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This Appendix documents the unit commitment model we used in the paper.  

1. NOMENCLATURE 
Indices 
,t τ :  Index of time period (dispatch interval) 

g:      Index of generator  
n:      Index of starting step, n=1,2, 3, …, Tg 

Decision Variables 
curtt:  Amount of wind power curtailment at time t [MW] 

,g tCemis :  CO2 [ton] emissions of generator g at t 

,g tSemis :  SO2 [pound] emissions of generator g at t 

,g tNemis : NOx [pound] emissions of generator g at t 

kg,t:  0/1 variable indicating if the generator g has been offline for more than a certain amount 
of time gΩ  at t 

pnst:  Amount of demand not supplied at time t [MW] 
og,t:   0/1 variable indicating if g is off (1) or not (0) at t 
qg,t:    Output of generator g at time t [MW] 

'
,g tq :  Output of generator g in excess of QMINg at t [MW] 

 "
,g tq :   Output of g below the min run level QMINg at t [MW] 

scg,t:    Start-up cost incurred for generator g at t [$] 
wg,t:     0/1 variable indicating if g is starting up or not at t  
zg,t:      0/1 variable indicating if g is committed or not at t 

Parameters 
Ag:      Marginal fuel consumption, generator g [MMBtu/MWh] 
Bg:      Fixed fuel consumption by g [MMBtu/h] 
CC:    Curtailment cost of wind (= -1*energy bid; so if bid is negative, this cost is 

positive) [$/MWh] 
Cpns:   Cost of unserved energy (1000 $/MWh) 
DEMt:  Load at time t [MW] 
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EMCg:  CO2 [ton/MMBtu] emission rate of generator g  
EMSg:  SO2 [pound/MMBtu] emission rate of generator g  
EMNg:  NOx [pound/MMBtu] emission rate of generator g  
Fg:       Primary fuel cost of generator g [$/MMBtu] 
FSg:     Start-up fuel cost of generator g [$/MMBtu] 
MDg:    Minimum down time of generator g [h] 
PC:   Price of CO2 [$/ton] emissions 
PS:   Price of SO2 [$/pound] emissions  
PN:   Price of NOx [$/pound] emissions  
QMAXg: Maximum output of generator g [MW] 
QMINg:  Minimum output of generator g [MW] 

,
su
g nQ :  Output of g during the nth interval of the start-up [MW] 

Rg:   Multiplier for startup cost for generator g [-]. 
RDg: Bound on downward ramp rate of generator g [MW/h] 
RUg: Bound on upward ramp rate of generator g [MW/h] 
Sg:    Start-up fuel use of generator g [MMBtu] 
SEMCg:  Start-up CO2 [ton] emissions of generator g [ton] 
Tg:    Start-up time of generator g [h] 
WINDt: Wind power production at time t if no curtailment takes place [MW] 

gΩ :  A certain threshold value for offline time where the start-up costs increase by a certain 
factor [h] 

2. UNIT COMMITMENT MODEL 

A. Basic Model 
The model is a mixed integer linear program with the following objective (1) and constraints 

(2)-(18). 
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  (1) 
Subject to: 

, , ," '      ,g t g t g tq q q g t= + ∀ ∀  (2)
"

, , , , ,     , , 1, 2, 3,su
g t g t g g n g t gn

n
q z QMIN w g t n TQ ⎡ ⎤∀ ∀ ∀ ∈ ⋅⋅ ⋅⎣ ⎦= × + ×∑  (3)

, ,' [ ]     ,g t g t g gq z QMAX QMIN g t≤ × − ∀ ∀  (4)

, , , , 1    ,g t g t g t n
n

z o w g t+ + = ∀ ∀∑  (5)

, , , , 1     , , 2, 3, g t n g t n gw w g t n T− ⎡ ⎤= ∀ ∀ ∀ ∈ ⋅ ⋅ ⋅⎣ ⎦  (6)

, , 1 , 1,     ,
gg t g t g t Tz z w g t− −≤ + ∀ ∀  (7)
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, , 1 , 1     ,g t g t g to o z g t− −≤ + ∀ ∀  (8)

( ), , ,1    ,g t g g C g N g S g g tSEMsc FS S P SEMC P P SEMN S w g t≥ + + + ×× ∀× × ∀×  (9)

