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Abstract. This paper considers equilibria among multiple firms that are competing non-cooperatively against
each other to sell electric power and buy resources needed to produce that power. Examples of such resources
include fuels, power plant sites, and emissions allowances. The electric power market is a spatial market on
a network in which flows are constrained by Kirchhoff’s current and voltage laws. Arbitragers in the power
market erase spatial price differences that are non-cost based. Power producers can compete in power markets
a la Cournot (game in quantities), or in a generalization of the Cournot game (termed the conjectured supply
function game) in which they anticipate that rivals will respond to price changes. In input markets, producers
either compete a la Bertrand (price-taking behavior) or they can conjecture that price will increase with con-
sumption of the resource. The simultaneous competition in power and input markets presents opportunities for
strategic price behavior that cannot be analyzed using models of power markets alone. Depending on whether
the producers treat the arbitrager endogenously or exogenously, we derive two mixed nonlinear complemen-
tarity formulations of the oligopolistic problem. We establish the existence and uniqueness of solutions as
well as connections among the solutions to the model formulations. A numerical example is provided for
illustrative purposes.

1. Introduction

Competition is being introduced into network-based industries throughout the globe
with the objectives of lower costs and improving product quality and innovation [26].
Examples of such industries include telecommunications, transportation, and natural
gas. As with other network-based industries, restructuring of the electric power genera-
tion sector has introduced market forces into an industry that was either subject to price
controls and/or public ownership. In many power markets in Europe, North America,
and South America, the result has been lowered prices for consumers [17].

But in a few places (notably California), supply shortages and inability of con-
sumers to adjust their consumption to prices that vary greatly from hour to hour have
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resulted in large price increases. In California, a large share of the increases experi-
enced in 2000-2001 has been blamed on market power: the ability of firms to cause
prices to deviate from competitive levels by manipulating outputs or bids, or by other
means [4, 19]. One way to exercise market power is to withhold output, for instance by
declaring generators to be unavailable because of equipment failures. Prices can also be
affected by strategic bidding, by manipulation of markets for needed inputs such as fuel
or emissions allowances, and by deliberate congestion or decongestion of the network
[3]. However, despite the infamous “Get Shorty”, “Death Star”, and other sophisticated
strategies detailed in the infamous Enron memos, most of the market power problems
experienced by California were due to simple economic and physical withholding of
capacity [31]. Economic withholding occurs when generation capacity is made avail-
able only at high prices; physical withholding is when capacity unavailable at any price,
for example by declaring an outage for maintenance at a time when demand is high. It
has been argued that economic withholding in California was facilitated by contrived
shortages of natural gas and NOy allowances at crucial times [18, 20, 31].

Exercise of market power affects not only prices, profits, and consumer welfare,
but can also decrease productive efficiency (if price increases encourage generation by
high-cost smaller firms) while impacting the environment (if outputs shift among gen-
erators with different emission rates). Market power is universally viewed as one of the
most serious imperfections in new power markets [14, 25, 30]. Therefore, models for
projecting prices and other market outcomes should explicitly consider the potential for
strategic behavior by power producers.

Many such models have been developed (see the reviews in [9, 11, 19]). Most are
based on the calculation of Nash equilibria for a single time period for one commodity
(electric energy). The most common Nash games simulated are those in which the firm’s
strategic variable is either sales and/or production quantities (Cournot games) or bid
functions (supply function games). A new approach is the conjectured supply function
[11](similar to the notion of conjectural variations, [13]). It can be viewed as a general-
ization of the Cournot model, in that generators can conjecture that rivals will respond
in some a priori way to price changes rather than acting as if they assume that rivals
will hold their quantities fixed. Approaches other than modeling that have been used to
project market outcomes under conditions of market power include experiments with
live subjects [24] and simulation models based on automata [5, 10].

Most models consider an undifferentiated energy market. However, in actual power
markets, power (and its price) is differentiated by both time (e.g., hour of the day), space
(location on the power network), and even “greenness” (renewable versus fossil-fuelled
or nuclear energy). Furthermore, power markets are strongly linked to markets for other
commodities, including ancillary services (such as operating reserves), fuels, and emis-
sions allowances. Interactions among energy markets separated in space, time, or quality
and between markets for energy and other commodities may present additional oppor-
tunities to exercise market power. These opportunities would be overlooked if markets
were to be analyzed separately.

There have been some model-based analyses of these interactions. For instance, by
selectively congesting or decongesting power lines (i.e., forcing flow constraints to be
binding or slack), strategic power producers can isolate sub-markets from competition
or deprive transmission owners of revenue they would normally receive [2, 7, 27]. Large
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hydropower producers can shift their generation from peak periods to offpeak periods in
order to cause price spikes during the times of higher demand [6]. Strategic behavior in
green and non-green energy markets has also been modeled [1]. Finally, as mentioned
above, it has been argued that creation by power producers of artificial shortages in input
markets (natural gas and NOy emissions allowances) contributed to the high California
prices of 2000-2001. Surprisingly, however, modelers have paid little attention to stra-
tegic manipulation of input and power markets (see [22] for an exception). Thus, there
is a need for development, analysis, and application of such multimarket models.

In this paper, we propose models that represent the linkages between spatially sep-
arated markets for electricity and the resource inputs required for power production.
These models explicitly recognize opportunities for simultaneous exercise of market
power in more than one market. The models include representations of the following
features of power markets:

e The predominance of bilateral trading of power between producers and consumers,
as opposed to POOLCO-type arrangements, in which a single auctioneer buys all
power from producers and then resells it to consumers;

e Strategic behavior in energy markets, represented by Cournot and conjectured supply
function games [11];

e Demands by power producers for scarce transmission services that are allocated by
an independent transmission system operator (ISO);

e Power transmission flows among spatial submarkets that are governed by Kirchhoff’s
voltage and current laws, modeled using a linearized DC network (as in [15]);

e Arbitrage by marketers among different power markets; and

e Competition by power producers and arbitragers for resource inputs, including var-
ious types of fuel and emissions allowances.

