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Abstract. Most previous Cournot-Nash models of competition among elec-
tricity generators have assumed a static perspective, resulting in finite dimen-
sional variational and quasi-variational inequality formulations. However, these
models’ system costs and constraints fail to capture the dynamic nature of
power networks. In this paper we propose a more general and complete model
of Cournot-Nash competition on power networks that accounts for these fea-

tures by including (i) explicit intra-day dynamics that describe the market’s
evolution from one Generalized Cournot-Nash Equilibrium to another for a
24 hour planning horizon, (ii) ramping constraints and costs for changing the
power output of generators, and (iii) joint constraints that include variables
from other generating companies within the profit maximization problems for
individual generators. These joint constraints yield a generalized Nash equi-
librium problem which can be represented as a differential quasi-variational
inequality (DQVI); such generalized Nash equlibrium problems can have mul-
tiple solutions. The resulting formulation poses computational challenges that
can cause traditional algorithms for DVIs to fail. A restricted formulation is
proposed that can be solved by an implicit fixed point algorithm. A numerical
example is provided.

1. Introduction. One of the major areas of application of complementarity and
variational inequalities-based models of economic equilibria is electric power mar-
kets; more so since this economically crucial industry underwent a transition from
tight regulation to intense competition subject to loose regulatory constraints. It is
not our intention, nor does space permit, to list or discuss all the previous models.
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However, Daxhalet and Smeers [3], Day et al. [4], Hobbs [10], Hobbs and Helman
[11], Metzler et al. [12], Neuhoff et al. [15] and Pang and Hobbs [18] summarize the
relatively recent literature on complementarity and variational inequalities-based
models of electric power equilibrium problems. Unlike other engineered systems,
technology and cost information is widely available for power industries which fa-
cilitates modeling. At the same time, the unique characteristics of electricity trans-
mission, such as Kirchhoff’s power and voltage laws, present intriguing challenges
to modelers and systems engineers. Kirchhoff’s laws arise from the inherent charac-
teristic of flow of power in an electric network, namely the energy balance (known
as the first law) and voltage law (also known as the second law). Sethi et al. [21], on
the other hand, study the problem of optimal staged purchase of electricity in time-
sequential deregulated electricity markets using a stochastic dynamic programming
framework.

Complementarity and variational inequalities-based models can serve several
practical purposes. One is numerical simulation of the economic and pollution
consequences of alternative government policies (such as pollution limits or taxes)
and market designs (such as pricing policies for transmission or creation of capacity
markets). Because of the efficiency of large-scale complementarity solvers, these
models can incorporate significant technical detail, such as transmission capacity
limits and fuel use efficiencies, and provide fine scaled results concerning, e.g., prices
over space and time. Another use of these models is theoretical comparison of dif-
ferent market designs and policies using more general and abstract models. Because
of the large amount of theory that has been developed concerning complementarity
problems and variational inequalities (some of which is used in this paper), it is
often possible to either show or disprove equivalence of alternative market designs,
as well as existence and uniqueness properties. Of course, such results can also
be obtained for more traditional economic equilibrium models that lack inequality
constraints. However, the ability to consider inequalities makes these models espe-
cially suitable for power systems, since those systems have many inequalities in the
form of transmission and generation capacity limits. A third use of complementar-
ity/variational inquality models is market monitoring. For instance, these models
can be used to construct a “competitive baseline” that calculates prices assuming
that suppliers are “price takers” who do not manipulate prices. Deviations between
baseline and actually observed prices might provide evidence of anticompetitive
behavior. Models can also be used to simulate the exercise of market power. It
is not possible to reliably predict precise modes of oligopolistic behavior (such as
Cournot Nash, Cournot Bertrand, Stackelberg, and tacit collusion) or exact price
outcomes for particular markets. This is because, for instance, demand elasticities
are uncertain, or the degree of cooperation among suppliers depends on many un-
known factors. However, such models can serve as “possibility proofs”, indicating
what anticompetitive problems might arise in real markets and should therefore be
monitored.

Compelementarity and variational inequalities-based models are increasing get-
ting traction in studying and computing equilibria in the context of supply chains,
pricing-allocation problems in service industries, and city logistics. Zhang [25],
Mookherjee [14] and Friesz et al. [7] and the references therein provide an overview
of such emerging applications.
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An important feature omitted in most complementarity-based models is the pos-
sibility that an electricity producer can recognize joint constraints wherein the pos-
sible solution space for one player is affected by the decisions of the other players.
For instance, regulators might impose an upper bound upon the market share of
the few largest producers in some markets, or upon the proportion of transmission
capacity that is sold to such producers, as is the case for transmission capacity
into the Netherlands. Perhaps the most important example would be a recognition
by a generator that its sales and generation are limited by available transmission
capacity less that capacity which is already taken up by sales and generation by
other producers. When considering elaborate network topologies, very complex sets
of constraints on sales and generations may arise.

Another important feature missing from all existing electric power equilibrium
models is the consideration of ramping costs. There are some instances of ramping
cost-based models for the monopolistic firm, namely by Wang and Shahidehpour
[24], Shrestha et al. [22], and Tanaka [23] consider a decomposed model for optimal
generation scheduling of a cost minimizing monopolistic power generator explicitly
considering ramping costs. However, the market perspective is missing in that
model. On the other hand, Shrestha et al. [22] consider a dynamic model for
strategic use of ramping rates beyond elastic limits in a power producer’s self-
dispatch in a power market with exogenous price and demand. Tanaka [23] focuses
on derivation of a pricing policy that achieves the optimal rate of a demand change
by explicitly considering the ramping cost. All three of these papers do not consider
the network topology or Kirchhoff’s laws.

Oren and Ross [16], on the other hand, study a unique phenomenon resulting
from the incompleteness of the electricity supply market whereby profitable gaming
of ramp constraints can be possible through appropriate generators. Some electric
power markets are structured in such a way as to allow bidders to specify constraints
on ramp rates for increasing or decreasing power production. By taking data from
the actual demand for electricity in California, in 2001, they show that a bidder
could apply an excessively restrictive constraint to increase profits, and explore the
cause by visualizing the feasible region from the linear program corresponding to
the power auction. They also propose three penalty approaches to discourage such
activity: one approach based on social cost differences caused by ramp constraints;
and two approaches based on the duality theory of linear programming. The au-
thors then apply the resulting model to the characteristics of the electricity supply
industry in Spain. The results indicated that the penalties based on linear program
sensitivity theory (PP1) have the advantage that they are easily computed from a
single run of the auction, while penalties based on the difference between ramp con-
strained social cost and the social cost without a bidder’s ramp constraints (PP2)
require many optimizations to be run, but they perform better on social cost re-
covery. This unique study helps to overcome the intrinsic problem associated with
the electricity supply market in that they are notorious for having multiple optimal
solutions.

