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Abstract Harrington et al. [21] introduced a general framework for modeling
tacit collusion in which producing firms collectively maximize the Nash bar-
gaining objective function, subject to incentive compatibility constraints. This
work extends that collusion model to the setting of a competitive pool-based
electricity market operated by an independent system operator. The exten-
sion has two features. First, the locationally distinct markets in which firms
compete are connected by transmission lines. Capacity limits of the transmis-
sion lines, together with the laws of physics that guide the flow of electricity,
may alter firms’ strategic behavior. Second, in addition to electricity power
producers, other market participants, including system operators and power
marketers, play important roles in a competitive electricity market. The new
players are included in the model in order to better represent real-world mar-
kets, and this inclusion will impact power producers’ strategic behavior as well.
The resulting model is a mathematical program with equilibrium constraints
(MPEC). Properties of the specific MPEC are discussed and numerical exam-
ples illustrating the impacts of transmission congestion in a collusive game are
presented.
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1 Introduction

Since the restructuring of electricity markets in the U.S. and other countries
around the world, much attention has been given to the oligopolistic nature
of the newly created wholesale electricity markets. Certain features of such
markets, including a relatively small number of incumbent power generating
firms, barriers to entry for new plants, isolation of submarkets due to trans-
mission congestion, inelastic demand, and non-storability of electricity, have
all contributed to the ability of incumbent power generators to increase their
price bids above their true marginal costs. As a result, market clearing prices
(the prices at which supply meets demand) are higher than what they should
be in a perfectly competitive market. Prices above competitive levels lead to
income transfer from consumers to power producers. In addition, allocation
and productive inefficiencies can occur in the form of too little overall produc-
tion, coupled with too much coming from costly small producers and too little
from cheap plants that larger producers take out of production.

Numerous market equilibrium models based upon game theory have been
proposed to study oligopolistic firms’ strategic interactions in deregulated elec-
tricity markets. (See Ventosa et al. [45] for a literature review.) However, most
of the models focus on static interactions among firms; that is, firms are as-
sumed to play a simultaneous-move game only once. In reality, such as in a
daily electricity market, market participants interact with each other repeat-
edly. It is well-known in the industrial organization literature that players may
behave differently in repeated games than in static games. In a static setting,
players try to undercut their rivals whereas in dynamic settings, players may
realize that better payoffs can be achieved if they behave more collaboratively.
This leads to tacit collusion among non-cooperative players, which can lead to
higher prices and more market distortion than static gaming among market
participants. Rothkopf [38] expressed concern that static-game-based analysis
may not predict well how actual electricity markets work. The same concern
is shared by others, for example, Borenstein et al. [5], Harvey and Hogan [22],
Newbery [33], and Twomey et al. [44].

Some empirical studies justified the concern that static models are not ade-
quate to capture firms’ behavior in dynamic settings. Sweeting [42] showed that
between 1996 and 2000, power producers’ behavior in UK’s electricity market
resembled tacit collusion more than static Nash equilibria. Similar results were
found in Macatangay [30]. Fabra and Toro [14] found empirical evidence indi-
cating that electricity generators may have engaged in tacit collusion during
1998 in Spain’s decentralized electricity market.

Simulation-based models have also shown that repeated interactions among
simulated agents can lead to tacit collusion. Such studies include Visudhiphan
and Ilić [46], Bunn and Oliveira [7], Bunn and Martoccia [6], Correia et al.
[11], Tellidou and Bakirtzis [43], and Anderson and Cau [1].

Equilibrium-based repeated-game models on electricity markets have been
scarce. Most of the existing works employed a joint monopoly model (which
is equivalent to an explicit collusion, or a cartel), such as in Fabra [13] and in
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Puller [36]. Such models are better suited to study cooperative games with ex-
changeable utility (i.e., side-payments). Arguably, however, cooperative games
with non-exchangeable utility are more appropriate for market games, because
the existence of side-payments would represent a ‘smoking gun’ for antitrust
enforcers. In contrast, tacit collusion is much more difficult to prove in court
because agreements are implicit.

A canonical repeated-game model of tacit collusion was established in Har-
rington et al. [21], where the model was formulated as an optimization problem.
Fershtman and Pakes [15] used a similar approach to model oligopolistic collu-
sion, but the constraint set in their optimization model is much simpler than
that in [21]. Rasch and Wambach [37] applied the framework in [21] to study
antitrust issues. Here we present an extension of the model in [21] and con-
siders a repeated game in a deregulated electricity market with transmission
constraints. Though the network effect on collusion in the form of multimarket
contact has been studied in the well-known paper by Bernheim and Whinston
[3], the effect of network congestion on collusion is not well-understood in
existing literature. Such an effect, however, is key to study strategic electric
power suppliers’ behavior in an organized wholesale electricity market. To our
knowledge, this paper represents the first attempt to model such behavior in
a repeated-game setting with congested transmission networks.

There is not a unique way to include transmission in the tacit collusion
framework of Harrington et al. [21], and transmission poses challenges for
computation and analysis. One fundamental choice concerns the organization
of the transmission market. On one hand, transmission markets can be oper-
ated separately from generation markets, so that generators wishing to sell in
other markets would have to buy transmission capacity separately from sell-
ing energy. For instance, this was the structure in northwestern Europe until
recently, where, e.g., power producers in Germany had to buy transmission ca-
pacity to the Netherlands in one auction and sell their power in another. Local
market rules, for example concerning curtailment of transactions in case of line
outages, could also hamper access by foreign competitors or traders. The lack
of explicit coordination of generation and transmission auctions resulted in
inefficiencies, and could present opportunities for generators in different coun-
tries to tacitly collude through geographically market sharing arrangements.
The other possible transmission market organization is a pool market oper-
ated by an Independent System Operator (ISO), in which generators sell their
output to the system operator at their location. The ISO then transmits the
power, and electricity prices are set based on marginal production costs and
congestion. In such markets, generators can also sell power in other markets by
paying the ISO a fee (transmission charge), which is defined as the electricity
price differential between two markets. Thus, by definition, the ISO perfectly
arbitrages price differences over space. As a consequence, the generator will
be indifferent to selling locally or scheduling a sale elsewhere. In this paper,
we focus on this second type of transmission organization, which characterizes
the major organized power markets in the U.S.
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Given that focus, the second fundamental transmission modeling choice
pertains to generators’ expectations about the interaction of their output de-
cisions with the ISO’s decisions concerning transmission congestion and prices.
Our framework requires that three distinct sets of market solutions be calcu-
lated, and so this choice must be made for each of these sets. These sets are:
(1) the collusive solution itself that the generators tacitly agree to (based on
the Nash bargaining solution); (2) the optimal unilateral deviation from that
agreement that each player would pursue in the short term if decides to aban-
don collusion; and (3) the Nash noncooperative solution, which is assumed
to occur in the long term if the collusive agreement breaks down. The Nash
bargaining solution is found by maximizing a function of the generator profits
subject to the incentive compatibility constraint that each player cannot in-
crease its present worth of profits by unilaterally deviating in the short term
followed by the entire market reverting to the Nash noncooperative solution.
For each of those solutions, the modeler must decide how to represent the re-
lationship of the generators to the transmission independent system operator
(ISO). Sophisticated generators might anticipate how their decisions would
affect the ISO’s charges for transmission services; less sophisticated generators
might assume that the charges will not change; and the least sophisticated
assumption is that any changes in generation are absorbed by local demand
and do not affect transmission flows. Each representation has advantages and
disadvantages relative to market realism as well as tractability. The model
in this paper is based upon one set of transmission modeling choices for the
three solutions. As we point out below, others are possible, and would likely
yield different solutions. The contribution of this paper is its description of
possible ways to model transmission-constrained tacit collusion in ISO mar-
kets, and the presentation and analysis of one particular implementation which
we believe represents a reasonable compromise between modeling realism and
computational feasibility.

The organization of the rest of the paper is as follows. Section 2 dis-
cusses the setting of a deregulated electricity market that we model. Section
3 presents the collusion model formulation. Reformulations of the collusion
model into computationally convenient forms and corresponding model prop-
erties are provided in Section 4. Numerical examples illustrating the effects of
transmission constraints on collusive firms’ strategies are shown in Section 5.
Section 6 summarizes the results and discusses future research.