The models are introduced in Section 2, which describe each market participant’s
problem, including representations of the problems faced by the ISO, allocators of input
resources, arbitragers, and power producers. Two versions of the power producer model
are presented. In the first, producers anticipate how power will be redistributed by ar-
bitragers among spatially separated markets as a result of changes in prices. This can
be viewed as a Stackelberg game between producers (Stackelberg leaders) and arbitr-
agers (Stackelberg followers). In the second version, producers instead view arbitrage
as exogenous. These two types of games have previously been analyzed for the case
of pure energy markets in [23]; this paper extend those results to consider how pro-
ducers and arbitragers interact in input markets as well as energy markets. The market
model is completed by imposing a set of consistency (market clearing) conditions on
the participants.

The remainder of the paper analyzes certain properties of the models. Solution exis-
tence and uniqueness is first addressed for two variants of these models (Subsections 3.1
and 3.2). Generalizing the conjectured supply function models of [11], both variants
assume energy producers anticipate that rivals will adjust their production and input
consumption linearly if energy and input prices, respectively, change from their equilib-
rium levels. One variant assumes that the linear adjustment is defined by a function with
a fixed price intercept and a slope that depends on the market price. The other variant,
which is simpler to analyze, assumes instead that the slope is fixed and that the price
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intercept depends instead on the market price. Further results are obtained for the special
case in which the arbitrager does not utilize resources, and producers use them only for
production (Subsection 3.3). Section 4 provides a simple computational example that
illustrates the model and the effect of resource constraints and expectations concerning
resource prices on the solution. A set of conclusions closes the paper (Section 5).

2. The mathematical model

The spatial oligopolistic competition model considered herein is made up of four major
components, each describing the behavior of an essential player in the market that is
modeled by a linearized DC network [15]. Under the Nash equilibrium concept, these
components are concatenated to yield a mixed linear or nonlinear complementarity for-
mulation of the overall model.

There are four types of players: the producers, the ISO, the input resource allocator,
and the arbitrager. The producers are firms that generate and sell a commodity (electric
power); their primary decision variables are the sales at each point of consumption on the
network, and generation by each of their power plants that are distributed on the network.
These firms utilize market-allocated resources in their operations, the consumption of
which is determined by the sales and generation. In addition, the firms need to pay the
ISO for their use of the network to transfer power from generators to consumers. The
market price of power at each location is determined by an affine demand function. In
order to represent a firm’s expectations concerning their rivals’ reactions to prices, the
model adopts a supply function conjecture that uses a first-order approximation near the
equilibrium for the relationship between price and its rivals’ sales in the region.

The producing firms are aware of the presence of an arbitrager in the market, who
trades but does not produce power. We consider two alternative models: one in which
the firms treat the arbitrager’s actions endogenously and the other exogenously. In addi-
tion to the existence and uniqueness of solutions to the resulting models, we are also
interested in the connection between their solutions.

2.1. The price function conjectures

We begin the mathematical formulation of the model with the introduction of two sets of
price function conjectures: one for the price of power and the other for the resource price.
We could also include a firm’s conjecture concerning the price of transmission charged
by the ISO; but since the treatment of this extension is similar, we do not develop the
latter additional conjecture in the model.

The model postulates an affine demand function at each network node for power.
Inregioni = 1,...,n, the power price py; anticipated by producing firm f € F is
an affine function of the total sales S; by all the firms plus the arbitrage amount az;
anticipated by firm f, where F is a finite index set containing the labels of the firms.
Specifically, we have

PP
pfisPiO—Q—’()(si+af,~), Vi=1,...,n, 1)
i
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where Pl.0 and Q? are positive constants. By definition,

S, = Z Shi-

heF

In the supply function conjecture model, the firms are assumed to anticipate that
a deviation of the power price from its equilibrium level will stimulate a deviation in
supply from rival firms from its equilibrium. In particular, the model postulates that the
rival firms’ sales

S_pi = Z Shi

h#f,heF

are related to the price py; via the linear expression:
s—fi = Xy + Bri(pi sZp) (pri — P, (2)

where (p}, sffl.) is an equilibrium (price,sales) pair that is exogenous to firm f’s profit
maximization problem but is endogenous to the market, and the function B¢; (x, y) is of
one of two forms: (a) a positive constant B;, or (b) a rational function y/(x — as;) for
some positive constant « ¢;. In case (a), we have (after rearrangement)

pri = p*—& +Ls—fi~ 3
' " B Bri

With the term in the parenthesis on the right as exogenous to the firm but endogenous
to the market, this expresses firm f’s anticipated price ps; as a linear function of its
rivals’ sales s_ s; with the fixed slope ﬂ;il and a variable intercept (variable relative to
the market). In case (b), we have

p; —oyi
pri = ofi+ ’S*—f' S—fi, “4)

which expresses firm f’s anticipated price py; as a linear function of its rivals’ sales
s_ r; with the fixed intercept o r; and a variable slope (variable relative to the market,
but exogenous to the producer). A noteworthy observation about the fixed-slope con-
jecture (3) is that two extreme specifications of B; yield two well-known models in
the literature. Indeed, when By; = 0, we get s_y; = s* ;» which corresponds to the
Cournot (fixed quantity) competition model. On the other hand, when 87; = oo, we
get py; = p;, which corresponds to the perfect competition model. By letting B7; be
a finite, positive constant, we obtain a range of models that vary between these two
well-known cases.
In general, by substituting (2) into (1), we obtain

PO

pri = P - Q—io [Sfi +5X i+ Bri(pi ST ) (pri _P;k)‘f‘afi:l
i



62 B.F. Hobbs, J.-S. Pang

which yields
0
P — Q_lo [spi +5% 5 = BripissZ ) pi +ayil
Pfi = : 50 )
1+ Q_lf) Bri(pfssZ s

This is the effective demand function that firm f uses in its profit maximization problem.
It shows the reaction of price to a firm’s supply decision s r;, accounting for both the
response of consumers and the conjectured response of rival suppliers. Part of the goal
of the analysis is to determine the range of values o y; in a variable-slope supply function
conjecture (4) that will ensure the well-definedness of the overall model. The following
simple lemma is useful in the subsequent analysis.