Meanwhile, nearly all existing power market equilibrium models fail to take a
dynamic perspective. These models do not consider short-run constraints and costs
associated with changing generators output. Large generators can take up to ten
or more hours to ramp up to full output, yet power demands can change drastically
from one hour to the next. In order to match those changes, quick-starting but costly
combustion turbines are turned on and off. The result is that the highest price spikes
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Figure 1. Load profile in CaISO market for a typical summer day
in 2004

Figure 2. Corresponding spot market price in CaISO

often occurs not during the periods of high demand, but during the early morning
or late afternoon when the demand is changing most quickly. Figures 1 and 2 show
a typical daily load profile for the California Independent System Operator (ISO)
(source: http://www.caiso.com) and the price spikes that result from ramping
constraints respectively. These dynamic market phenomena can not be captured
by the typical static formulation of equilibrium models that omits consideration of
time.

We believe here that electric power systems display a so-called moving-equilibrium
(see Friesz et al. [5]) wherein an equilibrium is enforced at each instant of time
although state and control variables will generally fluctuate with time. These fluc-
tuations with respect to time are exactly those needed to maintain the balance of
behavioral and economic circumstances defining the equilibrium of interest.

In the current paper we have tried to tie all these missing components together. In
doing so we consider a dynamic model of generalized Cournot-Nash (CN) equilibria
of oligopolistic competition on an electric power network. The generalized CN
equilibrium problem is an extension of the CN equilibrium problem, in which each
player’s strategy set depends on the rival players’ strategies. The electric power
network we consider here consists of spatially distributed markets, generating firms,

http://www.caiso.com
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and an ISO. The ISO is the principal agent for electricity transmission who receive
fees from the generators. The ISO sets the transmission fees in order to efficiently
clear the market for transmission capacity. We do not consider additional players
in the markets such as fuel suppliers or arbitrageurs. We also do not consider
refinements such as price function conjectures (Day et al. [4]). Nonetheless, our
basic dynamic model of generalized CN equilibrium has some unique features that
were overlooked in earlier papers; namely dynamics, ramping constraints and costs.

Including dynamic features can make market equilibrium models more useful for
the purposes described earlier in the introduction. In particular, models that in-
cluding ramping constraints can be used to identify situations in which transient
market power can be exercised by generation owners who control units that provide
critical ramping capability. Although these situations may be short in duration,
they can involve significant costs to consumers. A second use of such models could
be to analyze the value of increasing the flexibility of the generation system by pro-
viding more ramping capability, and the revenues that such capacity would receive.
There has been controversy recently in some U.S. markets (PJM and California in
particular) about whether there is enough rampable capacity, and if revenues are
sufficient to compensate generators for the cost of providing it.

In the next section we put forward an optimal control-based formulation of the
generators’ profit maximization model explicitly considering ramping constraints
and costs as well as joint constraints arising from market capacity constraints. We
also show how such models give rise to a joint Nash game in a dynamic sense, and
the equivalent dynamic quasi variational inequality formulation, solution of which
is a solution of the Nash game. We also describe a variant of fixed point algorithm
designed to solve this problem and illustrate the efficacy of such algorithm through
a numerical example.

2. The generating firms’ problems. The oligopolistic firms of interest are power
generating firms embedded in a network economy. These firms compete in a CN
oligopolistic game where each firm is attempting to maximize its own profits while
adhering to both physical and regulatory constraints. The firms’ profits are its
revenues less costs. Instantaneous revenues are equal to regional sales in the market
level times the corresponding nodal (market) prices, and the costs include generation
costs, ramping costs and transmission fees, the latter paid to the ISO. Due to the
inherent properties of an electrical power network, it is assumed that a firm located
at some node of the network can supply energy to any other node (market) of the
network.

The physical constraints arise from the physical characteristics of the actual
power network as well as the physical attributes of the generating facilities. The
flows of power in the network must obey Kirchhoff’s power and voltage laws. The
generating facilities have both lower and upper bounds on the level of power gen-
eration as well as lower and upper bounds on the rate at which the output of the
generating units can be adjusted. Regulatory constraints may arise in the form of an
upper limit on the total power provided to a particular market by all of the firms.
The generating firms compete as price takers in the electric power markets with
respect to the price of transmission services, consistent with assumptions made by
previous complementarity-based models.

2.1. Representation of Kirchhoff’s laws. Rather than explicitly considering
Kirchhoff’s laws, in this paper we will use the simpler representation of power
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Table 1. Notation: Network Parameters

Parameters
N set of nodes, excluding the hub, denoted H

A set of bi-directional arcs
H hub node
F set of firms
Nf set of nodes where generating firm f ∈ F has power

generators
G (i, f) set of power generating facilities owned by firm f ∈ F

located at node i ∈ Nf

Ta transmission capacity on arc a ∈ A
PTDFia power transfer distribution factor for node i on arc a,

describing the megawatt (MW) increase in flow on
arc a resulting from 1 MW of power withdrawal at i

and 1 MW of injection at H due to Kirchhoff’s laws

CAP
f
j generation capacity of plant j ∈ G (i, f) located at node

i ∈ Nf owned by firm f ∈ F
σi regional sales cap at market i ∈ N

R
f+
j upper bound of ramping rate of the generator unit j ∈ G (i, f)

located at node i ∈ Nf owned by firm f ∈ F

R
f−
j lower bound of ramping rate of the generator unit j ∈ G (i, f)

located at node i ∈ Nf owned by firm f ∈ F

transfer distribution factors (PTDFs) as derived, e.g., in the appendix A of Scheppe
et al. [19]. These PTDFs can be computed offline and indicate what fraction of
power will flow over each edge of the network when injecting 1 MW at node i and
extracting 1 MW from node j. Because the system is linear, the PTDFs from j to i

are simply the negative of the PTDFs from i to j. By considering an arbitrary hub
node, we can compute the PTDFs for a 1 MW injection at the hub and a 1 MW
extraction at node i for all nodes in the network. The PTDF for an injection at
node i and an extraction at node j can be represented as the negative of the PTDF
from the hub to node i plus the PTDF from the hub to node j. In addition to
using the PTDF representation, flow balance is enforced for each generation firm;
in each hour the sum of power produced from all its plants at all its nodes must
equal the sum of all its sales at all node. Using this representation greatly simplifies
the constraint set for each firm’s problem.

2.2. Notation. We primarily employ the notation used in Miller et al. [13], aug-
mented to handle temporal considerations. Time is denoted by the scalar t ∈ ℜ1

+,
initial time by t0 ∈ ℜ1

+, final time by t1 ∈ ℜ1
++, with t0 < t1 so that t ∈ [t0, t1] ⊂ ℜ1

+.
Other notation involved with our model is summarized in Tables 1 and 2.