2 Electricity Market Setting

In a deregulated electricity market, power producers bid into a spot market
to sell electricity each day, with the spot market operated by an indepen-
dent system operator (referred to as the ISO). The ISO dispatches electricity
through the transmission network to balance supply and demand in order to
maximize the net benefits to the market (benefits to consumers minus costs
to producers, as revealed by their bids). Market clearing prices are calculated
by the ISO for each location and time period based on the dual variable of
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the energy balance at each node (or ‘bus’) in the network. A spot wholesale
power market may consist of a two-settlement system – a day-ahead (DA)
market and a real-time (RT) market. In such a system, both electricity supply
and demand bids for the next day are collected in the DA market, and the
ISO selects generators to run in the next day to meet the projected demand.
In the RT market, the ISO dispatches based on the day-ahead schedules, and
deploys additional resources to cover any real time disparity between supply
and demand. Uncertainties, such as errors in demand forecasts, variable out-
puts from intermittent renewable resources, and forced outages of generators
or transmission lines, play an important role in analyzing generators’ behavior
in real-time. Since considering uncertainty is beyond the scope of this work,
the collusion model to be introduced can be viewed as a simplified representa-
tion of a DA market in which forecasted generation availability and demand
are known to all market participants. As a result, we consider a repeated
game resembling the daily repetition of a day-ahead market, which includes
market-power exercising producers, an ISO, and price-taking consumers.

3 Collusion Model Formulations

3.1 Collusion Model without Transmission Constraints

To make this paper self-contained, we first briefly introduce the generic collu-
sion model, as first presented in Harrington et al. [21]. Starting with a static
game, we consider its normal-form representation, which specifies the number
of players, their action spaces, and payoff functions. A repeated game consists
of repetition of a static game (also referred to as a single-stage game) whose
normal form does not change over time. We consider a simultaneous-move
single-stage game, and assume that it is of complete information; that is, each
player’s payoff function is common knowledge to all the players.

Consider a single-stage game with F players. Let F = {1, . . . , F} denote
the set of players, and Xf ∈ <nf denote the feasible action space of player f .
We call the Cartesian product of the individual action spaces, X :=

∏
f∈F Xf ,

the action space of the single-stage game. Each player has a payoff function
πf (x) which maps from the game’s action space X (instead of from the player’s
own action space Xf ) to a value in <. Let π denote the vector of all players’
payoffs; that is, π := (π1, . . . , πF ). Then the normal-form representation of the
single-stage game is denoted by the triplet (F , X, π).

Assume that players are rational; that is, each player maximizes his or her
own payoff. Player f ’s payoff maximization problem, parameterized by other
firms’ actions x−f , is as follows.

maximize
xf

πf (xf , x−f )

subject to xf ∈ Xf .
(1)

A combination of players’ strategies, xN = (xN1 , . . . , x
N
F ) ∈ X, is referred to

as a (pure-strategy) Nash equilibrium to the single-stage game (F , X, π) if

πf (xNf , x
N
−f ) ≥ πf (xf , xN−f ), ∀xf ∈ Xf , f ∈ F .
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In an infinite repetition of a single-stage game, it is well-known by the so-
called ‘folk theorem’ (Friedman [17]) in game theory that many Nash equilibria
can exist with a given discount factor δ ∈ (0, 1),1 and some may lead to a higher
payoff to each player than their payoff in a static equilibrium.

One strategy that can yield higher equilibrium payoffs is the so-called
grim-trigger strategy (Friedman [17]). Suppose that players compete to sup-
ply a homogeneous good, and let qf denote the quantities of the good that
player f chooses to supply. Assume that a Nash equilibrium exists in a single-
stage game, denoted by qN = (qN1 , . . . , q

N
F ). Suppose that there exists q̃ =

(q̃1, . . . , q̃F ) ∈ X =
∏
f∈F Xf such that πf (q̃) > πNf for every f ∈ F . Then a

grim-trigger strategy in an infinitely repeated game, with time period starting
from 1 and indexed by t, is as follows.

q1f = q̃f

qtf =

{
q̃f if qτ = q̃ ∀ τ ∈ {1, 2, . . . , t− 1}
qNf otherwise.

∀ t ∈ {2, 3, . . .} .
(2)

(q̃, qN ) is referred to as a grim-trigger strategy combination, which says that
players choose to supply q̃ unless one or more firms deviate from q̃ in a certain
t. Assume that the repeated game is of perfect information; that is, the entire
history of the game is known to all players. Then deviation at one period is
observed by all firms in the next period, which triggers the punishment in
which all firms choose qN throughout the remaining repeated game. Friedman
[18] presented a condition for a grim-trigger strategy to be not only a Nash
equilibrium, but also a subgame-perfect equilibrium (SPE) in a repeated game
– a refinement of a Nash equilibrium. An SPE is a Nash equilibrium to each
subgame of a repeated game, where a subgame is a game that starts from t
and contains all the stage games onwards, with t = 1, 2, . . . , .2

Theorem 1 (Friedman [18]) Let an infinitely repeated game consist of a repe-
tition of a simultaneous-move stage game G := (F , X, π). Let qN = (qN1 , . . . , q

N
F )

∈ X be a Nash equilibrium of the stage game G, and let (q̃, qN ) ∈ X ×X be a
grim-trigger strategy combination. Then (q̃, qN ) is a subgame-perfect equilib-
rium of the infinitely repeated game if and only if

δ ≥
πdf (q̃−f )− πf (q̃)

πdf (q̃−f )− πNf
, ∀f ∈ F , (3)

where πdf (q̃−f ) is firm f ’s payoff from its best response to other firms’ action
q̃−f ; that is,

πdf (q̃−f ) ≡

 maximize
qf

πf (qf ; q̃−f )

subject to qf ∈ Xf .

 (4)

�
1 The discount factor can be defined as δ := (1− p)/(1 + r), where r ∈ [0, 1] is an interest

rate and p ∈ [0, 1] represents a probability that the repeated game will end in the next time
period.

2 By definition, the repetition of a static Nash equilibrium is also an SPE. However, not
any Nash equilibrium of a repeated game is an SPE.
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We can re-write the formula in (3) as follows (dropping the tilde of q):

πf (q) ≥ ( 1− δ )πdf (q−f ) + δ πNf , ∀f ∈ F , (5)

and refer to this as player f ’s incentive compatibility constraint. The interpre-
tation is that the overall gain of one-time cheating is no more than the overall
payoff of maintaining collusion. Hence, it is each payoff-maximizing player’s
self-interest to choose qf instead of cheating. We then define the set

Ωδ ≡ {q ∈ X =
∏
f∈F

Xf : πf (q) ≥ (1− δ)πdf (q−f ) + δπNf , ∀f ∈ F}. (6)

The set Ωδ includes the feasible subgame-perfect quantities leading to collusive
profits that provide no incentive to any firm to deviate. This set (plus any
technical constraints upon the quantities) defines the feasible region for the
collusive model.

The set Ωδ is not a singleton in general as there may be multiple subgame-
perfect equilibria. When facing multiple equilibria, players need to have a
mechanism to select a single equilibrium. One of such mechanisms is through
bargaining. To be more specific, as players can achieve higher payoffs in a
repeated game than in a static game, they decide the actual allocation of the
surplus by bargaining with each other. There is a possibility that no agreement
is reached and the bargaining breaks down, with each player receiving the
payoff in a static Nash equilibrium.

Instead of explicitly modeling the bargaining process, the axiomatic bar-
gaining theory developed by Nash [32] is employed in this work. Nash [32]
listed four axioms to be satisfied by an equilibrium from a bargaining process
with nonexchangeable utility, and showed that the bargaining problem has a
unique solution satisfying the axioms if and only if the payoffs to the players
are as follows.