Lemma 1. Let
y

B(x,y) = ——, (x,y) € K%
X—a

For every compact subset U C 0, there exists a scalar & > 0 such that for every a such
that |a| > @, B is a well-defined Lipschitz continuous function on U with a Lipschitz
constant T(«) > 0 satisfying

lim t(x) = 0.
|| =00

Proof. Since U is bounded, it is clear that for all « less than a threshold value, the
denominator in 8(x, y) is nonzero for all (x, y) in U. Fix any such «. For any two pairs
(x,y)and (x’, y") in U, we have

y _y—y’_y, 1
x—o x'—«a X —o x'—a x—«a

()
x—a (x'—a)x—a)/"

y y 1 |y’
- = <[ly=y'l+lx=x"]] + - :
x—o x' —«a |x — o |x —al||x’ —a

Therefore,

Since (x, y) and (x’, y') are bounded, the existence of the desired 7 («) follows readily.
O

In addition to the supply function conjecture (1) in the energy commodity market,
we also postulate that each firm has a conjecture regarding the response of the input
resource price to changes in the quantity of resource the firm consumes. Specifically, for
resource j = 1,...,m, the response that firm f anticipates in the resource price p;
in reaction to changes in firm f’s consumption of resource j is given by the following
first-order approximation around the equilibrium resource consumption:

pri = P;+ 05 (rj =rf;),
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where o; is a nonnegative constant and the quantities with the asterisk indicate that
they are variables exogenous to the generation firms but endogenous to the market. If
oyfj = 0, then this represents a Bertrand game, in which firms are price-takers with
respect to the resource price. More generally, however, they anticipate that a resource’s
price increases if they consume more of it.

In essence, the above relationship is a fixed-slope, variable-intercept resource price
function conjecture. We could also treat a variable-slope, fixed-intercept resource price
function conjecture by an easy extension of the analysis that follows. Similarly, we could
also include a functional conjecture on the transmission fee (as in [16]). For simplicity,
all these variations and extensions are omitted.

2.2. The ISO’s problem

Let w € N" be defined as the vector of transmission fees charged by the ISO for use of
the transmission network, where element w; is the fee for transmitting 1 unit of energy
from the network hub to node i. In a linearized DC network [29], the principle of super-
position applies such that the cost of transporting power from i to i " equals —w; + w; .
As a result, the choice of hub is arbitrary. This unusual property (which, for instance,
implies that the cost from i to i " is the negative of the cost from i’ to i) differentiates
electric power markets from spatial markets for other commodities.

The ISO is assumed to set the fees w* in order to efficiently clear the market for
transmission capacity. Alternatively, it might be assumed that there is a competitive mar-
ket for transmission capacity in which transmission services are allocated to those firms
that value them the most. Either assumption can be shown to be equivalent to model-
ing the ISO as a “price-taker” with respect to w* [9]. Thus, taking w™ as exogenous
to his problem, the ISO solves the following linear program to determine the energy
commodity flows y € 9" in order to

maximize y” w*

subjectto Hy < h,

where H € %t%*" is the technological matrix of the ISO and & € %t is a given vector.
In words, the ISO maximizes its revenue, subject to transmission constraints. Examples
of such constraints in a power system could include thermal limits on flows in individual
power lines, constraints on linear combinations of such flows (linearizations of so-called
“nomograms”), and linear representations of flow control devices such as phase shifters.
For simplicity, we have formulated the above problem using only inequality constraints;
equality constraints do not affect the subsequent results. The optimality condition of the
above linear program is: there exists a vector z € R such that

w*=H'z and 0<z 1l h—Hy >0,

where the notation z L w means that the vectors z and w are orthogonal.
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2.3. The resource allocator’s problem

The role of the resource allocator is analogous to that of the ISO in the following manner.
The resource allocator can be viewed as a Walrasian auctioneer who sets the price of the
resource to clear the market, or as a social planner who allocates the resource to those
who value the resource the most. As an example, a government environmental agency
might auction off a fixed amount (here designated as d) of emissions allowances that
generators need to offset the pollutants they emit as result of the power production pro-
cess. In the model, the resulting sales of allowances would be represented by the vector
u. Alternatively a broker might be a pure facilitator of trades of, say, natural gas among
buyers and sellers, in which case the amount of gas d he contributes to the market is
zero. In that case, negative elements of u# would represent sales by other parties, while
positive elements would be purchases.

Proceeding in a manner similar to the ISO model development, we take the resource
price p* € N as exogenous to the resource allocator’s problem. Therefore, the allocator
solves the following linear program to determine the resource distributions u € " in
order to

maximize u” p*

subjectto Du < d,

where D € R is the technological matrix of the resource allocator and d € R*! is
the fixed vector of resources that the allocator can contribute to the market. These con-
straints can be viewed as market clearing conditions that ensure that the net amount of
resources allocated to users Du do not exceed the resources available d. Like the ISO’s
problem, we have formulated the resource allocator’s problem using only inequality
constraints. The optimality condition of the latter linear program is: there exists a vector
v € R such that

p*=D"v and 0<v L d—Du>0,

While the resource allocator’s linear program may seem rather simplistic, it actually
includes some useful special cases. For instance, in the realistic situation where the only
constraint on the resources is that there is a fixed amount available for distribution, the
constraint of the above resource problem becomes u not exceeding a given constant,
which can easily be handled by our treatment.

A more general formulation that is a straightforward extension of the above model
is the following. The allocator could have access to an elastic supply of the resource that
could be used to meet the generators’ demands; i.e., d could be a variable with a convex
cost function. This could be used to simulate fuels markets, where higher fuel prices
stimulate increased supply.