2.3. The generating firms’ problem formulation.

2.3.1. Time Scale. The regional demand for electricity varies across hours of a day.
Over different days there is notable periodicity. For example, the demand for power
at a specific hour of a day is very similar to the demands at the same hour on other
days. In particular, we assume the period T to be 24 hours which is the planning



DYNAMIC COMPETITION ON AN ELECTRIC POWER NETWORK 431

Table 2. Notation: State and Control Variables

Variables

s
f
i rate of sales of power (MW) at node i ∈ N by firm f ∈ F

q
f
j generation rate of the generator unit j ∈ G (i, f) located at node

i ∈ Nf owned by firm f ∈ F
yi amount of transmission in megawatts from hub H to node i

wi wheeling fee or price from hub H to node i ($ / MW)

r
f
j ramping rate of the generator unit j ∈ G (i, f) located at

node i ∈ Nf owned by firm f ∈ F (MW/hr)
αa dual variables of transmission constraint in ISO’s problem

associated with arc a

βi dual variables associated with joint sales capacity constraint,
one for each node

horizon for our model. Because of the relatively short time-scale, we do not consider
the time value of money in our models.

2.3.2. Revenue and Cost Components . We consider the inverse demand function
for market i ∈ N to be

πi





∑

g∈F

s
g
i , t





In particular, we assume that the inverse demand is separable in the sense that the
price at market i only depends on the consumption at that market; i.e.,

πi





∑

g∈F

s
g
i , t



 = P0,i (t) −
Q0,i (t)

P0,i (t)
·





∑

g∈F

c
g
i





where the coefficients P0,i (t) , Q0,i (t) vary with time of the day reflecting the pattern
of energy-using activities. This results in price rises during high load periods. The
revenue that firm f is generating at time t is therefore given by

∑

i∈N

πi





∑

g∈F

s
g
i , t



 · sf
i

where the summation is over all markets as it is assumed that any generating firm
can service any market.

The costs that the generating firm bears are:

1. The generation cost (i.e., the cost per unit power generation) for some gener-
ation unit j ∈ G (i, f) is denoted by

V
f
j

(

q
f
j , t
)

and typically has a fixed component and a variable component. Generation
cost is usually quadratic of the form

V
f
j

(

q
f
j , t
)

= µ
f
j + µ̃

f
j · qf

j +
1

2
µ̂

f
j ·
(

q
f
j

)2

where µ
f
j , µ̃

f
j , µ̂

f
j ∈ R

1
++ for all f ∈ F ,j ∈ G (i, f) .
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2. The ramping cost is obtained from the fatigue effect of the rotors (which in
turn affects the life span of the rotor). However, the ramping cost is negligible
if the magnitude of power change is less than some elastic range; that is, there
is a range in which the generation rate can be adjusted that causes minimal
wear on the rotors and is thus considered cost free. The slope of the cost
curve also depends on the ramp-up time. Therefore, in general we may use
the function

Φf
j

(

r
f
j , t
)

=
1

2
γ

f
j

[

max
(

0,
∣

∣

∣r
f
j

∣

∣

∣− ξ
f
j

)]2

to represent the ramping cost associated with some generation unit j ∈ G (i, f)

when the ramping rate is r
f
j , ξ

f
j ∈ R

1
++ is the elastic threshold of the unit and

γ
f
j is the cost coefficient which depends on the ramp-up time. In this case,

we are using a symmetric cost for ramping up and ramping down, though
this is not necessary in general. In general, with asymmetric ramp-up and
ramp-down costs we may have

Φf
j

(

r
f
j , t
)

=
1

2
γ

f+
j

[

max
(

0, r
f
j − ξ

f+
j

)]2

+
1

2
γ

f−
j

[

max
(

0,−r
f
j + ξ

f−
j

)]2

where γ
f−
j , γ

f+
j are the cost coefficients during ramp-up and ramp-down re-

spectively and ξ
f+
j , ξ

f−
j are the elastic thresholds during ramp-up and ramp-

down respectively.
3. The wheeling fee wi(t) is paid to the ISO for transmitting 1 MW-hour of power

from the hub to market i at time t. The wheeling fee is endogenously deter-
mined to enforce market clearing for transmission capacity (i.e., the demand
for transmission capacity can be no more than the capacity available).

2.3.3. Constraints.

1. Each firm must balance sales and generation at each time t ∈ [t0, t1] as we do
not consider storage of electricity

∑

i∈N

s
f
i (t) =

∑

i∈Nf

∑

j∈G(i,f)

q
f
j (t)

2. The sales of power at every market must be nonnegative:

s
f
i (t) ≥ 0 for all t ∈ [t0, t1]

3. The output level of each generating unit is bounded from above and below as

0 ≤ q
f
j (t) ≤ CAP

f
j

for all i ∈ Nf , j ∈ G (i, f) and t ∈ [t0, t1] where CAP
f
j ∈ R

1
++. The upper

bound is imposed by the physical constraints of the generator.
4. Sales may be bounded by local transmission constraints not explicitly repre-

sented in the model. This can be represented by the constraint of the form
∑

f∈F

s
f
i (t) ≤ σi for all i ∈ N , t ∈ [t0, t1]

where σi ∈ R
1
++ is the regional sales cap. Note that this constraint makes

the equilibrium problem a generalized Nash equilibrium problem, as with this
constraint each firms’ strategy set (here for sales variable) depends on the
rival players’ strategy (competitors sales variable).
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5. The ramping rate for every generation unit is bounded from above and below,

R
f−
j ≤ r

f
j (t) ≤ R

f+
j

for all i ∈ Nf , j ∈ G (i, f) and t ∈ [t0, t1]

2.3.4. Firms’ Extremal Problem. With the transmission (wheeling) fee wi and the
rival firms’ sales

s−f ≡ {sg : g ∈ F\f}

taken as exogenous to the firm f ∈ F ’s optimal control problem and yet endogenous
to the overall equilibrium model, firm f computes its nodal sales sf and generations
qf in order to :

maxJ
(

sf , qf ; s−f ; t
)

=

∫ t1

t0







∑

i∈N

πi





∑

g∈F

s
g
i , t



 · sf
i (1)

−
∑

i∈Nf

∑

j∈G(i,f)

[

V
f
j

(

q
f
j , t
)

+ Φf
j

(

r
f
j , t
)]

−
∑

i∈N

wi ·



s
f
i −

∑

j∈G(i,f)

q
f
j











dt

subject to

dq
f
j

dt
= r

f
j for all i ∈ Nf , j ∈ G (i, f) (2)

q
f
j (t0) = q

f
j,0 ∈ R

1
+ for all i ∈ Nf , j ∈ G (i, f) (3)

R
f−
j ≤ r

f
j ≤ R

f+
j for all i ∈ Nf , j ∈ G (i, f) (4)

0 ≤ q
f
j ≤ CAP

f
j for all i ∈ Nf , j ∈ G (i, f) (5)

s
f
i ≥ 0 for all i ∈ N (6)

s
f
i +

∑

g∈F\i

s
g
i ≤ σi for all i ∈ N (7)

∑

i∈N

s
f
i =

∑

i∈Nf

∑

j∈G(i,f)

q
f
j (8)

Let us review the formulation from an optimal control theory perspective. Con-

straints of type (8) are called the mixed constraints as they involve both states (qf
j )

and controls (sf
i ). (4) and (6) are the pure control constraints imposing lower and

upper bounds on the ramping rates and nonnegativity of sales quantity respectively.
(5) are the state-space constraints. The right hand side of the dynamics, (2), are
free from states and linear in controls (ramping rates).