π∗ := (π∗1 , . . . , π
∗
F ) ∈ arg max

π∈Γ

F∏
f=1

(πf − νf ), (7)

where ν = (ν1, . . . , νF ) with νf being player f ’s payoff should the bargaining
fail, and Γ =

∏F
f=1 Γf with Γf being the set of player f ’s feasible payoffs. The

justifications for using the Nash bargaining approach to select a subgame-
perfect equilibrium can be found in Harrington [20]. The complete model that
uses the Nash bargaining framework as a mechanism to select an equilibrium
from the set of feasible incentive-compatible quantities (Ωδ) is as follows.

maximize
q

Θ(q) ≡
∏
f∈F

[πf (q)− πNf ]

subject to q ∈ Ωδ
(8)

The implicit optimal value functions πdf (q−f ) in the set Ωδ pose difficul-
ties in solving (8) as they do not have explicit function forms. However, the
following proposition shows that πdf (q−f ) can be explicitly represented by in-
troducing auxiliary variables, and the collusion model can be reformulated as
a mathematical program with equilibrium constraints (MPEC).
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Proposition 1 (Liu [28]) For each player f ∈ F , suppose its feasible action
space Xf can be explicitly represented as follows: Xf = {qf ∈ <n : gf (qf ) ≤ 0},
where gf : <n → <m is assumed to be convex and continuously differen-
tiable. Further assume that a constraint qualification holds for Xf . Suppose
that πf (qf , q−f ) is concave and continuously differentiable, both in regard to
qf . Then model (8) is equivalent to the following MPEC.

maximize
q, q∗, γ∗

Θ(q) =
∏
f∈F

[πf (q)− πNf ]

subject to πf (q) ≥ (1− δ)πf (q∗f , q−f ) + δπNf , ∀f ∈ F
gf (qf ) ≤ 0, ∀f ∈ F ,
−∇q∗fπf (q∗f , q−f ) +∇gf (q∗f )T γ∗f = 0, ∀f ∈ F
0 ≤ γ∗f ⊥ −gf (q∗f ) ≥ 0, ∀f ∈ F .

(9)

�

3.2 Tacit Collusion Model with Transmission Constraints

To extend the collusion model from the previous section to the setting of an
electricity market, we need to model not only different market participants as
described in Section 2, but also the transmission network structure. Various
model formulations based on different assumptions concerning market rules,
as well as the resulting level of computational difficulty, are discussed in this
subsection. In particular, in each of three market submodels that make up
the overall tacit collusion model, it is necessary to make an assumption about
whether or not the ISO’s reaction to changes in generator decisions are ex-
plicitly considered by the generators. The three submodels are those of power
prices when firms collude; when a single firm deviates from collusion; and the
punishment stage when firms revert to a Nash equilibrium. In theory there are
23 possible combinations of transmission assumptions. We then settle on one
that we believe represents a reasonable compromise between computational
tractability and realism.

To ease presentation, we first summarize the notation to be used by the
models in this and later sections.

Sets, Indices and Dimensions

N Set of nodes in a network; |N | = N . i, j ∈ N means that node i and j are in N
A Set of (directional) links in the transmission network N ; |A| = 2L

F Set of power producers; |F| = F . f ∈ F means that power producer f is in F .

Parameters
P 0

i Price intercept of the affine inverse demand function at node i [$/MWh]

Q0
i Quantity intercept of the affine inverse demand function at node i [$/MWh]

Cfi(x) Firm f ’s production cost function at node i [$/hr]

PTDFki (k, i)-th element of the power transmission-distribution factor matrix

Tk Transmission capacity on link k ∈ A [MW].
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Variables
gfi Firm f ’s electricity generation (in a collusive solution) at node i ∈ N [MWh]

yi Power transmitted from the hub to node i in linearized DC approximation [MW/hr]

wi Fees charged for transmitting electricity from the hub to node i ∈ N [$/MWh]

di Electricity demand at node i ∈ N [MWh]

pi Power price at node i ∈ N [$/MWh].

Vectors and Matrices

1 A vector of all 1’s with a proper dimension

I An identity matrix with a proper dimension

E A square matrix of all 1’s with a proper dimension

P 0 N × 1 vector of P 0
i ’s for with i ∈ N

B N ×N diagonal matrix with the i-th diagonal entry being P 0
i /Q

0
i

g F ×N matrix with the (f, i)-th entry being gfi

G, G−f N × 1 vectors, with Gi =
P

f∈F
gfi and G−fi

=
P

f 6=h∈F
ghi

y N × 1 vector of of yi’s, i ∈ N
T 2L× 1 vector of Tk’s, the transmission line capacities, k ∈ A.

There are two key elements in building the collusion model within the
context of a deregulated electricity market: (1) the single-stage game to be
repeated among various market players; and (2) the optimal payoff when a
firm unilaterally deviates from collusion. These two elements are discussed in
detail in the following subsections.

3.2.1 Static Games to be Repeated

In a single-stage game, power producers are assumed to play a simultaneous-
move Cournot game. The justification for the simultaneous-move game is that
when they make generation decisions (in a time epoch), power producers do
not know their rivals’ actions (in the same epoch). However, whether the power
producers anticipate their actions to the ISO’s dispatch decisions depends on
market structures and participants’ rationality. Before presenting the possible
formulations of producers’ optimization problems, we first present the ISO’s
problem and the corresponding transmission network modeling.

In this work we consider a hub-spoke type of network representation, in
which the electricity flow from node i to j is assumed to be from i to a hub, and
from the hub to j.3 By doing so, the number of variables representing electricity
flows can be significantly reduced. We also consider a lossless transmission
network throughout the work.4

3 This is equivalent to the linearized DC representation of power flow, which is an ap-
proximation of the actual AC load flow (see Schweppe et al. [41]) and is commonly used in
models of electricity markets [45]. In that representation, a hub is arbitrarily chosen, and
PTDFs represent the flow on a particular transmission element resulting from a unit injec-
tion at the hub and a withdrawal at some other node i. Linearity implies that a transfer of
power from a node j to a node i can be modeled (and priced) as two transactions: from j
to an arbitrary hub, and then from that hub to i.

4 Chen et al. [9] have proposed a DC load flow model that considers transmission losses
through a (convex) quadratic function. Such an implementation can be incorporated into
the modeling and computational approach of the collusion model without much difficulty.
As a starting point and for the ease of argument, we omit losses.
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The ISO collects the bids from power producers and dispatches to maximize
the social surplus. Let yi denote the dispatch decision of the ISO, with a
positive yi meaning sending power to node i (from the hub node), and a
negative yi meaning withdrawing power from node i (to send to the hub node).
As a result, the demand of electricity at a node (di) is met by Gi + yi, the
total generation at i plus the power shipped to (or withdrawn from) i.5 Then
the ISO’s social-surplus-maximization problem is given as follows. (The same
formulation has been used in several previous works, including [47,48].)

maximize
y

∑
i∈N

∫ Gi+yi

0

pi(τi)dτi −
∑
f∈F

Cfi(gfi)


subject to

∑
i∈N

yi = 0 (µ)∑
i∈N

PTDFkiyi ≤ Tk, ∀k ∈ A. (λk)

(10)

The objective function in (10) is the classic definition of social surplus, which
equals the area under the inverse demand function minus the total generation
cost. The first constraint in (10) is a flow balance constraint; while the second is
the transmission capacity limits, with the Kirchhoff Current and Voltage Laws
implicit in the power transmission and distribution factor matrix (PTDF).
The greek letters in the parenthesis represent the corresponding Lagrangian
multipliers. The interpretation of µ is the electricity price at the hub node;
while the prices at other nodes can be obtained by writing out the optimality
conditions of (10):

pi(Gi + yi) = µ+
∑
k∈A

PTDFkiλk, (11)

which are exactly the locational marginal prices (Hogan [25]) at each node.
With the formulation (11), it can be seen that in an optimal dispatch schedule,
the price differentials at two different nodes are only caused by transmission
congestion rents (allocated to each node through the power transmission and
distribution factors);6 that is,

pi − pj =
∑
k∈A

PTDFkiλk −
∑
k∈A

PTDFkjλk, ∀i, j ∈ N . (12)

The game played between power producers and the ISO can be of either of
two types.7 If power producers believe that their actions would not affect the

5 Note that since we use an affine function to represent electricity demand at each node,
instead of using a fixed demand, there will not be the case that the supply cannot meet the
demand.

6 This is essentially the ISO’s role is, in essence, to eliminate non-congestion related price
differentials. Due to this role of the ISO, there cannot be “market sharing” type of agreements
(Belleflamme and Bloch [2]) between power producers to preserve their monopoly positions
in their “home” markets.

7 There is another possible type of games (Sauma and Oren [40]) in which the ISO plays
as the leader while the oligopolistic power producers act as the follower, with respect to the
dispatch schedules. The rationale is that the ISO is aware of the market imperfection, and
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ISO’s dispatch, then the producers do not consider the ISO’s actions endoge-
nously. This is sometimes referred to as Bertrand competition between power
producers and the ISO (as in Hobbs [23] and Metzler et al. [31]). The other
type is that power producers anticipate the impacts of their actions on the
transmission network and endogenously consider the ISO’s dispatch problem
(as in Cardell et al. [8], Hobbs et al. [24] and Yao et al. [47]). The difference
between the two types of models is illustrated in Figure 1.