Of course, because of the linearity of the DC load flow model, this framework can
also be used to model the ISO as an allocator of the transmission resource. However, we
treat the transmission market separately because we wish to analyze the role of arbitrage
among the spatially separated energy markets that transmission constraints create.
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2.4. The arbitrager’s problem

The arbitrager is assumed to be an entity that can buy power in one location and sell it in
another. The only cost the arbitrager incurs is the ISO’s transmission fees between the
two locations and the cost of input resources required for that transaction. The arbitrager
is assumed to be a price taker in all markets. As a result of this frictionless arbitrage,
price differences in the network must reflect the cost of transmission (including perhaps
the cost of input resources).

In the special case in which arbitrage requires no resources other than transmission
capacity (as assumed in [16]), an implication of the linear DC transmission representa-
tion in the ISO’s model is that such arbitrage will force the difference in price p;» — p;
between any two nodes i and i’ of the network to precisely equal the cost of transmission
from i to i’ (i.e., —w; + w;-). Of course, this is not generally true of arbitrage among
commodities; in the more general case, the price difference is constrained to be no more
than the cost of transporting power from one location to the other, and could be less.

This efficient arbitrager is modeled as follows. Taking p* € R", w* € R", and
p* € N™ as exogenous to his problem, the arbitrager solves the following linear pro-
gram to determine the arbitrage quantity a € %" and resource usage r € " in order
to

maximize a’ ( p* — w*) — (r*)7 p*
subject to Ga = Ge

and E%a = r* + 0%,

where w® € R is the pre-allocated resources owned by the arbitrager and ¢ € R is a
given vector. The first constraint is a generalization of the condition that if an arbitrager
sells energy, it must also buy an equal amount (on net, the arbitrager neither generates
nor consumes energy). We assume throughout that the matrix G € 9%t%>" has full row
rank. The second constraint determines the amount of resources the arbitrager must buy
as a function of the amount of energy arbitraged.

Substituting the variable r* = E%a — w® into the objective function, letting A be the
dual variable of the constraint Ga = Ge, and writing the optimality condition of the
above simple linear program, we obtain:

0 -GgT a B (E“)T,o*—p*+w*
G 0 Iy Ge’ '

We should point out that unlike the ISO’s problem and the resource allocator’s prob-
lem, the technological constraint in the arbitrager’s problem Ga = Ge is an equality.
In fact, inequality constraints in the latter problem would pose a technical difficulty
when we consider the optimality conditions of the arbitrager’s problem endogenous to
the firms’ problems, which we will describe next. Such inequality constraints present no
difficulty in the exogenous-arbitrage version of the firms’ problems; see Subsection 2.8.
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2.5. Generation firm’s problem: Endogenous arbitrage

Taking all quantities with an asterisk as exogenous to its problem, firm f solves a convex
quadratic program to determine its sales s/ = (sri) € N", generation gl = gri) € W,
resource usage r/ = (rf;) € R, and anticipated arbitrage amount a’ = (ay;) € R"
in order to

n
maximize Z [spipri—cri(gri) — (spi—gri) wi]
i—1

m
=D Lef +opilrs =ri)lry;
j=1

n n
subject to ZSf[ = ngi,

i=1 i=1
Bisf + Efgf = +f 4o,
g/ < CAP/,

0 _GT af B (Ea)Tp*_pf+w*
G 0 a) Ge° ’

09 — s + 5% o = Bri(pis sZ ) pff +ayi]

oY
P_-(l) +,3fi(P;k,Sifi)

o
A

and pri =

3

where w/ € R is the pre-allocated resources available to firm f, B/ and E/ are tech-
nological matrices, CAP/ € 9" is the vector of generation capacities, and ¢ fiiN—=>N
is the generation cost function, which is assumed to be convex but not necessarily linear
throughout the paper. This cost function excludes the cost of resources that are con-
sumed during the production process. For instance, it is common to include fuel costs
in cr;(gyi) (by multiplying the fuel use per unit by the fuel price); however, if fuel is
modeled as a resource market, then it would not be so included.

The firm’s objective can be interpreted as follows. The generator’s profit depends on
revenues from selling energy, the costs of generating and transmitting energy, and the
net revenue from buying or selling in the input resources markets. For instance, input
resources expenditures could include the cost of fuel or emissions allowances consumed
in generation. As explained in Subsection 2.1, the price of resource j is a first-order
approximation of how the equilibrium price p;‘ is conjectured by firm f to change if
f changes the amount it consumes from the equilibrium value r*.. The asterisk super-
scripts indicate that those variables are fixed parameters from the point of view of the
firm f, even though they are variables from the point of view of the market.

Turning to the constraints, the first one ensures that sales are balanced by genera-
tion. The second defines the net amount of input resources r/ that the firm needs to
buy from the resource allocator. Examples of such resources include fuel and emissions
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allowances. If fuel is an input, then the corresponding left-hand side denotes the fuel
burnt during generation, with the appropriate entries in £/ then containing the fuel use
per unit output. If emissions allowances are an input, then the corresponding entries in
E/ contain instead the emissions rate per unit output. In both cases, the corresponding
rows of B/ are zero. However, the latter rows could be nonzero, for instance if the input
resource is a transmission right to the sales point (thus, transmission can be modeled
as an input resource, rather than through the ISO’s allocation system). In general, the
distribution of pre-allocated resources w/ (such as emissions allowances that are given
annually by an environmental regulator to particular generating plants) can affect the
solution because it can determine whether a firm is a net buyer or seller of power. This
is because large net buyers will tend to act as oligopsonists (limiting their purchases to
depress the price), while net sellers would instead be oligopolists (restricting supply in
order to raise prices).

The third constraint limits energy generation from each plant to its capacity, while
the fourth ensures that sales are nonnegative. The fifth set includes the first order con-
ditions we defined in Subsection 2.4 for the arbitrager; that is, firm f anticipates how
the arbitrager will react and reallocate power in response to price changes. Thus, this
model can be a viewed as a special MPEC (Mathematical Program with Equilibrium
Constraints) [21], in which f is a Stackelberg leader with respect to the arbitrager, who
is a follower. Because the arbitrager’s equilibrium conditions are linear equalities, firm
f’s MPEC is convex. The final set of constraints are the effective demand functions
for power at each node 7, (5). As we noted above, this relationship between the price
of power and f’s sales considers both the price elasticity of consumer demand and the
conjectured supply response of rival power producers.