3. The Differential Quasi Variational Inequality (DQVI) formulation. Let
us begin by noting that (1) - (8) form a standard form optimal control problem for
firm f , where the controls for the firm are

sf =
{

s
f
i : i ∈ N

}

rf =
{

r
f
j : i ∈ Nf , j ∈ G (i, f)

}

and the states are

qf =
{

q
f
j : i ∈ Nf , j ∈ G (i, f)

}
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Note that we have state space constraints in the form

0 ≤ qf ≤ CAP f

where

CAP f =
{

CAP
f
j : i ∈ Nf , j ∈ G (i, f)

}

are known constants. The Hamiltonian associated with this optimal control problem
is

Hf

(

sf , rf ; qf ; s−f ; λf , t
)

=
∑

i∈N

πi





∑

g∈F

s
g
i , t



 · sf
i −

∑

i∈Nf

∑

j∈G(i,f)

V
f
j

(

q
f
j , t
)

−
∑

i∈Nf

∑

j∈G(i,f)

Φf
j

(

r
f
j , t
)

−
∑

i∈N

wi ·



s
f
i −

∑

j∈G(i,f)

q
f
j



+
∑

i∈Nf

∑

j∈G(i,f)

λ
f
j · rf

j (9)

where the feasible set of controls for firm f is expressed as

Ωf =
{(

sf , rf
)

: (4) - (8) hold
}

Note that we have not yet explicitly considered the state space constraints and
the mixed constraints in the Hamiltonian. This is accomplished by forming the
Lagrangian as (see Sethi and Thompson [20])

Lf

(

sf , rf ; qf ; s−f ; λf , τf−, τf+, ςf−, ςf+; t
)

= Hf

(

sf , rf ; qf ; s−f ; λf , t
)

+τf−





∑

i∈N

s
f
i −

∑

i∈Nf

∑

j∈G(i,f)

q
f
j





+τf+



−
∑

i∈N

s
f
i +

∑

i∈Nf

∑

j∈G(i,f)

q
f
j



 (10)

+
∑

i∈Nf

∑

j∈G(i,f)

{

ς
f−
j · qf

j + ς
f+
j ·

(

CAP
f
j − q

f
j

)}

where τ f− ∈ R
1
+, τf+ ∈ R

1
+, ς

f−
j ∈ R

1
+ and ς

f+
j ∈ R

1
+ are dual variables. τ f− and

τf+ satisfy the complementarity slackness conditions

τf− ≥ 0, τf−





∑

i∈N

s
f
i −

∑

i∈Nf

∑

j∈G(i,f)

q
f
j



 = 0 (11)

τf+ ≥ 0, τf−



−
∑

i∈N

s
f
i +

∑

i∈Nf

∑

j∈G(i,f)

q
f
j



 = 0 (12)
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Also, ς
f−
j and ς

f+
j satisfy the conditions

ςf− ≥ 0,
∑

i∈Nf

∑

j∈G(i,f)

ς
f−
j · qf

j = 0,
dςf−

dt
≤ 0 (13)

ςf+ ≥ 0,
∑

i∈Nf

∑

j∈G(i,f)

ς
f+
j ·

(

CAP
f
j − q

f
j

)

= 0,
dςf+

dt
≤ 0 (14)

where

ςf− =
{

ς
f−
j : i ∈ Nf , j ∈ G (i, f)

}

ςf+ =
{

ς
f+
j : i ∈ Nf , j ∈ G (i, f)

}

Note that these conditions on the multipliers ςf− and ςf+ arise from the state space
constraints, whereas (11) - (12) arise from the mixed constraints.

The adjoint variables λf follow the dynamics

dλ
∗f
j

dt
= −

∂L∗
f

∂q
f
j

, ∀i ∈ Nf , j ∈ G (i, f)

=
∂Φf

j

(

r
f∗
j , t

)

∂q
f
j

+ τ f− − τ f+ − ς
f−
j + ς

f+
j , ∀i ∈ Nf , j ∈ G (i, f) (15)

and the transversality condition yields

λ
∗f
j (t1) = 0 (16)

Therefore, for given set of controls rf , the state variables
(

qf
)

and adjoint variables
(

λf
)

can be determined in a sequential fashion; note that this is not an approxi-

mation. This observation will facilitate our computational efforts.
Also note that constraints (7) are joint constraints involving sf and s−f . We

handle these constraints in the following way as outlined by Pang [17], although we
are applying this to a dynamic game.

From the maximum principle (see Bryson and Ho [2]) we know that the neces-
sary condition (which we will later establish to be a sufficient condition as well)

for the quadruplet
{

sf∗ (t) , rf∗ (t) ; qf∗ (t) ; λf∗ (t)
}

(as well as the dual multipliers

τf−, τf+, ςf−, ςf+) being an optimal solution to the optimal control problem (1) -
(8) is that the nonlinear program

max Lf

(

sf , rf ; qf ; s−f ; λf , t
)

subject to
{

sf (t) , rf (t)
}

∈ Ω̃f

be solved for each instant t ∈ [t0, t1] where Ω̃f is a set formed by pure control
constraints

Ω̃f =
{(

sf , rf
)

: (4)-(8) hold
}

This is a stationary problem. Further, we write this problem as

max Lf

(

sf , rf ; qf ; s−f ; λf , t
)

(17)
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subject to

sf +
∑

g∈F\i

sg ≤ σ (18)

Rf− ≤ rf ≤ Rf+ (19)

sf ≥ 0 (20)

Note that, even though we only have control constraints in (18), (19) and (20), con-
straint (18) is a joint constraint which is problematic. Under a suitable constraint
qualification such as Abadie’s (as the feasible set is convex), we obtain the following
KKT conditions which are necessary for sf being optimal for firm f ’s stationary
problem (17) - (18).