 

ISO 

Cournot 
Competition 

Bertrand 
Competition 

Exogenous – ISO 
 

      
    
Producer 1 

     
    
Producer F 

 

Cournot 
Competition 

Endogenous – ISO 
 

     
   Producer 1 

ISO 

     
   Producer F 

ISO 

Fig. 1: Comparison of the exogenous-ISO model and endogenous-ISO.

We adopt the assumption corresponding to the endogenous-ISO model for
power producers’ rationality when they engage in a collusive game, as it is not
unreasonable to expect that collusive firms are expected to be sophisticated
in terms of the knowledge of the game. The corresponding collusive-game
structure is illustrated in Figure 2.

 

 Producer 1 
1 

ISO 

Producer F 

Tacit Collusion 

Fig. 2: Illustration of the collusion model in an electricity market.

For all the models discussed below, we also assume that consumers’ willing-
ness-to-pay at each location within the network is represented by an affine
inverse demand function. That is, the electricity price pi(di) at location i ∈ N ,
which is a function of total demand at i (denoted by di), is determined as

pi(di) = P 0
i −

P 0
i

Q0
i

di, (13)

where P 0
i and Q0

i are the intercepts of the affine function at the price and quan-
tity axis, respectively. With the above-discussed assumptions and by following

mitigates the potential market power abuse by strategic generators through anticipating
their actions. Under such a setting, the ability that generators may form a tacit collusion is
expected to be limited. Such an interesting direction is left to be explored in future research.
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the framework introduced in Section 3.1, we establish the collusive-game model
of an electricity market as follows.

maximize
g, a, y, w, p

Θ(g, a, y) =
∏
f∈F

[
πf (g)− πNf

]
subject to πf (g) ≥ (1− δ)πdf (G−f ) + δπNf , ∀f ∈ F

gfi ∈ Xfi, ∀f ∈ F , i ∈ N

ISO



maximize
y

∑
i∈N

∫ yi+Gi

0

pi(τi)dτi −
∑
f∈F

Cfi(gfi)


subject to

∑
i∈N

yi = 0∑
i∈N

PTDFkiyi ≤ Tk, ∀k ∈ A.


.

(14)
The set Xfi in (14) represents the feasible production set of firm f at node i.
Xf then is defined as the Cartesian product of Xfi for i ∈ N . We make the
blanket assumption throughout that Xfi is nonempty, compact and convex.
Note that the formulation above models a Poolco-type electricity market in
which generators bid all their generation at the location that the electricity
is produced and the ISO dispatches to balance the supply and demand of the
entire network. The model can also be modified to model a bilateral market,
or a hybrid market (as in Hobbs [23] and Metzler et al. [31]), where genera-
tors can either bid to the ISO or sign bilateral contracts with a buyer (i.e.,
self-scheduling). Since the ISO dispatches electricity to ensure that the price
differential between two locations are only caused by transmission charges
when congestion occurs, generators earn the same revenue whether they sell
at the point of generation or elsewhere. Hence, assuming selling at the point of
generation will not limit the model in any essential way (Metzler et al. [31]).

The optimization problem (14) is not convex in general. It is a bilevel pro-
gramming problem, and the presence of transmission constraints in ISO’s prob-
lem renders it an MPEC. There are further modeling and computational diffi-
culties associated with the formulation in (14). First, the firm’s optimal devia-
tion profit, πdf (G−f ), becomes more complicated due to the added market play-
ers and the network constraints. The detailed formulation of πdf (G−f ) is the
focus of the following subsection. Second, the static Nash equilibrium πNf is not
unambiguously defined. To be consistent with the assumption that power pro-
ducers endogenously consider the ISO’s problem in a collusive game, πNf should
be the payoff in a static Nash equilibrium corresponding to the endogenous-
ISO model, as illustrated by the right-hand picture in Figure 1. However, in
such an equilibrium, due to the transmission constraints, each firm’s profit
maximization problem is an MPEC. The overall model then becomes an equi-
librium problem with equilibrium constraints (EPEC). Such models have been
discussed in detail in [27,26,47], and are widely known to have two basic issues.
First, an equilibrium may not exist (Pang and Fukushima [35]). Second, even if
an equilibrium exists, they are difficult to compute (heuristic algorithms have
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been proposed in Hu and Ralph [26] and Yao et al. [47], for example). On the
other hand, the equilibrium corresponding to the exogenous-ISO assumption
(the left-hand picture in Figure 1) can be formulated as a complementarity
problem (CP) instead of an EPEC, and possesses desired properties (such as
existence of a solution and uniqueness of firms’ profits). Well-established algo-
rithms for complementarity problems, such as PATH [12], can also be easily
applied to compute an equilibrium (Metzler et al. [31]).

Therefore, to balance computational tractability and model consistency,
we assume that when a deviation is detected in a repeated game, the single-
stage game repeated in the punishment stage is the complementarity-problem-
based Cournot game as in Metzler et al. [31].8 Let πEPECf denote firm f ’s
profit in an equilibrium corresponding to the EPEC model (assuming that
an equilibrium exists), and let πCPf denote firm f ’s profit in a single-stage
equilibrium derived from the complementarity-problem-based model. It is not
unreasonable to expect that πEPECf > πCPf when the input data are the same,
as firms are more sophisticated in the EPEC model.9 If this is indeed true,
then using πCPf to replace πEPECf in the punishment stage may help sustain
a collusion as the punishment to all firms is more severe. If the reverse is true,
namely, πEPECf < πCPf , then using πCPf as the payoffs in the punishment
stages will make collusion more difficult. In the following discussion we still
use πNf (instead of specifying πEPECf or πCPf ) to denote a generic single-stage
Nash equilibrium payoff in the punishment stage, and will distinguish the
two different static equilibria when necessary. For completeness, the detailed
formulations of the EPEC and CP model are provided in Appendix A.

3.2.2 Optimal Deviation from Collusion

Now we focus on the formulation of a firm’s optimal deviation payoff πdf . To be
consistent with the assumptions for the single-stage game, a deviating power
producer should play a Stackelberg game with respect to the ISO, while taking
other power producers’ generation quantities, G−f , as fixed. The resulting
formulation is in (15).10

8 Note that the payoffs from a static Nash equilibrium are used as inputs to the collusion
model (14) and can be calculated offline. Hence, should there be theoretical and computa-
tional advances to address EPEC problems, we can easily substitute the EPEC formulation
in calculating the πN

f for each firm f ∈ F .
9 However, no proof is known to date for this claim. As a matter of fact, the EPEC

game in which each power producer competes while explicitly including in its constraint set
all transmission constraints and rivals generation is a generalized Nash equilibrium (GNE)
(Yao et al. [47]). Such games are widely recognized to have multiple equilibria (e.g., Oren
[34]). A simple example of such a GNE is the pie-sharing game, where each player chooses
how much of a pie to take, given how much others have taken; it turns out that if utility is
monotonic in the amount of pie, then any split of the pie among the players is an equilibrium.
Consequently, there may be some equilibria in the EPEC GNE in which some of the players
may be worse-off than playing the CP game.
10 Note that the variable yd

f with an index f does not mean that it is the deviating firm

f ’s decision variable. The index only indicates that it is associated with the ISO’s dispatch
decisions when firm f deviates from the collusive solution.
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πd
f (G−f ) =

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

maximize
gd

f

X
i∈N

»
P 0

i −
P 0

i

Q0
i

(G−fi + gd
fi + yd

fi)

–
gd

fi −
X
i∈N

Cfi(g
d
fi)

subject to gd
fi ∈ Xfi, ∀i ∈ N ,

ISO

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

maximize
yd

f

X
i∈N

"Z yd
fi+(G−fi+gd

fi)

0
pi(τi)dτi

−
X
h∈F

Chi(ghi)

35
subject to

X
i∈N

yd
fi = 0X

i∈N
PTDFkiy

d
fi ≤ Tk, ∀k ∈ A.

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>;

. (15)

With the formulation (15), πdf (G−f ) is an optimal value function of a bilevel
programming problem. Under the assumption of affine price functions, the
ISO’s problem is a convex problem with linear constraints. As a result, the
bilevel program is equivalent to an MPEC, with the complementarity con-
straints coming from the KKT systems of the ISO’s optimization problem.
This MPEC formulation incurs two theoretical difficulties. First, convexity of
πdf (G−f ) is difficult to establish. Existing convexity results on optimal value
functions, such as those in Fiacco and Kyparisis [16], cannot be applied to
problem (15) because the objective function is not jointly concave with respect
to (gdf , y

d
f ), and the parameterized feasible region is not convex. The lack of

convexity would pose both theoretical and computational difficulties for the
collusion model (14). Second, the smooth reformulation given in Proposition
1, which replaces the implicit optimal value function with its KKT-system,
cannot be applied to πdf (G−f ), as the feasible region in (15) is not convex.
Hence the first-order condition is not sufficient to imply global optimality of
the deviating firm’s unilateral profit maximization.