Variations in the above maximization problem can be handled by our treatment with-
out too much difficulty. For instance, instead of the definitional equation on the resource
usage:

B/s/ + Efgl = v/ 4+ o/,
the model can easily accommodate an upper bounding constraint:
B/s! +Efgl <1/ 4.

The only change is that an extra complementarity relation between a dual variable and the
slack of the above inequality will appear in the final model formulation. For simplicity,
we focus our treatment on the maximization problem as formulated above.

In what follows, we begin a series of algebraic derivations to simplify the formu-
lation of the firms’ maximization problems and thus the resulting model formulation.
This exercise is carried out in order to facilitate the subsequent analysis of the overall
model. However, from a computational point of view, the reductions obtained below do
not necessarily provide the most suitable framework for solving the model. Part of the
reason is that composite matrices are formed in the derivations that could easily destroy
any data sparsity and/or special structure intrinsic to the model.

From the constraint defining p r;, we obtain

0

o
afi = Q?_Sfi_sifi"‘ﬂfi(p;kvsif,’)P?_ (P—a-i-ﬂfi(PEk,Sff,-) pri- (6)
i
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Let

O

Bri(x,y) = =% + Bri(x, y)

PO

and let Diag(,é ri(x, y)) be the n x n diagonal matrix with diagonal entries ,3 ri(x, y) for
i=1,...,n We write Diag(8y;(x, y)) similarly. We have

Ge® = G[ Q° — s/ — s7/* + Diag(Byi(p}’, s* ;;))p* 1 — GDiag(Bi (p}, s* ;) p!
= —Gls/ +s7/* — Q" — Diag(Bi (p}’. 5% ;) p*]
—GDiag(Byi(pf, s* ;NLCE) p* + w* + GT1].

Assume for the moment that each quantity Bfi (pf, sffi) ispositive foralli =1, ... , n.
This is clearly true if the function B¢;(x, y) is a positive constant (as in the variable-
intercept, fixed-slope conjecture). Subsequently, we will show that this is also true if
Bri(x, y) is the rational function y/(x — o r;), provided that the constant « y; is outside
a certain finite range of values (see Subsection 3.1). Let

G/ (p*,s7/*) = GDiag(Bsi(p}.s* ;)G .

Since G has full row rank, the matrix G/ ( p;‘ ,8* fi) is symmetric positive definite; it is
therefore nonsingular. We deduce

=G (prsTHTIGIQ = — (7 +577%)
+Diag(B7i (pf, 5% ;) p* = Diag(Bi(pf,s* ;) ((ED)T p* +w?)],

which yields

= GG/ (p*, s 7IGI Q" — € — (s +577*) + Diag(Bsi(p}', s ;))p*]
+1—G"G' (p*, s7/*) "' GDiag(Byi(pf. s* ;N ILCE) p* + w*].

With p/ given by the above expression, firm f’s problem can be written as
n
maximize (sf )Tpf - Z cri(gri) — (Sf - gf )TW*

(Bf T Efgf o) [p* + Diag(osj) (B s/ + Ef g/ — wf —r/*)]

subject to Zs,f, = ngz, (or)

gf < CAPf (n”)
0<s/ g

where r/* = (r;ij) € N™ is the vector of firm f’s equilibrium resource usage, and we
write the dual variables in parentheses next to the corresponding constraints. The above
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problem is a concave maximization problem in the variables (s, g/). Its Karush-Kuhn-
Tucker conditions are:

0<s/ L —p/ +4a/p* s )s/ + (B ) Diaglos)(B's! + ETg/ —w')
+(B/)T[ p* + Diag(os))(B's' + ET g/ — o/ —r/*) ]+ w* + 9,1, = 0
0<g/ L vec(cy;(gs) + (E/ ) Diag(oy)(B's/ + Efg/ — ')
+(E/)T[ p* + Diagofj)(B's” + Efg/ — o/ —17%)]
—w* + 77f —¢rl, 20
0<n/ LCcAP/ —g/ >0
n
0= (ssi—gri)
i=1

where

Al (p*.s7%) = GTGI (p*.s7/*)7'G
and vec(c}i(gfi)) is the n-vector whose i-th component is c}i (gr)fori=1,...,n
and 1,, is the n-vector of all ones.

2.6. Market clearing conditions

At equilibrium, we postulate that the following conditions will hold:

o pf =p*,rf =r/* and Z sh =57 =5 forall e F;

h#f,he F
o U= Z rf e
feF
e y= Z ' —gH)+a
feF

The first set of conditions imposes consistency on the expectations that each generating
firm f has for power prices, its use of resources, and production by rival firms. That is,
in equilibrium, the prices, resource use, and rival production that firm f anticipates (and
treats as decision variables in its model) should be the same as their equilibrium values
(and thus, in turn, the values anticipated by all other f). The second set of conditions
clears the input resources market (i.e., what the market allocates equals that which is
used by the producers and arbitrager). Associated with these market conditions is the
vector of resource prices p*; in equilibrium, they are set high enough to ensure that
the quantity demanded of resources by producers equals the supply available. The final
set does the same for the transmission market: the transmission service y that the ISO
provides from the hub node to each node i equals the net amounts of power delivered by
producers and arbitragers to that node. The transmission prices w* are associated with
this set of conditions. In equilibrium, they will be set so that demands for transmission
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service do not result in violation of the transmission constraints in the ISO’s problem.