0 = −∇sf L̃f

(

sf , rf ; qf ; s−f ; λf , t
)

− γf (21)

0 ≤ β ⊥



sf +
∑

g∈F\i

sg − σ



 ≤ 0 (22)

0 ≤ γf ⊥
(

−sf
)

≤ 0 (23)

where L̃f

(

sf , rf ; qf ; s−f ; λf , τf , ςf−, ςf+, β; t
)

is agent f ’s ‘semi-Lagrangian func-

tion’ defined as

L̃f

(

sf , rf ; qf ; s−f ; λf , τf , ςf−, ςf+, β; t
)

(24)

= Lf

(

sf , rf ; qf ; s−f ; λf , τf , ςf−, ςf+; t
)

+βT ·



sf +
∑

g∈F\i

sg − σ





Note that, as discussed in Harker [9], we use the restricted multiplier formulation
which is applicable to all generalized Nash games where the players have the same
joint constraint. In this case we use dual multiplier βi associated with the regional
sales cap constraint. This dual multiplier βi depends only on the region (market) i

and is common to all firms.
Therefore, concatenating |F| number of KKT systems, we obtain a characteriza-

tion of a generalized Cournot-Nash equilibrium as a partitioned DVI. In order to for-

mulate the latter DVI, let us define the function Θ
(

sf , rf ; qf ; s−f ; λf , τf , ςf−, ςf+; t
)

as

Θ
(

sf , rf ; qf ; s−f ; λf , τf , ςf−, ςf+; t
)

=





(

∇sf Lf (·) + β
)|F|

f=1
(

sf +
∑

g∈F\i sg − σ
)





z =

(

(

sf
)|F|

f=1

β

)
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Further, considering the complementarity conditions (11)-(14), we can define Θ̃ (·)
as

Θ̃ (·) =

































(

∇sf Lf

(

sf , rf ; qf ; s−f ; λf , τf , ςf−, ςf+; t
)

+ β
)|F|

f=1
(

sf +
∑

g∈F\i sg − σ
)

(

−
∑

i∈N s
f
i +

∑

i∈Nf

∑

j∈G(i,f) q
f
j

)|F|

f=1
(

∑

i∈N s
f
i −

∑

i∈Nf

∑

j∈G(i,f) q
f
j

)|F|

f=1

−
(

qf
)|F|

f=1
(

−CAP f + qf
)|F|

f=1

































(25)

z̃ =

























(

sf
)|F|

f=1

β
(

τ f−
)|F|

f=1
(

τf+
)|F|

f=1
(

ςf−
)|F|

f=1
(

ςf+
)|F|

f=1

























(26)

The solution of the following partitioned DVI described below is also the generalized
Cournot-Nash equilibrium of the game described above, taking the wheeling fee w

as exogenous :

find (z̃∗, r∗) ∈ Λ such that

∫ t1

t0







[

Θ̃
(

z̃∗, rf∗; t
)

]T

(z̃ − z̃∗) dt

+
∑

f∈F

∫ t1

t0

[

∇rf Lf

(

z̃∗, rf∗; t
)]T (

rf − rf∗
)

dt







≤ 0 (27)

for all

(

r

z̃

)

∈

(

Λ
κ

)

where

Λf =
{

rf : constraints (4) hold
}

κ = {z̃ : z̃ ≥ 0}

and

Λ =
∏

f∈F

Λf

3.1. The ISO and transmission fees. It was mentioned earlier that the trans-
mission (wheeling) fees w are set by the ISO in order to efficiently clear the market
for transmission capacity. Specifically, taking w as exogenous to its problem, at
every instant t ∈ [t0, t1] the ISO seeks to solve the following linear program to
determine the transmission flows y in order to

max J2 (t) =
∑

i∈N

yi (t) · wi (t) (28)

subject to
∑

i∈N

PTDFia · yi (t) ≤ Ta for all a ∈ A (αa) (29)
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where we write dual variables in the parentheses next to the corresponding con-
straints. Recall that A is the arc set of the electric power network, Ta is the
transmission capacity on arc a ∈ A and PTDFia are the power transmission distri-
bution factors that describe how much MW flow occurs through arc a as a result
of a unit MW injection at an arbitrary hub node and a unit withdrawal at node i.
In a linearized DC power flow model, which is the basis of the above model, the
PTDF factors are assumed to be constant and are unaffected by the load of the
transmission line. Therefore the principle of superposition applies. The decision
variables yi(t) denote transfers of power in MW by the ISO from a hub node to the
node (market) i ∈ N at time t ∈ [t0, t1]. In this particular formulation we ignore
transmission losses, however, our model is general enough and does not prohibit us
from considering non-linear losses. In the case of losses, either the ISO or the firms
involved in the transaction should account for the losses and a book-keeping effort
is required. Furthermore, Kirchhoff’s current and voltage laws would need to be
explicitly stated because superposition no longer applies when losses are non-linear
and the PTDFs are no longer constant.

3.2. The market clearing conditions. To clear the market, the transmission
flows yi must balance the net sales at each node (market), therefore

yi (t) =
∑

f∈F



s
f
i (t) −

∑

j∈G(i,f)

q
f
j (t)



 for all i ∈ N

Therefore, re-writing (28) - (29) we have

maxJ2 (t) =
∑

i∈N

∑

f∈F



s
f
i (t) −

∑

j∈G(i,f)

q
f
j (t)



 · wi (t) (30)

subject to

∑

i∈N

PTDFia ·
∑

f∈F



s
f
i (t) −

∑

j∈G(i,f)

q
f
j (t)



 ≤ Ta for all a ∈ A (αa) (31)

Therefore, the optimality condition of the linear program (30) - (31) can be written
down as

wi =
∑

a∈A

PTDFik · αa (t) ∀i ∈ N

0 ≤ αa (t) ⊥ Ta −
∑

i∈N

PTDFia ·
∑

f∈F



s
f
i (t) −

∑

j∈G(i,f)

q
f
j (t)



 ≥ 0, ∀a ∈ A

To articulate the complete DQVI formulation, let us define the following vector

υ (s, q; t) =
(

Ta −
∑

i∈N PTDFia ·
∑

f∈F

(

s
f
i (t) −

∑

j∈G(i,f) q
f
j (t)

))|A|

a=1

3.3. The complete restricted DVI formulation. Putting together the gen-
erating firms’ optimality conditions, the ISO’s problem and the market clearing
condition, we obtain the complete formulation of the market equilibrium problem
as the following DQVI :

find (z∗, r∗, α∗) ∈ Λ̃ such that
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∫ t1

t0

{

[

Θ̃
(

z̃∗, rf∗; t
)

]T

(z̃ − z̃∗) dt+ (32)

∑

f∈F

∫ t1

t0

[

∇rf Lf

(

z̃∗, rf∗; t
)]T (

rf − rf∗
)







dt

−

∫ t1

t0

{υ (s∗, q∗; t) · (α − α∗)} dt ≤ 0

for all (z, r, α) ∈ Λ̃

where

H̃f

(

sf , rf ; qf ; s−f ; λf , α, t
)

=
∑

i∈N

πi





∑

g∈F

s
g
i , t



 · sf
i

−
∑

i∈Nf

∑

j∈G(i,f)

[

V
f
j

(

q
f
j , t
)

+ Φf
j

(

r
f
j , t
)]

−
∑

i∈N

(

∑

a∈A

PTDFik · αa (t)

)

·



s
f
i −

∑

j∈G(i,f)

q
f
j



+
∑

i∈Nf

∑

j∈G(i,f)

λ
f
j · rf

j

and Lf

(

sf , rf ; qf ; s−f ; λf , τf−, τf+, ςf−, ςf+; t
)

and Θ̃
(

sf∗, rf∗; qf∗; s−f∗; λf∗, t
)

are defined in the same way as in (10) and (25) respectively, only replacing the

Hamiltonian Hf (·) by the augmented Hamiltonian H̃f (·) . Further, Λ̃ is defined as

Λ̃f =























(

z̃, rf , α
)

:

z̃ ≥ 0
Rf− ≤ rf ≤ Rf+

α ≥ 0

ς̇f− ≤ 0

ς̇f+ ≤ 0























Λ̃ =
∏

f∈F

Λ̃f

Note that the last two constraints can be rewritten as

dςf−

dt
= uf− (33)

dςf+

dt
= uf+ (34)

uf− ≤ 0

uf+ ≤ 0

where uf− and uf+ are dummy control variables. We treat these dynamics explicitly
in our numerical algorithm (implicit fixed point algorithm) as discussed in Section
4.