To balance the validity of a model with computational tractability, we
consider removing the ISO’s problem, and let π̃df denote the resulting optimal
deviating function:

π̃d
f (G−f , y) ≡

(
maximize
gd

f
: gd

f
∈Xf

X
i∈N

»
P 0

i −
P 0

i

Q0
i

(G−fi + gd
fi + yi)

–
gd

fi −
X
i∈N

Cfi(g
d
fi)

)
, (16)

which is parameterized by both other firms’ generation quantityG−f and ISO’s
dispatch schedule y under the situation where all firms collude. The underlying
assumption is that the deviating firm does not believe its action would affect
the ISO’s dispatch decisions (y), given that the other firms still choose their
collusive generation quantities (as they do not observe the deviation in the
current period). In a sense, the assumption is that any change in output at
one of the firm’s plants is absorbed by local demand (since the dispatch is
not changed). A favorable consequence of this assumption is that transmission
constraints are always met when a firm deviates. Also note that π̃d(G−f , y) is
not necessarily an upper bound to πd(G−f ), as the latter optimizes without
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the variable y being fixed. Properties of π̃df (G−f , y) as well as of the collusion
model (14) are discussed in the next section.

The assumption made above may be justifiable when a power producer
faces high local demand, which would provide it a large one-time deviation
profit. Such an assumption is nonetheless difficult to justify in a more general
setting. One would expect that when a firm deviates, it would increase its out-
put and hence lower the electricity price in its local market. Consequently, the
ISO would dispatch electricity from the “local” market to other nodes where
electricity prices are higher, as long as there are transmission capacities. Do-
ing so is like to increase demand at the “local” market, and hence, would
increase the “local” electricity price, making the deviating firm even more
profitable. As a result, by anticipating the ISO’s changes in dispatch, the de-
viating firm may be better off than without doing so; mathematically speaking,
πd(G−f ) > π̃df (G−f , y). In this case, replacing πd(G−f ) with π̃df (G−f , y) would
make collusion easier to sustain as the one-time deviation profit is lower. It
is unclear however if the reverse relationship, πd(G−f ) < π̃df (G−f , y), could
be true under certain circumstances. As a result, our work represents the first
step towards modeling firms’ collusive behavior under a transmission network,
but is far from being complete.

4 Model Reformulation and Properties

4.1 Model Reformulation

To ease discussion of the model’s properties, we first reformulate the collusion
model (14) as an MPEC by writing out the optimality conditions of the ISO’s
problem explicitly. Let µ ∈ <1 and λ ∈ <2L denote the multipliers associated
with the first and second set of constraints in the ISO’s optimization prob-
lem, respectively. Under the assumption of affine inverse demand functions
at each demand node and using the relaxed optimal deviating profit function
π̃df (G−f , y), model (14), expressed in vector form, is as follows.

maximize
g, y

Θ(g, y) ≡
∏
f∈F

[
πf (g, y)− πNf

]
=
∏
f∈F

{[(
P 0 −B(G+ y)

)T
gf − Cf (gf )

]
− πNf

}
subject to πf (g, y) ≥ (1− δ)π̃df (G−f , y) + δπNf , ∀f ∈ F

gf ∈ Xf , ∀f ∈ F

ISO


y free, P 0 −B(G+ y)− µ1− PTDFTλ = 0

µ free, 1T y = 0

0 ≤ λ ⊥ PTDFTλ− T ≤ 0

 ,

(17)

where the ‘⊥’ sign means that the product of two vectors is 0. Note that some
of the variables in (17) are redundant. Using similar algebraic derivation as in
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Metzler et al. [31], we can obtain the following MPEC formulation of (17) with
only the following variables: generation quantities g and the shadow price of
transmission congestion λ.11

maximize
g, λ

Θ(g, λ) =
∏
f∈F

[πf (g, λ)− πNf ]

subject to (g, λ) ∈ Ω̃δ := {gf ∈ Xf , ∀f ∈ F

πf (g, λ) ≥ (1− δ)π̃df (G−f , λ) + δπNf , ∀f ∈ F

0 ≤ λ ⊥ r +∆G+Mλ ≥ 0} ,

(18)

where
πf (g, λ) = κ1T gf − ωGTEgf + λT∆gf − Cf (gf ), ∀f ∈ F , (19)

and r, ∆, M , κ, ω, E are all input vectors or matrices with proper dimensions.
The detailed derivation of (18) from (17) is provided in Appendix B, whereas
the explicit formulation of π̃df (G−f , λ) is given in the next subsection.

Model (18) is a mathematical problem with linear complementarity con-
straints (MPLCP). The nonconvexity of the objective function and the com-
plementarity constraints together make it difficult to find a globally optimal
solution of the problem. The global optimization solver, BARON [39], is able
to solve small instances of model (18). For larger instances, a branch-and-
bound-based global optimization algorithm that exploits the model’s special
structure is developed in Liu [28]. Developing global optimization algorithms
to solve the collusion model (18) is outside of the scope of this paper. We
will use BARON to solve the numerical example to be presented in Section 5.
Before that, however, some basic properties of the collusion model, including
solution existence, are presented in the following subsection.

4.2 Model Properties

In this subsection we discuss properties associated with the collusion model
(18), especially the non-emptiness of its feasible region and solution existence.
First, we show that the matrix M in the complementarity constraint in (18)
is positive semi-definite, which is useful for establishing other properties and
for numerical implementation.

Lemma 1 Given that Q0
i /P

0
i > 0 for all i ∈ N , the matrix M in the following

0 ≤ λ ⊥ r +∆G+Mλ ≥ 0

as in (18) is symmetric positive semi-definite.

The proof is given in Appendix B as some notations needed for the proof
are only provided there. We next discuss properties related to the optimal
deviating payoff functions. In Section 3.2.2 we have discussed two formulations
of the optimal value function: πdf (G−f ) in (15) and π̃df (G−f , a) in (16). There

11 Note that the complementarity constraints in (18) are from the ISO’s optimization
problem, not from the smooth reformulation of the optimal value function of π̃d

f (G−f , a).
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it is pointed out that due to the theoretical and computational difficulties
associated with πdf (G−f ), we focus on the formulation π̃df (G−f , a) (16). The
vector reformulation of the collusion model can also be applied to π̃df (G−f , a).
With the parameter a replaced by λ, the resulting reformulation is as follows.

π̃df (G−f , λ) = max
gd

f∈Xf

πf (gdf ;G−f , λ)

= max
gd

f∈Xf

[
κ1T gdf − ω(G−f + gdf )TEgdf + λT∆gdf − Cf (gdf )

]
.

(20)
We next show convexity and continuity of the implicit function π̃df (G−f , λ).
Convexity of the optimal deviation function facilitates computation, while con-
tinuity is needed to show the closedness of the feasible region in (18).

Lemma 2 If the cost function Cf (gf ) is strictly convex for each f ∈ F , then
π̃df (G−f , λ) is continuous and convex with respect to (G−f , λ).

Proof. For a f ∈ F , strict convexity of Cf (gf ) implies that the firm’s pay-
off function πf (·;G−f , λ) is strictly concave for each (G−f , λ). In addition,
πf (gf ; ·) is affine for all gf ∈ Xf . Then the continuity and convexity of
π̃df (G−f , λ) follow directly from Proposition 1 in Harrington et al. [21]. �

With the more compact, vector-based formulation of a deviating firm’s op-
timization problem, we can revisit the relationship between the ideal formu-
lation πdf (G−f ) and the relaxed formulation π̃df (G−f , λ). Let Λdf (G−f ) denote
the feasible region of the optimization problem (15) that yields the optimal
value function πdf (G−f ). By eliminating the redundant variables adf , ydf , wdf ,
and pdf , the more compact form of the set Λdf (G−f ) is as follows.

Λdf (G−f ) = {(gdf , λdf ) : gdf ∈ Xf , 0 ≤ λdf ⊥ r + (G−f
+ gdf )T∆gdf +Mλdf ≥ 0}.