( )
,

'
, , ,( )

g t g g g t g g t g g tCemis EMC B z A z QMIN q= × + +× × ×  (10)

( )
,

'
, , ,( )

g t g g g t g g t g g tSemis EMS B z A z QMIN q= × + +× × ×  (11)

( )
,

'
, , ,( )

g t g g g t g g t g g tNemis EMN B z A z QMIN q= × + +× × ×  (12)

, , 1' '     ,g t g t gq q RU g t−− ≤ ∀ ∀  (13)

, , 1' '     ,g t g t gq q RD g t− ≥− − ∀ ∀  (14)

( ), , 1 , 0    , , 1, ,min 168 , 1  g t g t g t go o o g t t MDτ τ+ −
⎡ ⎤+ − ≥ ∀ ∀ ∀ ∈ ⋅⋅ ⋅ − −⎣ ⎦  (15)

,     ,g t t t t t
g

q WIND curt DEM pns g t+ − = − ∀ ∀∑ (16)

     t tWIND curt t≥ ∀  (17)
    t tDEM pns t≥ ∀  (18)

 
The objective function, as shown in (1), is a cost function that includes fuel costs, costs of 

emissions, the penalty cost for curtailing wind energy and the cost of the non-served power, in 
case demand is not fully met by actual generation. 

The motivation for using several variables rather than just one variable to express the 
generation output, as shown in (2), (3) and (4), is that it allows to represent specific start-up 
profiles of a generating unit in the model. We observed from the USEPA CEMS data that the heat 
input and generation have linear relationship when the generator is operated steadily (See Fig. 1 
in the paper). However, this linear feature does not hold in the start-up period. Each generator has 
different start-up times and start-up ramp rates, and normally (especially for the coal generators) 
the heat input in the first several hours is for warming up without any generation output (see Fig. 
2 in the paper). By using , ,g t nw  one can pin the non-zero, effective generation output values to a 
specific output ,

su
g nQ  at each moment n of the start-up period, which allows the model to reflect the 

characteristics of different generators. The logic of this is further explained in Section B below.  
 
 

 
Fig. 1.  The relationship between power 
generation and fuel consumption for an 

example thermal generation unit after start-
up is completed 

 

 
Fig. 2.  Power generation and fuel consumption 

of a coal generator over time 
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A start-up time Tg of 3 hours is assumed in this model and thus the binary variables , ,g t nw  are 
limited to wg,t,1, wg,t,2 and wg,t,3, although the model formulation accommodates more general start-
up times. Any start-up time prior to those three hours is modeled by including it as part of 
minimum down time for the generator.   

Equation (5), (6), (7), and (8) are used to ensure that a unit does not jump to normal operating 
mode (i.e., operation at QMIN or above before starting up) nor that it shuts down in the middle of 
a start-up. Several constraints are needed to enforce the logic and predetermined order of the 
binary variables.  

Equation (9) is the start-up constraint. Every time a unit is turned on, a cost is added to the total 
cost function, represented by scg,t. This cost factor in combination with constraint (9) will be 
positive when wg,t,1 becomes 1 at each start-up. The start-up cost consists of the amount of fuel Sg 
(MMBtu) that is burned until the unit has ramped up above minimum run level, multiplied with 
the cost of the start-up fuel FSg ($/MMBtu) (which might be different from the fuel used for 
operating above minimum run), and the cost of the emissions that are exhausted during the start-
up, with P the price of the emissions and SEM the amount of emissions in tons (CO2) or pounds 
(NOx and SO2). These start-up costs are added in the model only in the first hour of the start-up, 
but include the entire cost of the start-up period. Since there is no discounting, the time of 
occurrence does not matter.  When analyzing the USEPA CEMS data, we noticed that units 
normally shut down immediately after producing at minimum run level or even at a higher output. 
Therefore, fuel costs and emissions during this short shutdown period (often less than 1 hour) can 
be neglected or considered included in the start-up cost. 

Start-up fuel expenditure and emissions can vary greatly between cold starts and warm starts. 
However, the difference is not that obvious among the generators in the USEPA CEMS data base 
whose data we based the case studies upon. So we neglected the increase in fuel expenditures and 
emissions caused by longer downtimes of generators. But a more general model that includes the 
impact of downtime on start-up costs is presented in Section C, below.   