3.4. Equivalence between the GNEP and the DVI (32). Before we establish
the equivalence between the GNEP and the restricted DVI formulation provided
in (32), we need to establish that the necessary conditions for the optimal con-
trol problem (1) - (8) are sufficient conditions as well. The lemma stated below
establishes the sufficiency condition.
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Lemma 3.1. (Sufficiency conditions for the optimal control problem) For a given

s−f let
(

sf∗, rf∗; qf∗; s−f ; λf , τf−, τf+, ςf−, ςf+
)

satisfy the necessary conditions

(11)-(20), then
(

sf∗, rf∗; qf∗
)

is optimal

Proof. We begin with defining an augmented adjoint variable

λ̃
f

j (t) = λ
f
j (t) + ς

f−
j

∂q
f
j

∂q
f
j

+ ς
f+
j

∂
(

CAP
f
j − q

f
j

)

∂q
f
j

= λ
f
j (t) + ς

f−
j − ς

f+
j

for all i ∈ Nf , j ∈ G (i, f) and t ∈ [t0, t1]. We also observe that for a given s−f ,
the instantaneous revenue is concave in the generating firm’s own sales sf , the unit
generation cost is convex in qf , the unit ramping cost is also convex in ramping
rate rf and the transshipment cost is linear in sf and qf . Also, the right hand side
of the dynamics (2) of firm f is linear in the firm’s own ramping rate rf and the

expression for λ̃
f

j does not involve state variables. Using the fact that the negative of
a convex function is a concave function, we observe that the modified Hamiltonian

H̃f

(

sf , rf ; qf ; s−f ; λ̃
f
, t
)

H̃f (·) =
∑

i∈N

πi





∑

g∈F

s
g
i , t



 · sf
i −

∑

i∈Nf

∑

j∈G(i,f)

[

V
f
j

(

q
f
j , t
)

+ Φf
j

(

r
f
j , t
)]

−
∑

i∈N

(

∑

a∈A

PTDFik · αa (t)

)

·



s
f
i −

∑

j∈G(i,f)

q
f
j



+
∑

i∈Nf

∑

j∈G(i,f)

λ̃
f

j · rf
j

is concave in
(

sf , rf ; qf
)

at each t ∈ [t0, t1]. Also observe that the state-space
constraints (5) are linear constraints as are the mixed constraints (8). Further,
there is no terminal state constraint. Hence we can apply the Theorem 4.1 of Sethi
and Thompson [20] which ensures optimality of

(

sf∗, rf∗; qf∗
)

. Hence the proof.

We now state and establish the equivalence between the GNEP and the DVI
(32).

Theorem 3.2. (Equivalence between the GNEP and DVI) Under a suitable con-
straint qualification (e.g., for every f and t ∈ [t0, t1], there exists s̃f , r̃f and q̃f

such that q̃f > 0, q̃f < CAP f , s̃f +
∑

g∈F\i sg∗ < σ, s̃f > 0,
∑

i∈N s
f
i >

∑

i∈Nf

∑

j∈G(i,f) q
f
j and

∑

i∈N s
f
i <

∑

i∈Nf

∑

j∈G(i,f) q
f
j ), the tuple (s∗, q∗) is a

GNE if and only if there exists β∗, τ−∗, τ+∗, ς−∗, ς+∗, α∗ such that a solution of the
DVI (32) is (β∗, τ−∗, τ+∗, ς−∗, ς+∗, α∗, s∗, q∗).

Proof. We begin by noting that (32) is equivalent to the following optimal control
problem

maxJ3

(

z, rf , r−f , α, t
)

=

∫ t1

t0















[

Θ̃
(

z̃∗, rf∗, α∗; t
)

]T

· z̃

+
[

∇rf Lf

(

z̃∗, rf∗; t
)]T

· rf

−υ (s∗, q∗; t) · α















dt (35)

s.t. (z.r, α) ∈ Λ̃ (36)
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where it is essential to recognize that J3

(

z, rf , r−f , α, t
)

is a ‘linear’ functional that
assumes knowledge of the solution to our oligopolistic game; as such,
J3

(

z, rf , r−f , α, t
)

is a mathematical construct for use in analysis and has no mean-
ing as a computational device. The augmented Hamiltonian for this artificial opti-
mal control problem is

H0 =
[

Θ̃
(

z̃∗, rf∗, α∗; t
)

]T

· z̃ +
[

∇rf Lf

(

z̃∗, rf∗; t
)]T

· rf

−υ (s∗, q∗; t) · α +
∑

f∈F

[

µf−
]T

uf− +
∑

f∈F

[

µf+
]T

uf+

where µf− and µf+ are the auxiliary adjoint variables associated with the dynamics
(33) and (34) respectively. The associated maximum principal requires

max H0

subject to

R− ≤ r ≤ R+

z̃ ≥ 0

α ≥ 0

for all t ∈ [t0, t1]. The corresponding necessary and sufficient (as the Hamiltonian
is linear in the controls) conditions for this optimal control problem are identical to
(37) through (39):

∇z̃H
∗
0 = Θ̃

(

z̃∗, rf∗, α∗; t
)

(37)

∇rf H∗
0 = ∇rf Lf

(

z̃∗, rf∗; t
)

(38)

∇αH∗
0 = −υ (s∗, q∗; t) (39)

where

H∗
0 =

[

Θ̃
(

z̃∗, rf∗, α∗; t
)

]T

· z̃∗ +
∑

f∈F

[

∇rf Lf

(

z̃∗, rf∗; t
)]T

· rf∗

−υ (s∗, q∗; t) · α∗ +
∑

f∈F

[

µf−
]T

uf−∗ +
∑

f∈F

[

µf+
]T

uf+∗

since these are identical to the necessary conditions for the firm f ’s optimal control
problem. Further, from Lemma 3.1 we know these are the sufficient conditions for
firm f ’s optimal control problem, hence the desired result (32) is immediate.

3.5. Existence. We also establish the existence of a solution of the GNEP. Since
we have already established in Theorem 3.2 the equivalence between the GNEP and
the DVI (32), it is sufficient to show that the DVI (32) has a solution. We state
and prove the following result.