(21)
Let ḡd

∗

f be an optimal solution to the simplified optimal deviating problem (20)
with respect to a set of input parameter (Ḡ−f , λ̄). If the cost function Cf (·) is
strictly convex, the objective function in (20) is strictly concave. Consequently,
the optimal solution ḡd

∗

f is unique. If (ḡd
∗

f , λ̄) ∈ Λdf (Ḡ−f ), then necessarily
πdf (Ḡ−f ) ≥ π̃df (Ḡ−f , λ̄), which means that the unilateral one-time deviating
profit is lower when the deviating firm does not consider the ISO’s problem
(and transmission constraints). Hence, naive deviating firms (not considering
the ISO’s problem) have less incentive to deviate than sophisticated deviating
firms, and consequently, collusion would be easier to sustain with all deviating
firms of the former type. This is not always the case, however. If (ḡd

∗

f , λ̄) /∈
Λdf (G−f ), the relationship between πdf (Ḡ−f ) and π̃df (Ḡ−f , λ̄) is not clear. This
is the compromise we need to make to achieve computation feasibility.

Now we focus on whether the feasible region Ω̃δ in (18) is well-defined;
namely, if the set is always nonempty for a δ ∈ [0, 1]. Note that in building
the collusion model (14), we discussed two single-stage Nash-Cournot models
– one that leads to an EPEC model, and the other that results in a CP
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model, depending on the rationality assumptions of each power generation
firm. If we use πEPECf as the punishment-stage payoff, then if we can assume
that an equilibrium exists to the static game (and let qEPEC denote such an
equilibrium), it is easy to see that q

EP EC ∈ Ωδ (not Ω̃δ), for any δ ∈ [0, 1]. This
is essentially the result of Part (c) of Proposition 2 in Harrington et al. [21]. No
definite results can be shown if q

EP EC ∈ Ω̃δ, however. If we use the CP model
instead – namely, if we use πCPf as the punishment-stage payoff – then we can
show that Ω̃δ is always nonempty, as stated in the following proposition.

Proposition 2 Given that an equilibrium exists to the static Nash-Cournot
model with the exogenous-ISO assumption, then Ω̃δ 6= ∅ for each δ ∈ [0, 1].

Proof. Let (gCP , λCP , γCP ) denote an equilibrium to the exogenous-ISO model
(with the formulation given in (23)), and let πCPf denote firm f ’s payoff in the
corresponding equilibrium, for f ∈ F . We show that (gCP , λCP ) ∈ Ω̃δ for any
δ ∈ [0, 1]. First, (gCP , λCP ) satisfies the complementarity constraint

0 ≤ λCP ⊥ r +∆GCP +MλCP ≥ 0,

as shown in equation (15) in Metzler et al. [31]. Similarly, it is easy to see
that given (GCP−f , λ

CP ), gCPf satisfies the first-order optimality condition of
Problem (20). Since (20) is a concave optimization problem with respect to
a gdf , and its feasible region consists of linear constraints only, the first-order
optimality condition is both necessary and sufficient for global optimality. As
a result, we have that π̃f (GCP−f , λ

CP ) = πf (gCPf ;GCP−f , λ
CP ) = πCPf . Then the

incentive compatibility constraints are always binding at (gCP , λCP ) for any
δ ∈ [0, 1]. Hence, (gCP , λCP ) ∈ Ω̃δ, ∀δ ∈ [0, 1], and Ω̃δ 6= ∅ for all δ ∈ [0, 1]. �

Though the feasible region of the collusion model is shown to be nonempty
as long as we use the CP framework in the punishment stage, the proposition
does not guarantee a finite optimal solution, due to the lack of explicit bounds
on the variables λ.12 Instead, we can solve the following convex optimization
problem to find out if λk is bounded for each k ∈ A.

maximize
g, λ, %, ν

λk

subject to λT q +
∑
l∈A

%l + λTMλ ≤ 0

λ ≥ 0, r + ν +Mλ ≥ 0
ν = ∆G

gf ∈ Xf , ∀f ∈ F , λlνl ≤ %l ≤ λlνl, ∀l ∈ A,

(22)

where %l’s are auxiliary variables to replace the l-th element of the nonconvex
term λT∆G, for each l ∈ A, and νl, νl represent the lower and upper bounds

12 Though coerciveness of the objective function can guarantee a finite optimal solution
without explicit boundedness, (see Proposition A.8 in Bertsekas [4]), the coerciveness of the
Nash bargaining objective function cannot be easily shown.
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of the other auxiliary variables νl, respectively. Since G is bounded both from
above and below, νl and νl must be finite for all l ∈ A. (22) is a convex
optimization problem because the only nonlinear functions in the problem
is the first set of constraints in (22), which are defined by convex quadratic
functions as the matrix M is shown to be positive semi-definite in Lemma 1.

Below we show that if the objective function in (22) is bounded for each
k ∈ A, then so are λk’s. Consequently, a finite optimal solution is obtainable
for the collusion model (18) by the well-known Weierstrass’ Extreme Value
Theorem.

Proposition 3 Assume that for each k ∈ A, the corresponding optimization
problem (22) is bounded. Let λk denote the value of the optimal solution of the
k-th optimization problem. Then for any (g, λ) ∈ Ω̃δ, λk ≤ λk, ∀k ∈ A.

Proof. Let (go, λo) ∈ Ω̃δ. Define νok = (∆G)k, for each k ∈ A. Further define
that %ok = λokν

o
k for each k ∈ A. Since (go, λo) ∈ Ω̃δ, λok ≥ 0 for each k. Hence,

λokνk ≤ %ok ≤ λokνk, ∀ k ∈ A. Let z denote the feasible region of the convex
problem (22). It is easy to see that (go, λo, %o, νo) ∈ z. Let (g∗, λ∗, %∗, ν∗) de-
note an optimal solution to the convex problem (22), and ek be a vector of a
proper dimension whose k-th element is 1 and all other elements are 0. Then,
by definition, we have that λok = eTk λ

o ≤ eTk λ∗ = λk, ∀k ∈ A. �

To better understand the set Ω̃δ, more properties are presented below.

Proposition 4 Given that an equilibrium exists to the static Nash-Cournot
model with the exogenous-ISO assumption, the following statements are true
with δ ∈ [0, 1].

(a) For all (g, λ) ∈ Ω̃δ, π̃df (G−f , λ) ≥ πf (G,λ);
(b) For all (g, λ) ∈ Ω̃δ, π̃df (G−f , λ)− πCPf ≥ πf (G,λ)− πCPf ≥ 0;
(c) For all 0 ≤ δ1 ≤ δ2 ≤ 1, Ω̃δ1 ⊂ Ω̃δ2 .

Proof. To prove part (a), notice that for all (g, λ) ∈ Ω̃δ, gf ∈ Xf , the feasible
region of the optimal deviation problem in (16). Then the inequality in (a) fol-
lows as π̃df (G−f , λ) is the optimal value function of the function πf (gf ;G−f , λ)
over Xf . The proofs of (b) and (c) are exactly the same as those for part (a)
and (c) in Proposition 2 of Harrington et al. [21]. �

The last property indicates that the region Ω̃δ containing subgame perfect
equilibria of a repeated game among power generators is expanding as the
discount factor δ increases.

5 A Numerical Example

In this section we present a network example with two competing firms and
five nodes. The network topology is shown in Figure 3. It is assumed that the
reactances of the lines in the loop (1-2-3) are equal. Suppose that one firm has
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two generation units sitting at Node 1 and 2, while the other firm has one unit
at Node 2. Assume that each firm’s production cost function is a quadratic
function; that is, Cfi(gfi) = MCfigfi + 1

2QCfig
2
fi. Further let CAPfi denote

firm f ’s generation capacity at node i. Each node has a demand represented
by a linear inverse demand function (determined by two parameters P 0

i and
Q0
i ). The data related to the supply and demand are given in Table 1.
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Fig. 3: An example – 5 nodes, 2 firms

Table 1: Input data of supply and demand for the numerical example

Node Firm 1 Firm 2 Demand

MC QC CAP MC QC CAP P 0 Q0

[$/MWh] [$/MWh2] [MW] [$/MWh] [$/MWh2] [MW] [$/MWh] [MW]

1 15 0.02 150 40 250

2 15 0.02 50 18 0.01 100 35 200

3 32 320

4 30 300

5 40 200

Though an extremely simple example, the network in Figure 3 does con-
tain two important features of transmission networks in the real world. First, it
contains a loop, where flows within the loop need to satisfy Kirchhoff’s Volt-
age Law. Such a property is a distinctive feature of electricity transmission
networks, and it has been observed in real markets that strategic firms can ex-
ploit loop flow structures to enhance their ability to manipulate market prices
(see, for example, Cicchetti et al. [10]). Second, there are two pure demand
nodes at Node 4 and 5. Tight transmission constraints on the lines connecting
the loads and generators would likely cause severe congestions on these lines.
Power generators who are needed to serve these loads may therefore possess
significant market power. Hence, the numerical results based on the network
topology in Figure 3 can shed light on firms’ behavior and market outcomes
in a network with loop flows and severe transmission congestion.

