load by mid load generation tech-
nologies, having a lower required number of operating hours.
Additionally, the high variability of net demand also yields a
larger installed capacity of high peak generation technologies.
Finally, the total installed generation capacity increases when
there is more wind capacity installed, due to its relatively low
average capacity factor.

C. Impact of Demand Elasticity

Typically, lower and higher net demand levels result in lower
and higher electricity prices, respectively. The MWh weighted
average price level for the reference case is calculated and
shown as “flat tariff” in Fig. 3. When consumers are able to
adjust their consumption in response to real-time price signals,
demand levels are increased during low demand hours (valley
filling), and reduced during peaks (peak shaving).

The effect of including own- and cross-price elasticities on
net demand levels and electricity prices, compared to the refer-
ence case (no response and flat tariff), is illustrated in Figs. 2 and
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TABLE III
PRICE ELASTICITY SENSITIVITY ANALYSIS

3, respectively. For clarity reasons only 48 h out of the 672-h pe-
riod optimization are shown. These 672 h are treated as a sample
of the 8760 h per year, so the results for these periods are extrap-
olated to annual results by multiplying the resulting short-term
costs by 8760/672.

During peak demands, e.g., hour 43, price spikes can be seen.
When real-time prices rise above the flat tariff, price-respon-
sive consumers reduce their demands (compare the thick contin-
uous lines); the reverse happens during low price periods. Ad-
ditionally, the complex effects of cross-price elasticity (dashed
line) become apparent. Most of the time, consumer demand re-
sponse is weakened with the dashed line lying between the “no
response” and “own elasticity” case. At other times, cross elas-
ticities yield a different demand response. The former situation
occurs when the price in hour as well as in previous and sub-
sequent hours is above the flat tariff. The latter situation would
occur when the price in hour is lower than the flat tariff and
the price in previous and subsequent hours is higher than the flat
tariff.

Peak demand reductions are consistent with values found
in literature. Based on [30], peak reductions from demand
response as large as 26% can be expected. Actual peak demand
reductions between 8.5% and 18.5% are documented in [35]
for a range of customer types. Further, during off-peak periods,
minor demand increases were observed in those studies.

A sensitivity analysis of the effect of demand elasticity upon
installed capacity is summarized in Table III. First, most remark-
able is the reduction of the installed high peak capacity when in-
cluding price responsive consumers, compared to Table II. De-
mand response often clears the market during peak periods, re-
ducing peak demands and the need for such capacity. With an
own-price elasticity of 0.10 and no cross-price effects, the in-
stalled high peak capacity falls by a factor of 3 to as low as
449 MW in the lowest wind power investment cost scenario. In
contrast, without demand response, more than 1300 MW was
required. Second, demand response increases the optimal base

Fig. 4. Weighted average electricity price impact.

load capacity between 5% and 10%,. The variability of the net
demand is reduced and valley filling effect increase the number
of operating hours base load generation technologies can have.
Third, higher price elasticities yield more installed wind power
capacity, especially for the lowest wind power investment cost
scenario. The optimal wind capacity can increase by 7% given

0.10 own-price elasticity and by up to more than 13% given
0.20 own-price elasticity. This shows that demand response

can significantly contribute to integration of variable renewable
energy generation.

Finally, for a given level of own-price elasticity, increasing
cross-price elasticity reduces the above-mentioned effects be-
cause now a price increase in hour results not only in a load de-
crease in that hour, but some compensating load increases in ear-
lier and later hours. When several consecutive hours have sim-
ilar prices, this means that the net effect of higher prices is less
than if only own-elasticities are under consideration. A reduced
net effect of price reduces demand flexibility. Consequently, in-
creasing the cross-price elasticity reduces the optimal installed
wind power capacity and yields again larger high peak gener-
ation capacities, compared to the scenario without cross-price
elasticities.

The impact of demand elasticity on the weighted average bulk
electricity price is shown in Fig. 4, excluding transmission and
distribution charges. The reference price level for different wind
power investment costs corresponds to the “0 own elasticity”
scenario. Consumers facing real-time prices are encouraged to
consume more during low price hours and less during high price
hours. Consequently, the weighted average price decreases by
up to 2 /MWh.