If all of the ISO’s transmission constraints are slack, those prices would be zero. But if

under zero prices, one or more of the constraints would be violated, then w* would be

set at levels so that the transmission services demanded result in feasible flows.
Equating pf = p*, s=/* = 57/ letting

S = Z s" s
and dropping the *, we obtain from (6),
a’ = 0~ —Diag(Q}/P) p,
which shows that the anticipated arbitrage amount is the same for all firms. Repeating
the above derivation but using the above simplified expression for a/ instead of (6), and
letting
A = GT(GDiag(Q%/PHGT)7'G e wmn,
which is obviously symmetric positive semidefinite, we obtain

p=A(Q°—¢"—S)+[I— ADiag(Q)/P) 1 (E*) p* + w*]
= A(Q°—¢®—8)+[1— ADiag(Q}/PH1(E*)" DTv+ H" 7],

where we have used the optimality condition p* = DT v in the resource allocator’s

problem and w* = HT z in the ISO’s problem. From the market clearing conditions, we
obtain

u:er—i—r“

feF

= Z (B's! + ETg/ —w/) + (E% — o)
feF

= > (B/s/ + Efg/ — ')+ E*“(-5+ Q" — Diag(Q}/P))p) — 0"
feF

=G+ Y (B's/ + Efg/) — E°[ 1 — Diag(Q?/P")A S

feF
+E“Diag(Q}/ P)[ ADiag(Q}/P) — I1[(DE*) v+ H z]

where

G, = E° [Q0+Diag(Q?/PiO)A(e0 — QO)] 3 ol -t
feF
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Furthermore,
y=Y (s/—g/)+a
fer
= Q% — Diag(Q)/PH p— Y g'
feF
= 0° + Diag(Q?/P)A(" — Q°+ 8)— ) " gf

feF
—Diag(Q)/P)[ I — ADiag(Q}/PH1(E*)" DTv+ H 7],

The above results allow elimination of y and u in the complementarity conditions for
z and v in Subsections 2.2 and 2.3, respectively. Then, concatenating all the optimal-
ity conditions in the resource allocator’s problem, the ISO’s problem, and the firms’
problems, we obtain the following mixed complementarity problem for the oligopolistic
competition model with endogenous arbitrage:
0<v L g, + DE“Diag(Q?/P)[ I — ADiag(Q%/P)1[(DE) v+ HTz]
—D Y (B/s/ + E/g/)+ DE“[ I — Diag(Q?/P))A1S = 0
feF
: 0/,p0 . 0/,p0 a~NT T
0 <z 1 g;+ HDiag(Q;/P;)[1 — ADiag(Q;/P;)I[(DE“) v+ H" z]
— H Diag(Q)/PHAS+ HY ¢/ >0
feF

and for every f € F:

0<s/ L gl + [(DBf )T —{I — ADiag(Q%/P?) }( DE* )T] v
+ ADiag(QY/P)HT z + AS
+1A (p, s+ (B )TDiag(Uf,/')Bf Is”
+(B/) Diag(o)E' g’ +¢51, = 0
0<g’ L gl +(DE/ ) v—H"z 4 vec(c):(g7:))
+(E? ) ' Diag(oj)(B's" + ETg/ Y+ 0/ —¢r1, > 0
0<n/ LCAP/ —gf >0

n
0= Z(Sfi —8&fi)s
i=1

where
gl = A(® - 0°) — (B/ ) Diag(o)w’ € H"
gl = —(Ef)Diag(osi)e’ € N
gy =d — Dg, € RHY
q: =h — H[ 0° 4 Diag(0?/P?)A(® — 0°)] € ni'o.
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2.7. Endogenous arbitrage: compact formulation

To write the above formulation in a more compact form, we introduce some matrices.
Let

i — |:Mv Mvz:| _ [DE“] B[(DE")T HT] e o=+
= | p ; :

where
B = Diag(0?Y/P?) — Diag(Q?/P?)ADiag(Q?/P?) e R"*". (7
Let
My Mg, _[Er®A0
Mg My | — 0 0
| Diag(M!) Diag(Mlp) | _ qoirmxairn
. f . 7 ‘ )
Diag(M;s) Diag(My )

where E|r| is the square matrix of all ones of order ||, ® denotes the Kronecker
product,

ot FAT
M My, [(B ) } . . X2
= Diag(o ;) [ B ET] € ;&>n,
[M; M,{] (EN)T 2@ ]

and Diag(Msf ) is the block diagonal matrix with M, Sf as its diagonal blocks for f € F.
Let

F F
Mg Mg ] _ | Ml T Ml MV eexaiEm
M, M, My --- Myg H --- H ’

where for f € F,

Ml = DEYI — Diag(0%/P%)A1— DB/ e it
M}, = —DE/ e gt
M. = —HDiag(Q?/P)A e nRfoxn,

Define the square matrix of order (¢£1 + £ + 3|F|n + n):

Mv Mvz Mvs Mvg

sz Mz Mzs Mzg
_(Mvs)T _(MZS)T Ms Msg
_(Mvg)T _(Mzg)T Mgs Mg I

0 0 0 —IFp

0 0 -Jr gt

<
[

S o © oo
=
[

(=) =N
g\
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where [y is the identity matrix of order k£ and

1, 0 --- 0
01, 0
J=1| " | ewFman,
00 .1,
let
a; 4
q, = and q, =
F F
W i

Also define the nonlinear function F1 : RUFIxm+b+lo . gy(1F1xm) py
Fl(s,v,z) = Diag(A' (p,s™/))s,
where s is the concatenated vector of the sales s/ for f € F,
-1
: oY
Al(p,s7)) = G" | GDiag | =&+ Bri(pi,s—s) | G" | G, (®)

P;
L

and Diag(A/(p,s=/)) is the block diagonal matrix whose diagonal blocks are
Af(p,s=1) for f € F. The dependence of F£ on the pair (v, z) is through the price
vector p, which is given by

p=ACQ" e —8)+[I— ADiag(QY/PO1I(DE) v+ HTz]. (9

With the above notations, we can state the compact, mixed NCP formulation of the
oligopolistic competition problem with endogenous arbitrage:

0 <v L Qv v 0 > (0
0 =z 1 q: Z 0 >0
0 <s L q, s FI(s,v,z) >0

M y 10
0 =gt | aq |TMeg| T vectchiigrn | =0 1O
0 <n Ll | CAP n 0 >0
free ¢ 0 © 0 = 0.