To compare firms’ equilibrium behavior under different levels of market
competitiveness, we compare the results from perfect competition, static Nash-
Cournot oligopoly and collusion. The results corresponding to generating firms’
collusive behavior are computed based on the model in (18). As the model is
nonconvex, we use the global optimization solver BARON.13 The competitive

13 The optimal value functions are written out explicitly through their KKT conditions.
The complementarity constraints, with a generic form of 0 ≤ f(x, y) ⊥ h(x, y) ≥ 0, are writ-
ten as f(x, y)T h(x, y) ≤ 0. The resulting nonconvex optimization problem sent to BARON
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market and the static Nash-Cournot equilibrium (based on the complemen-
tarity problem formulation in Metzler et al. [31]) are computed by the solver
PATH [12]. The market outcomes are presented in Figure 4.14 It is no surprise

0 

20 

40 

60 

80 

100 

120 

140 

160 

Firm 1-Node 1 Firm 1-Node 2 Firm 2-Node 2 

Pr
od

uc
tio

n 
(M

W
) 

Perfect competition 

Nash-Cournot 

Collusion 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

Firm 1 Firm 2 

Pr
of

its
 ($

/h
r)

 

Perfect 
Competition 
Nash-Cournot 

Collusion 
23.47 

25.61 

29.29 

0 

5 

10 

15 

20 

25 

30 

35 

Perfect Comp. Cournot Collusion 

Av
er

ag
e 

Pr
ic

e 
($

/M
W

h)
 

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

Perfect Comp. Cournot Collusion 

IS
O

's
 S

ur
pl

us
 ($

/h
r)

 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

2000 

Perfect Comp. Cournot Collusion 

C
on

su
m

er
 S

ur
pl

us
 ($

/h
r)

 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

Perfect Comp. Cournot Collusion 

So
ci

al
 S

ur
pl

us
 ($

/h
r)

 

Fig. 4: Numerical results under different degrees of market competitiveness

to see that collusive firms can earn higher profits than in a static Nash-Cournot
equilibrium by further reducing generation quantities. The interesting result is
that the ISO’s surplus when firms engage in a collusive game is much reduced
compared to that in a Nash-Cournot equilibrium. To further investigate firms’
behavior in the presence of transmission congestion, we show in Table 2 the
net load flows on the transmission links and the corresponding shadow prices.

Table 2: Net flows on transmission lines and the corresponding shadow prices

Arcs Perfect Comp. Nash-Cournot Collusion (δ = .5)

Net Flow (1 2) 0 (0) -2.59 (0) -3.52 (0)

([MW]) (2 3) 40 (12.86) 40 (10.12) 40 (0)

(3 1) -40 (0) -37.41 (0) -36.48 (0)

(3 4) 40(1) 40 (0.74) 40 (0.65)

(Shadow Price) (4 5) 30 (5) 30 (5) 30 (5)

(λ, [$/MWh]) (2 1) 0 (0) 2.59 (0) 3.52 (0)

(3 2) -40 (0) -40 (0) -40 (0)

(1 3) 40 (1.97) 37.41 (0) 36.48 (0)

(4 3) -40 (0) -40 (0) -40 (0)

(5 4) -30 (0) -30 (0) -30 (0)

Table 2 shows that within the loop of the transmission network (1-2-3),
collusive generators can collectively act to decongest a line, hence diverting

(through NEOS server) consists of 40 variables and 67 constraints. The total solving time
of this instance is 0.08 second, as BARON finds the optimal solution in preprocessing.
14 The “Average Price” in Figure 4 and 5 equals

X
i∈N

[pi × (
X
f∈F

gfi + yi)]/
X
i∈N

X
f∈F

gfi.
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part of the ISO’s surplus into their own pockets. On the other hand, congestion
on the lines connecting the load pockets (line 3-4 and 4-5) can only be slightly
reduced (or remain the same). This is so because no generation can be used
at nodes 4 or 5 to alter congestion. In other words, congestion on line 3-4 and
line 4-5 is completely determined by the demand curves for nodes 4 and 5.

To gain more insight on the impacts of transmission constraints, we com-
pare two versions of the previous example – one with transmission constraints
and one without. Figure 5 shows the market outcomes of the two scenarios.
For the scenario without transmission constraints (the darker bars in Figure
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Fig. 5: Numerical comparison – with and without transmission constraints

5), firms’ profits under imperfect competition, either Cournot or collusion,
are limited due to their tight generation capacity constraints, together with
relatively elastic demand. However, with tight transmission constraints (the
lighter bars in Figure 5), firms’ generation capacities become less important
a constraint and hence, they have more room to manipulate their production
quantities to exercise market power. Notice that under perfect competition, the
average market price when there is transmission congestion is lower than the
case without congestion.15 This is so because with transmission constraints,
generation capacities at Node 1 and 2 cannot all reach the other three de-
mand nodes, which causes the prices to drop sharply at Node 1 and 2 due
to the excess capacity. Prices certainly rise at the other three nodes. But the
price drops at Node 1 and 2 outweigh the price increases at Nodes 3, 4 and
5, resulting in lower average price and higher consumer surplus, comparing

15 The hub prices under the congested case are 28 $/MWh, 28.26 $/MWh and 28 $/MWh,
corresponding to a market of perfect competition, Nash-Cournot and collusion. Without
congestion, the nodal prices are the same cross the network, and hence the hub price is the
same as the average price reported in Figure 5.
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to the case without transmission constraints. However, this relationship is re-
versed under collusion (that is, the average price is higher with transmission
constraints) as collusive firms can strategically decongest line 1-3 and 2-3, to-
gether with strategically withholding production, causing sharp increases of
prices at Node 1 and 2. This example illustrates when generation resources
are tight, collusive firms’ market power can be magnified by transmission con-
straints. To draw more definite policy conclusions, however, more numerical
simulations are needed as one would expect that the location of power plants
and loads, together with network topology, would also affect firms’ strategies.
Such analyses are deferred to future research.

6 Conclusion and Future Research

In this work, we have proposed an equilibrium-based model to simulate electric
power generation firms’ collusive behavior in a deregulated electricity market.
The model is formulated as an optimization problem and is amenable to study
heterogenous firms’ collusive strategy through computation. In addition, the
model explicitly incorporates transmission networks and other market players.
It has been widely recognized that transmission constraints can be exploited by
strategic firms to enhance their market power, and hence should to be incorpo-
rated in studies on generation firms’ anti-competitive behavior. The numerical
results presented in the paper do suggest that collusive generators can strate-
gically exploit transmission congestion and reap additional profits compared
to the situation without congestion. Hence, policy makers and market regula-
tors need to pay special attention when designing market rules to lessen the
possibility of collusion in a transmission-congested electricity market.

The tacit collusion model presented in this paper does suffer some ana-
lytical and practical difficulties. The inclusion of three distinct sets of mar-
ket solutions – tacit collusion, unilateral profit maximizing, and single-stage
noncooperative games – makes the model difficult to solve, while the lack of
convexity of the optimization problem poses further computational challenges
when globally optimal solutions are desired. Furthermore, the collusion model
requires definition of additional parameters compared to static models: the
length of the time lag before cheating is detected and rivals can react, and
the relevant discount rate. These complications might limit the applicability
of this modeling framework in practice, and in part explain why static Nash
noncooperative models are much more popular in literature than dynamic
models. Nonetheless, the current work represents the first attempt to estab-
lish an equilibrium-based dynamic model in electricity markets, and it can
be easily enhanced with the advances in other related research areas such as
EPECs and global optimization.