D. Impact of Energy Efficiency

First, the sensitivity of load to efficiency investments influ-
ences the optimal generation mix. Table IV shows the optimal
generation mix for different levels of efficiency elasticity of de-
mand . In this analysis, a 0.20 own-price elasticity of de-
mand is assumed with zero cross-price elasticities, and the en-
ergy efficiency program budget is assumed to be increased by
50%. Considering just the first-order effect of efficiency ex-
penditures on loads, we assume a 0.05 and 0.10 elasticity
for the effect of efficiency expenditures upon demand. Then if
the budget for energy efficiency is increased by 50%, this elas-
ticity causes a reduction in demand of 2.5% and 5% on average
for each wind case, yielding demand reductions of 100 to 150
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TABLE IV
ENERGY EFFICIENCY IMPACT: 50% BUDGET

INCREASE/�0.20 OWN-ELASTICITY

MW and 200 to 300 MW, respectively. As a result, less conven-
tional and renewable generation capacity is needed. The total
installed capacity is reduced from 11 531 MW to 9790 MW in
the low wind investment cost scenario, comparing Table III with
Table IV.

Second, energy efficiency expenditures and demand response
can significantly interact. This interaction is captured by . This
parameter reduces the responsiveness of demand when more is
spent on energy efficiency. Because this impact of efficiency ex-
penditures upon price elasticities has only been discussed qual-
itatively [28], we arbitrarily assume a value of of 0.0025 and
0.005. In the latter case, given 0.20 own-price elasticity and
a 50% price increase with a demand of 7000 MW, initial de-
mand levels are reduced by 700 MW. The interaction with 50%
increased efficiency expenditures dampens the initial demand
reduction almost by half. With increased energy efficiency ex-
penditures, the optimal amount of wind capacity is reduced.
Comparing Table III with Table IV shows that the optimal wind
power capacity is also reduced by about 100 and 200 MW with
50% additional and 0.05 and 0.10 efficiency elasticity, re-
spectively (given 100 k /MW/yr investment cost and 0.20
own-price elasticity). When including a of 0.005, the re-
sulting reduction in short-term demand responsiveness results
in a lower optimal installed wind power capacity of 4708 MW
and a larger high peak generation capacity. This shows that con-
sidering interactions between energy efficiency and price elas-
ticity can significantly affect optimal generation mixes.

Fig. 5 shows the load impact of demand response combined
with energy efficiency expenditures, compared with the original,
no response load profile. The original load profile is indicated
by the bold full line. With an own-price elasticity of 0.20,
assumed in Fig. 5, peak demand is reduced around hours 9 and
43, and some valley filing occurs circa hour 27.

Additionally, if energy efficiency expenditures are increased
by 50% (efficiency elasticity 0.05), demand levels are slightly
reduced. This is indicated by the dashed line just below the thin
full line. If an interaction is assumed between the effects of
demand response and energy efficiency (efficiency-price cross
elasticity 0.005), the responsiveness of demand is reduced. Con-

Fig. 5. Demand response impacts under alternative elasticity assumptions.

sequently, peak load reduction and valley filling are noticeably
less pronounced than without this counteracting effect (as indi-
cated by the dashed line in the figure).

V. CONCLUSION

Since the 1950s, generation investment decision making has
been supported by LP-based models. Here, these models are
extended to incorporate two considerations that are increas-
ingly important as more wind energy enters the generation mix.
These include operational constraints that limit the flexibility
of thermal generators and short-term response of consumers to
spot electricity prices.

Elastic demand functions for these models are built based on
historic hourly demand levels and assumed levels of elasticities.
These include own-price elasticity as well as cross-price elastic-
ities with respect to prices in other hours in order to capture load
shifting effects. A typical LP-based cost-minimization invest-
ment model is expanded to account for demand response. Three
numerical approaches to accomplish this supply-demand inte-
gration are presented. In addition, the interactions of energy ef-
ficiency investments and demand responsiveness are also mod-
eled by including those investments as first- and second-order
terms in the demand function.

The integration of demand response dampens system peaks,
decreasing the required investment in peaking generation
capacity. Additionally, demand response creates valley filling
effects, lessening over-generation problems during the night or
high wind generation periods. Demand response also increases
system flexibility, facilitating integration of variable wind
power. Simulations show that for higher demand elasticity, it
becomes optimal to install a higher amount of wind capacity.
These methods can be applied in a cost benefit analysis [36].

By increasing consumption during low price hours and de-
crease consumption during high price hours, demand response
reduces the weighted average electricity price. However,
including cross-price elasticities reduces these effects as con-
sumption during high price periods is shifted to other hours
instead of being indefinitely postponed.

Finally, the impact of energy efficiency is analyzed. Of
course, such investments reduce loads and therefore the re-
quired installed generation capacity. This benefit is reduced
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when the negative interaction of energy efficiency investments
upon the short-term responsiveness of demand is considered.
This interaction affects the power generation mix and the
optimal amount of installed wind power capacity is reduced.
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