Theorem 3.3. (Existence of a solution of the GNEP)Under a suitable constraint
qualification (e.g., for every f and t ∈ [t0, t1], there exists s̃f , r̃f and q̃f such that

q̃f > 0, q̃f < CAP f , s̃f +
∑

g∈F\i sg∗ < σ, s̃f > 0,
∑

i∈N s
f
i >

∑

i∈Nf

∑

j∈G(i,f) q
f
j

and
∑

i∈N s
f
i <

∑

i∈Nf

∑

j∈G(i,f) q
f
j ), the GNEP has a solution

Proof. The formal proof of this existence result is in Bowder [1], and depends on
the conversion of the DVI to a fixed point problem involving the minimum norm
projection and application of Browder’s existence theorem. We know q (r, t) is well

defined and continuous. So the principal functions of the DVI, i.e., Θ̃ (·) , ∇rf Lf (·)
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and υ (·) are continuous in the controls s and r. Also since the feasible control set
for each player is convex and compact, their Cartesian products is also convex and
compact. Consequently, by Theorem 2 of Bowder [1], DVI (32) has a solution.
Further, under a suitable constraint qualification, we can invoke the Theorem 3.2
which ascertains that the GNEP also has a solution. Hence the proof.

4. Algorithms for the DVI. We employ a version of an implicit fixed point
algorithm to compute the equilibria of the model. There is a fixed point form of
DV I(F, f, U, x0, D). In particular we state and prove the following result:

Theorem 4.1. (fixed point formulation of the DVI (32)) The DVI (32) is equivalent
to the following fixed point problem:





z̃

r

α



 = PΛ̃









z̃

r

α



− αfp





Θ̃
(

z̃, rf , α; t
)

∇rf Lf

(

z̃, rf ; t
)

υ (s; t)









where PΛ̃ [.] is the minimum norm projection onto Λ̃ and αfp ∈ ℜ1
++.

Proof. We observe that the right hand side of the dynamics (2) for each generator’s
optimal control problem is linear in controls (rf ) and is thus convex. Further, the

principal functions of the DVI, namely Θ̃
(

z̃, rf , α; t
)

, ∇rf Lf

(

z̃, rf ; t
)

and υ (s, q; t)

are continuous with respect to both the controls (sf , rf ) and states (qf ); hence, all
the regularity conditions of Definition 2 of Friesz and Mookherjee [6] hold. Using
Theorem 3 of Friesz and Mookherjee [6] we obtain the desired result.

Naturally there is an associated fixed point algorithm based on the iterative
scheme





z̃k+1

rk+1

αk+1



 = PΛ̃









z̃k

rk

αk



− αfp





Θ̃
(

z̃k, rf,k, αk; t
)

∇rf Lf

(

z̃k, rf,k; t
)

υ
(

sk; t
)









where k in the superscript denotes the counter for the fixed point iteration. The
detailed structure of the fixed point algorithm is as follows:

Fixed Point Algorithm

Step 0. Initialization: identify an initial feasible solution





z̃0

r0

α0



 ∈ Λ̃ and set

k = 0.
Step 1. Solve optimal control subproblem:

min
(z̃,r,α)

Jk (z̃, r, α) =
1

2

∫ t1

t0









(

z̃k − αfpΘ̃
(

z̃k, rf,k, αk; t
)

− z̃
)2

+
(

rk − αfp∇rf Lf

(

z̃k, rf,k; t
)

− r
)2

+
(

αk − αfpυ
(

sk; t
)

− α
)2









dt (40)

subject to
dς−

dt
= u−,

dς+

dt
= u+ (41)

(42)
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Figure 3. 3 node, 3 arc power network with 3 firms each having
6 generating units

u− ≤ 0, u+ ≤ 0 (43)

R− ≤ r ≤ R+ (44)

z̃ ≥ 0 (45)

α ≥ 0 (46)

ς− (t0) = ς0−, ς+ (t0) = ς0+ (47)

Call the solution





z̃k+1

rk+1

αk+1





Step 2. Stopping test: if

∥

∥

∥

∥

∥

∥





z̃k+1

rk+1

αk+1



−





z̃k

rk

αk





∥

∥

∥

∥

∥

∥

≤ ε

where ε ∈ ℜ1
++ is a preset tolerance, stop and declare





z̃∗

r∗

α∗



 ≈





z̃k+1

rk+1

αk+1



.

Otherwise set k = k + 1 and and go to Step 1.
The convergence of this algorithm is guaranteed if Θ̃

(

z̃, rf , α; t
)

,
[

∇rf Lf

(

z̃, rf ; t
)]

and υ (s; t) are strongly monotonic for all





z̃

r

α



 ∈ Λ̃, see Friesz and Mookherjee

[8] for a detailed discussion.

5. Numerical example.

5.1. Description of the network and choice of parameters. Let us consider
a 3 arc, 3 node electric power network where a regional market is located at each
node and there are 3 firms engaged in oligopolistic competition. The power network
is illustrated in Figure 3.

We assume that each firm has 2 generation units at each of the nodes with differ-
ent capacities and ramping rates. Therefore, each firm has a total of 6 generation
units which are geographically separated. We consider inverse demand parameters
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(namely price and quantity intercept) to be time varying;

Market, i 1 2 3

P0,i 40 35 32

Q0,i 5000 4000 6200

and P0,i (t) and Q0,i (t) are estimated from the load profiles of Figure 1 for all
t ∈ [t0, t1] . PDF values associated with the network are as follows

Arc (1, 2) (1, 3) (2, 3)

Node 1 0.33 0.67 0.33

Node 2 −0.33 0.33 0.67

Node 3 0 0 0

Generation capacities, CAP
f
j (in MW) of different generation units are shown

below

Firm 1 Unit 1 Unit 2

Node 1 1000 500

Node 2 750 500

Node 3 800 400

Firm 2 Unit 1 Unit 2

Node 1 750 500

Node 2 500 600

Node 3 400 500

Firm 3 Unit 1 Unit 2

Node 1 600 500

Node 2 1000 400

Node 3 1200 400

It is evident from the above tables that each firm has a mix of high and low capacity

generators. The ramping rates, r
f
j , are bounded from above and below. We assume

these bounds are symmetric, i.e., R
f+
j = −R

f−
j for all f ∈ F , i ∈ Nf , and j ∈

G (i, f). The upper bounds on ramping rates for the generation units are shown
below.

Firm 1 Unit 1 Unit 2

Node 1 58 336

Node 2 84 340

Node 3 70 400

Firm 2 Unit 1 Unit 2

Node 1 84 330

Node 2 336 290

Node 3 400 340

Firm 3 Unit 1 Unit 2

Node 1 290 340

Node 2 58 380

Node 3 35 365

If we compare ramping rate bounds and generation capacities of the units, it will be
evident that units having higher capacity typically have slower ramping capability
on percentage basis and vice versa. Also, ramping costs ($/MW-hour) associated
with the faster ramping machines are higher compared to their slower counterparts.