The current work can also be extended in several other ways. First, it
is known from the seminal work by Green and Porter [19] that exogenous
uncertainty (such as a demand shock) can induce price wars in a collusive
game. It would be an interesting extension of the current model to include
uncertainty and to study how that affects power generation firms’ strategies.
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Second, the model in this paper represents a repeated game; namely, the
normal form of the static game being repeated remains the same throughout.
A richer model may consider dynamic changes in the underlying static game,
which leads to a dynamic game known as a supergame. One of such instances
is a game with both spot and forward trading such that the forward contracts
will limit the amount of spot market sales in future periods. Liu [29] has shown
through computation that repeated (short-term) forward and spot market in-
teraction may help sustain collusion, as the reversion to a static equilibrium in
both markets once a deviation occurs is a more severe punishment than with-
out the forward market. Such an effect might also occur for long-term forward
contracts as they may lead to ‘market splitting’ behavior observed in other
network-centric industries (airlines, telecommunication, etc) [2]. Another in-
stance is that the number of firms may be changed with entry or exit decisions;
firms’ payoff functions (mainly the cost functions) may be affected by tech-
nology advancement; and firms’ feasible action regions can be changed with
capacity expansion decisions. Supergame models represent another significant
extension of the current work and are subject to future research.

A final extension would be to consider tacit collusion in situations where
transmission capacity and energy are sold in separate markets, rather than
being combined as in ISO markets. Separate transmission and energy markets,
together with imperfect arbitrage across those markets, open up the possibility
of collusive geographical market sharing arrangements. One way to model this
situation would be to modify the perfect arbitrage model of Liu [28] by either
deleting the independent arbitragers and allowing generators themselves to
sell in different markets (as in the spatial price discrimination model of Hobbs
[23]), or assigning a cost to arbitrage.

Appendix A. Static Nash Equilibrium Models

Exogenous-ISO Model. For each power producer f ∈ F , again let Xf denote its generic
feasible production region. Then f solves the following optimization problem.

maximize
gf∈Xf

πf (gf ) =
X
i∈N

[P 0
i −

P 0
i

Q0
i

(
X
t∈F

gti + yi)]gfi −
X
i∈N

Cfi(gfi) (23)

The ISO solves the following optimization problem.

maximize
y

X
i∈N

24Z yi+Gi

0
pi(τi)dτi −

X
f∈F

Cfi(gfi)

35
subject to

X
i∈N

yi = 0X
i∈N

PTDFkiyi ≤ Tk, ∀k ∈ A.

(24)

By writing out the the KKT conditions of each firm’s and the ISO’s optimization problem,
together with the market clearing condition, we obtain a complementarity problem (CP).

Endogenous-ISO Model. For each power producer f ∈ F , it solves the following opti-
mization problem.
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maximize
gf , y

πf (gf , y) =
X
i∈N

[P 0
i −

P 0
i

Q0
i

(
X
t∈F

gti + yi)]gfi −
X
i∈N

Cfi(gfi)

subject to gf ∈ Xf ,

ISO

8>>>>>>>><>>>>>>>>:

maximize
y

X
i∈N

24Z yi+Gi

0
pi(τi)dτi −

X
f∈F

Cfi(gfi)

35
subject to

X
i∈N

yi = 0X
i∈N

PTDFkiyi ≤ Tk, ∀k ∈ A

9>>>>>>>>=>>>>>>>>;
.

(25)

As each firm’s problem is an MPEC, by grouping all firms’ problems together, we obtain an
equilibrium problem with equilibrium constraints (EPEC).

Appendix B. Algebraic Reformulation of the Collusion Model

This appendix provides the derivation of the model (18) from (17). The key idea is that cer-
tain variables in the optimality conditions of the ISO’s optimization problem are redundant.
For the ease of argument, we re-provide the optimality conditions in the following.

y free, P 0 −B(G+ y)− µ1− PTDFTλ = 0 (26)

µ free, 1T y = 0 (27)

0 ≤ λ ⊥ PTDFTλ− T ≤ 0, (28)

which is derived under the affine inverse demand function assumption: p(d) = P 0 −Bd.
The purpose of the following derivation is to derive explicit expressions of y and µ with

respect to G and λ, hence eliminating the need to keep the (redundant) variables y and µ in
the model. Without loss of generality, we assume that node N is designated as the hub node,
and introduce the following notations. Let P̆ 0, Ğ and y̆ denote the <N−1 vectors excluding
the N -th component of P 0, G and y, respectively. Also let P 0

N , Q0
N and GN denote the

N -th component of the vectors P 0, Q0, and G, respectively. Further use B̆ to denote the
(N − 1) × (N − 1) matrix resulting from deleting the Nth row and column of B, and 1̆ to
represent an (N − 1) vector of 1’s. Notice that by two equations in (26) and (27) we can
have the following linear system of µ and y̆ with G and λ as parameters:

P̆ 0 − B̆(Ğ+ y̆) = µ1̆ + PTDFTλ (29)

P 0
N −

P 0
N

Q0
N

(GN − 1̆T y̆) = µ. (30)

where equation (29) is the same as in (26) for all the nodes other than the hub node; while
equation (30) is derived using (26) at the hub node (where PTDFkN for each k ∈ A is 0)
and equation (27). Rewriting the linear system (29) and (30) into a matrix form yields the
following. 24 B̆ 1̆

−1̆T Q0
N

P0
N

35" y̆
µ

#
=

"
P̆ 0 − B̆Ğ− PTDFTλ

Q0
N −GN

#
. (31)

Recall that matrix B̆ = Diag(bi) is an (N − 1) × (N − 1) diagonal matrix, with bi =
P 0

i /Q
0
i , i = 1, . . . , N − 1. Under the assumption that P 0

i > 0 and Q0
i > 0 for each i =

1, . . . , N , B̆ is positive definite, and so is the skew-symmetric coefficient matrix in (31) –24 B̆ 1̆

−1̆T Q0
N

P0
N

35 .
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Hence, the coefficient matrix is nonsingular, and the linear system (31) has a unique solution.

Let H ∈ <2L×N denote the PTDF matrix, and H̆ ∈ <2L×(N−1) be the H matrix with its
N -th column removed. Then the solution of (31) can be expressed as follows.

µ = κ− ω1TG− ρ̆T H̆Tλ (32)

y̆ = R̆0 + ῨG− Ξ̆H̆Tλ, (33)

where

ω =
1

NX
i=1

Q0
i

P 0
i

, κ = ω
NX

i=1

Q0
i ,

ρ̆ =

2664
ρ1
...

ρN−1

3775 ∈ <N−1 with ρi = ω
Q0

i

P 0
i

, R̆0 =

2664
R0

1

...

R0
N−1

3775 ∈ <N−1 with R0
i = Q0

i −
Q0

i

P 0
i

κ,

Ῠ ∈ <(N−1)×N with Ῠij =

8>><>>:
ω
Q0

i

P 0
i

− 1, i = j

ω
Q0

i

P 0
i

, i 6= j,

Ξ̆ ∈ <(N−1)×(N−1) with Ξ̆ij =

8>>><>>>:
Q0

i

P 0
i

(1− ρi), i = j

−ω
Q0

i

P 0
i

Q0
j

P 0
j

, i 6= j.

With (32) and (33), the three conditions in the ISO’s optimality conditions (26) – (28)
can be condensed into one single complementarity constraint:

0 ≤ λ ⊥ (T −HR̆0)−HῨG+HΞ̆HTλ ≥ 0.

Let r := T −HR̆0 ∈ <2L, ∆ := −HῨ ∈ <2L×N and M := HΞ̆HT ∈ <2L×2L. The above
complementarity system can then be written as

0 ≤ λ ⊥ r +∆G+Mλ ≥ 0. (34)

Furthermore, with (33) and equation (27), each firm’s payoff function πf (gf , y) = p(G+

y)T gf − Cf (gf ) can be re-written as a function of (G,λ) as follows

πf (g, λ) = κ1T gf − ωGTEgf + λT∆gf − Cf (gf ), ∀f ∈ F , (35)

which is exactly equation (19). Hence, we have completed the derivation of (18) from (17).

Proof of Lemma 1. Given the assumptions in Lemma 1, the matrix Ξ̆ is strongly diagonally
dominant by the fact that for each i = 1, . . . , N − 1,

Ξii =
Q0

i

P 0
i

(1− ρi) =
Q0

i

P 0
i

(1− ω
Q0

i

P 0
i

) >
Q0

i

P 0
i

(1− ω
Q0

i

P 0
i

− ω
Q0

N

P 0
N

) =

N−1X
i 6=j=1

|Ξij |.

Since Ξ̆ is also symmetric and has positive diagonal entries, it is then a positive definite
matrix. Consequently, M = HΞ̆HT is a symmetric, positive semi-definite matrix. �
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