2.8. Exogenous arbitrage

In this model, each firm takes the arbitrage amounts a; as exogenous to its profit max-
imization problem. This seemingly represents a less sophisticated power producer than
in the endogenous arbitrage case, because in the latter situation each producing firm f
anticipates how arbitragers will shift their purchases and sales in response to changes in
f’s sales. However, as we will show, there are close relationships between the solutions
of the endogenous and exogenous arbitrage models. In particular, the market prices, firm
profits, and firm production yielded by the two models are identical.
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Specifically, taking a; and all quantities with an asterisk as exogenous variables, firm
f solves the following optimization problem for s/, g/, and r/:

n
maximize Z[Sfi pri —cri(gr) — (spi—gri) wi']

i=1

m
=Y Ipftop(rp =)y
j=1

n n

subject to Zsfi = Zgﬂ,
i=1 i=1
Blsf + Efgl = rf +wf,
0 < g/ < CAP/,

0 < s/,
q o Q?—[Sfi+Sifl-—ﬂfi(P?,Sifi)p,7‘+ai]
an pfl - QO )
P_-(t) +,3fi(P;k,Sifi)
1
Vi=1,...,n,

After eliminating the prices p; and resource usage ry;, we obtain the Karush-Kuhn-
Tucker conditions of the above concave maximization problem in the variable s',gh)
as follow:

0<s/ 1 —p/ +Diag(Bsi(p},s* ;i N"s”
+(B/ ) Diag(os)(B's/ + ET g/ — ')
+(B/)T[ p* + Diag(os)(B/s/ + Ef gl — o/ —r/*)]
+w* +9rl, =0

0<g/ L vee(cy;(8s0)) + (ET ) Diag(o)(B)s/ + E/ g — o)
+(E)T[ p* + Diag(o ) (B s/ + ET g/ —w/ — /%))
—w*—¢rl, =0

0<n/ L capf —gf >0

n
0= (spi—gsi)
i=1

Invoking the market clearance conditions, we obtain

a = Q" — S —Diag(Q)/P) p.

0 -GT] [a (DEYTv—p+HT;
G 0 Iy Ge° '
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Solving these three equations for p, we obtain the same expression (9) for the price
vector p. Setting p* = p/ = p in firm f’s Karush-Kuhn-Tucker conditions and sim-
plifying, we obtain the following mixed NCP formulation of the exogenous-arbitrage
model:

0<v L gy + DE“Diag(Q?/P)[ I — ADiag(Q%/P*) 11 (DE“) v+ HT 7]
—D Y (B""+ E"¢")+ DE“[ I — Diag(Q)/P")A1S = 0
heF
: 0 0 : 0 0 a\T T
0 <z Ll g;+ HDiag(Q;/P;)[ 1 — ADiag(Q;/P;") ][ (DE“) v+ H" 7]
— HDiag(Q)/PHAS+HY ¢" >0
heF

and for every f € F:

0<s/ L gl + [(DBf )T — {I — ADiag(Q%/P%) }( DE* )T] v
+ ADiag(QY/P?)HT z + AS
+[Diag(Byi (pi> s— )" + (B ) Diag(osj) B/ 1s/
+ (B )" Diag(o)E' g/ + @51, = 0
0<g’ L gl +(DE/ ) v—H"z 4 vec(c);(g71))
+(E" ) Diag(oj)(B's! + Efg/y+n/ —¢r1, = 0
0<n/ LCAP/ —g/ >0

n
0= Z(Sfi — &fi)-
i=1

In vector-matrix notation, the above problem is similar to (10), with just one impor-
tant difference: namely, the function F £ (s, v, ) is replaced by

Diag(B1i (pi, s—1:)) "' s!
Fl(s,v,2) = :
Diag(ﬁlﬂi(}’iv S-\]—‘|,‘))71 571

Specifically, the compact, mixed NCP formulation of exogenous-arbitrage model is as
follows:

0 <v L qv v 0 >0
0 <zl | ¢ z 0 >0
0 <s L | g s Fl(s,v.2) | =20

M $ 11
0 <g i | aq [TM|e|T]vectchemn|=0 I
0 <n L | CAP n 0 >0
free ¢ 0 © 0 = 0.
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3. Solution existence and uniqueness

There are altogether four models described by the two NCPs (10) and (11), correspond-
ing to two forms of the function B; (x, y): a constant or a simple rational function. With
the two NCPs as the basic formulations for the models, the existence and uniqueness
of a solution to the models therefore hinge critically on the properties of the matrix M
and the functions F i.’H (s, v, ). As a first step in this analysis, we show that the matrix
B given by (7) is positive semidefinite.

Proposition 1. Assume that G has full row rank. The matrix
B = Diag(Q}/P") — Diag(Q}/P)ADiag(Q}/ P)
is symmetric positive semidefinite. Moreover,
Bx =0 & x = Gy for some y;
finally, there exists a constant § > 0 such that
xTBx > §| [ — ADiag(Q?/P?) 1x ||>.
Proof. The displayed matrix is the Schur complement of GDiag(Q? / Pl.O)GT in

[ GDiag(Q?/P")GT GDiag(Q?/P?) }

_ 16|~ 0/ pON[ AT
Diag(0/PHGT  Diag(Q¥/ PY) ‘[I}D‘ag(Qi/Pf)[G 1]

Since the latter matrix is clearly positive semidefinite, it follows readily that B is positive
semidefinite. To prove the second assertion, suppose Bx = 0. Let

y = (GDiag(QY/P?)GT)~' GDiag(Q?/P)x.
It follows that

GDiag(Q?/P))GT GDiag(Q?/PH( -y _ 0
Diag(Q?/P")GT Diag(Q?/P?) x )

Hence GTy = x. Conversely, if x = G” y, then it is easy to show that Bx = 0.
To prove the third assertion, write A = Diag(Q? / Pl.o). With y = Ax, we have

xTBx =yT[A 1 - Ay

>y 1A~ = Aly|* = n | [1 - ADiag(Q?/P%)1x |,

where 1 is the reciprocal of the largest eigenvalue of the symmetric positive semidefinite
matrix A~! — A. m|

It follows easily from the above proposition that the matrix M is positive semidefinite
(as proved below), albeit not symmetric
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Proposition 2. If G has full row rank, then M is positive semidefinite.