CO2 emissions (
,g tCemis ) when generators operate steadily show a linear relation with generation 

MW output and thus can be modeled as shown in (10), by multiplying the output by an emission 
rate EMCg (ton/MMBtu). The same assumption and simplification method are applied also for 
NOx and SO2 emissions, and their emission equations are (11) and (12).  

The hourly ramping rates of thermal units are limited by constraints (13) and (14), where RUg 
is the maximum observed hourly difference in generation output when ramping up and RDg is the 
maximum (negative) change when ramping down (MW/h).  

In this model there is also a downtime constraint, constraint (15) is included that requires units 
to remain off-line during a certain period of time MDg (h) once it has been shut down in order to 
prevent boiler wear and damage. A minimum on-time constraint can also be included but has 
been disregarded in our paper. 

Demand balance constraint (16) couples individual generator output together with the demand 
and available wind power. The power output of each generator together with the wind power 
generation WINDt in each period equals the demand DEMt. In case of excess wind power, one 
might opt for curtailing wind (curtt) at a certain cost, as shown in the objective function. 
Furthermore curtailment of electricity demand is also possible if capacity is inadequate, which 
results in non-served power (pnst). Constraints (17) and (18) ensure that one cannot curtail more 
wind than available nor curtail more demand than possible. 
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B. Generation during Start-up Periods 
The output ,g tq  of generator g in time period t is modeled as the sum of the output ,"g tq  below 

the minimum stable production level (QMINg) and the output ,'g tq  in excess of that load (see Fig. 
A-1). If the generator unit is offline, ,g tz  and , ,g t nw  are all zero, so that output ,g tq  is zero as well, 
based on (3) and (4). When starting up, ,"g tq  becomes positive and follows the predetermined 
output ,

su
g nQ , as illustrated by Fig. A-1 for a start-up time of 3 hours. Once the unit reaches the 

minimum run level, ,g tz  becomes 1 and all , ,g t nw  are zero so that ,"g tq  constantly equals the 
minimum run level during operating mode.  

In operating mode ( ,g tz ൌ 1), the generator’s output cannot exceed its maximum capacity or be 
below its minimum level, as forced by (4). When the unit shuts down, ,g tz  becomes zero and ,g to  
jumps to 1. 

 

 
Fig. A-1.  Illustration of Logic of Binary Variables and Generation Output 

 

C. Start-up Constraints with Hot- and Cold-Starts 
Start-up times, fuel expenditure and emissions can vary greatly depending on the time that a 

unit is off-line. Even though off-line times are not included in the model in our paper, we would 
like to introduce the way of adapting the model to the need of introducing the effect of off-line 
time. Certainly for steam units that need to reach a suitable boiler pressure and temperature in 
order to operate, this factor is non-negligible. In our analysis of USEPA CEMS data, we observed 
that for some units, the start-up fuel and emissions can increase by a factor of 2 to 3 depending on 
the off time. Therefore, the factor ,g g tR k×  is added to (9) and the startup cost equation changes to 
(19) in order to take this effect into account. kg,t is a binary variable that indicates if generator g 
has been offline for more than gΩ  hours, where gΩ  is a certain threshold value where the start-up 
costs increase by a certain factor, based on the value of Rg. For example, if start-up costs increase 
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by a factor of 2 when offline exceeds 100 hours, the parameter Rg equals 1 and gΩ equals 100. 
The mechanism that enables the binary variable kg,t to be equal to 1 when offline reaches or 
exceeds gΩ  is modeled by (20). When wg,t,1 jumps to 1 at a start-up, the off-line hours before 
period t are counted by summing up all the offline hours ,g to  of the last gΩ hours and compared to 

( )1gΩ − . This difference is divided by a “big M” and when it is positive, kg,t is forced to be larger 
than a very small number, making it equal to 1 because it is defined as a binary variable. kg,t will 
always equal zero if wg,t,1 is zero since adding a very small number to -1 will never give an 
outcome bigger than zero. 

( ) ( ), , ,1 ,    ,g t g g C g N g S g g g gt tsc FS S P SEMC P PSEMN R kSEMS w g t× × ×≥ + + + × ∀× + ∀× (19)

( )
1
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, , ,1       ,
1

1 g

t

g g
t

g t g t

o
k w g t

M
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τ

−

= −Ω
∀

− Ω −

≥ − + + ∀
∑

 (20)

 

                                  
 

    
 