We tabulate unit ramping cost γ
f
j parameters below.
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Firm 1 Unit 1 Unit 2

Node 1 2.14 6.82

Node 2 4.50 6.75

Node 3 5.50 8.70

Firm 2 Unit 1 Unit 2

Node 1 4.50 6.72

Node 2 6.75 5.93

Node 3 8.74 6.80

Firm 3 Unit 1 Unit 2

Node 1 6.00 6.90

Node 2 2.20 8.60

Node 3 1.54 8.65

Elastic limits for the generators, ξ
f
j , are usually not very dependent on the capacities

of the generators, which is also evident from below where we list values of ξ
f
j for

the generators (in MW).

Firm 1 Unit 1 Unit 2

Node 1 65 57

Node 2 60 54

Node 3 62 52

Firm 2 Unit 1 Unit 2

Node 1 60 55

Node 2 61 59

Node 3 51 55

Firm 3 Unit 1 Unit 2

Node 1 55 53

Node 2 65 51

Node 3 67 52

The regional sales capacities in each of the 3 markets are assumed to be

Market, i 1 2 3

Market CAP, σi (MW) 3000 3200 2900

Coefficients associated with the linear component of generation costs of the units,

µ
f
j ($/MW), are assumed to be

Firm 1 Unit 1 Unit 2

Node 1 15 15

Node 2 14.5 15

Node 3 14.7 15.2

Firm 2 Unit 1 Unit 2

Node 1 15.2 14.7

Node 2 15.1 14.9

Node 3 15 15.1

Firm 3 Unit 1 Unit 2

Node 1 15 15

Node 2 14.8 14.8

Node 3 15.3 15
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We typically assume all coefficients associated with the quadratic component of
generation costs of units belonging to a firm to be the same with

µ̂1
j = 0.08 for all i ∈ N1, j ∈ G (i, 1)

µ̂2
j = 0.07 for all i ∈ N2, j ∈ G (i, 2)

µ̂3
j = 0.075 for all i ∈ N3, j ∈ G (i, 3)

Transmission capacities of the arcs are assumed to be the following

Arc, a 1 2 3

Transmission Capacity, Ta (MW) 130 150 160

Our planning horizon in this example is 24 hours with t0 = 0 and t1 = 24. The
initial generation rates at t0 = 0 are

q1
j,0 = 150 for all i ∈ N1, j ∈ G (i, 1)

q2
j,0 = 175 for all i ∈ N2, j ∈ G (i, 2)

q3
j,0 = 160 for all i ∈ N3, j ∈ G (i, 3)

which implies that at the beginning all the generators for a firm are operating at the
same level. This choice is intentional, as we want to study the impact of ramping
rates on the generators.

5.2. Sales, ramping rates, generation rates and market prices.

5.2.1. Performance of the Algorithm. We forgo the detailed symbolic statement of
this example and, instead, provide numerical results in graphical form for the solu-
tion which was obtained after 399 fixed point iterations. We choose the convergence
parameter αfp = 1

k
where k is the iteration counter, and pre-set tolerance ǫ = 0.5

which are the parameters for the fixed point algorithm (see Mookherjee [14]). In
Figure 4 the relative change from one iteration to the next, expressed as

∆k =
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∥
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∥

∥
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is plotted against the iteration counter k. It is worth noting that for this particular
example even though ∆1 = 5816.9, in the next several iterations ∆k decreases very
rapidly. The run time for this example is less than 10 minutes using a generic
desktop computer with single a Intel Pentium 4 processor and 1 GB RAM. The
computer code for the fixed point algorithm is written in MatLab 6.5 and calls a
gradient projection subroutine for which the control, state and adjoint variables are
determined in the sequential fashion explained in Section 4.

A Comment on Scalability of the Fixed Point Algorithm. The run time
of the fixed point algorithm reduces dramatically when the joint constraints (7)
are relaxed in each firm’s extremal problem. This observation is in line with the
observations made in Pang [17], Harker [9] and Pang and Hobbs [18]: GNEPs are
computationally more demanding. The network on which we have tested our al-
gorithm is admittedly a simplified one, our ongoing research concentrates on the
scalability of the algorithm, in particular testing on the northwest European elec-
tricity market formed by Belgium, France, Germany and the Netherlands (Neuhoff
et al., [15]). The performance of the algorithm largely depends on the ability to
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Figure 4. Performance of fixed point iteration : (left) plot of ∆k

vs. k (semi-log scale)

solve the minimum norm projection subproblem in each iteration quickly and effi-
ciently. Special structures of the problem may be exploited based on the specific
application. It is also possible, when certain structural property exists, to recast
the minimum norm projection subproblem as a linear quadratic optimal control
problem – a very well studied class of optimal control problems for which a closed
form control law exists.

5.2.2. Ramping Rate Trajectories. In Figures 5, 6 and 7 we plot ramping rate tra-
jectories of different power units owned by firm 1, 2 and 3 respectively. As a general
trend, we observe that the gas turbines are ramped up and down at the full capac-
ity (ramping capacity constraints are binding at those points) to catch up with the
market demand in a short notice.

5.2.3. Power Generation Rates. Figures 8, 9 and 10 plot corresponding generation
rate trajectories of different power units owned by firms 1, 2 and 3 respectively.
As expected, our simulated result demonstrates that in equilibirum coal units are
operated at least 50% of their respective capacities throughout the day. However,
the expensive gas turbines (marked as unit 2 in the figures) are only used only
during peak load periods and during the steep end-of-day ramp down period, when
additional ramping capability is needed. Consistent with the latter conclusion, note
that the peak unit 2 output occurs after the time of highest sales, and just before
the period of most rapid decrease in demand (Figure 11).

5.2.4. Regional Sales. We plot the total regional sales by all 3 firms at every regions
over time in Figure 11. We observe that the joint sales capacity constraints were
binding in market 2 and 3 right after 8 pm.

5.2.5. Market Price. Market prices of electricity (expressed in $/MWh) at 3 differ-
ent regions (markets) are plotted over time in Figure 12. Note that prices are highly
correlated with loads (Figure 11). In this example, the price spikes often observed
in California during steep ramping periods do not occur. This is due in part to the
smoothness of demand changes, which is partially a result of the assumed instan-
taneous responsiveness of load to price changes. Higher prices during peak periods
lower peak demands, and thus decrease the rate of change in demand during ramp
up and down.
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Figure 5. The equilibrium ramping strategies for firm 1, grouped
by the nodes

6. Concluding remarks. We present a dynamic Cournot-Nash model of compe-
tition among power generators on a transmission network that includes two new
features in each generator’s profit maximization optimal control problem : (i) a set
of joint constraints arising from the joint regional sales cap; (ii) explicit considera-
tion of generators’ ramping costs and constraints. These extensions have important
economic and operational applications. The joint sales cap constraints induce ad-
ditional analytical and computational challenges. To overcome those, we provide a
restricted formulation involving partitioned differential variational inequalities. We
have shown an equivalence relationship between solutions of this DVI formulation
with the Cournot-Nash equilibrium of the model, and shown that under very mild
regularity conditions there exists at least one equilibrium. We also discuss a version
of implicit fixed point algorithm which can be employed to compute our model.
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