Proof. Clearly the matrix M is symmetric positive semidefinite. Since E|r and A are
symmetric positive semidefinite, so is their Kronecker product. Moreover, since

M M,
My My
is symmetric positive semidefinite, so is

Diag(M;) Diag(My;)
Diag(MJ;) Diag(M])

Hence the matrix
M; M sg
Mg Mg |’

is symmetric positive semidefinite. The positive semidefiniteness of M follows readily.
O

As to the functions F £ I the form of the price conjecture function ri(x, y) plays an
essential role. If the latter function is a positive constant (the fixed-slope, variable-inter-
cept conjecture (3)), then clearly Fi’H (s, v, z) are linear functions in s only. Moreover,
in this case F?(s, v, ) is a strongly monotone linear function of s, while F£, (s,v,2z2)i1s
a monotone linear function of s. Thus, the complementarity problems resulting from the
fixed-slope, variable-intercept price function conjecture (3) is much simpler than those
from the variable-slope, fixed-intercept conjecture (4). In the next subsection, we treat
the latter conjecture and postpone the analysis of the former conjecture until Subsec-
tion 3.2. It should be noted that since we allow the generation cost function ¢ f; (g ;) to
be nonlinear, the resulting formulations (10) and (11) remain NCPs under either price
function conjecture.

3.1. The variable-slope, fixed-intercept conjecture

In this subsection, we show that even under the variable-slope, fixed-intercept conjecture
where

Bri(x,y) = . (x,y) € B2,
X —Qfi

there exists a range of values of the constant « s; outside which F i*H(s, v, z) are well-
defined functions of the pair (s, g) in a certain domain and with (v, z) substituted by a
certain implicit function of (s, g). To formally state and establish this claim, we begin by
quoting a result from the theory of monotone linear complementarity problems (LCPs).
Part (a) of this result is well-known (see, e.g., [8]); part (b) is less well-known, but its
proof can be found in [12]. We now explain some notation. For an arbitrary N x N
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matrix M, let R(M) be the LCP range of M; thatis, ¢ € R(M) if and only if the LCP
(g, M)

0<zlg+Mz>0

has a solution. When M is symmetric positive semidefinite (as in our application below),
it can be shown that

RM) = {q € % : 3z € %V satisfyingg + Mz > 0}.

Proposition 3. Let M = AT EA, where E is a symmetric positive semidefinite m x m
matrix and A is an arbitrary m x n matrix.

(a) For every g € R(M), if z! and z2 are any two solutions of the LCP (¢, M), then
EAz' = EAz2. Let (q) denote the common vector EAz for any solution z of the
LCP (q, M).

(b) The function w : R(M) — R" is Lipschitz continuous on its domain; that is, there
exists a constant 7 > 0 such that for every ¢! and g2 in R(M),

logh) — b | < tlig' — ¢l
In particular, it holds that
lo@ll <zlqll, Vg e RM).

We apply this proposition to the following parametric LCP in the primary variable
(v, z) and with (s, g) as the parameter:

0 < (v L [qv n M, M,, v _'_MUSMUg s
0 <\z) 1L \qg; M, M, Z M, M, g
Recalling the notation M which denotes the defining matrix of the above parametric

LCP, we let

0

0. (12)

IV v

n
Q=1(s.g) e W gf <CAP/. Y (spi—gpi) =0, VfeF
i=1

qv My My, (S) Y }
and (qZ)+|:Mzs Mzg:| g e RM) ;.

For the time being, we assume that the set €2 is nonempty. (Clearly, this is a necessary
condition for the models to have a solution. See Subsection 3.4 for a treatment of this key
nonemptiness issue.) Since R(M) is a polyhedron, € is a polytope. By Proposition 3,
there exists a constant T > 0 such that for every (s, g) € 2 and for any two solutions
(v!, z') and (v3, z2) of the LCP (12), we have

B[(DE“)"v' + HTZ'] = B{(DE)"v* + HT % );

moreover, for any (s, g') € €,

| B[(PEYT 0l =)+ BT =) ]| = ells—s I+ g g1
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where (v’, z) is any solution of the LCP (12) corresponding to (s’, g’). Recalling the
definition of the matrix B in (7), we deduce

|[1 — ADiag(Q?/P) ] [(DEHT (v —v' )+ HT (2! —z") ]|
stllis—s"ll+lg—-g"ll

where T/ > 0 is a constant that depends only on the model data. From (9) we recall that
p=A(Q"—¢"—S)+[I— ADiag(Q)/P)1[(DE) v+ H'z];

consequently, the function p : (s, g) € Q@ — N, with p(s, g) given by the above
expression for any solution (v, z) of the LCP (12) corresponding to (s, g), is Lipschitz
continuous on its domain. Since €2 is compact, it follows that there exists a constant o
such that for all |af;| > &, the function

(s,8) > Bf'(P' S_fi) = Q_?_’_s,#
’ 1 IyO—J1 -
P? " pi(s,8) —ayi

is positive on 2. Thus the matrix Diag(,g fi(pi,s—yi)) and also its inverse are both
positive definite; hence the matrix A7 (p, s=/) given by (8) is well defined and positive
semidefinite for all f. Consequently, the two nonlinear functions F i’H (s, v, z) are well
defined and can be expressed as an implicit, Lipschitz continuous function of (s, g) on
the domain 2.

Based on the above preliminary analysis, we can establish the following existence
result for the variable-slope, fixed-intercept models.

Theorem 1. Assume that G has full row rank and that each cost function cr;(g ;) is
continuously differentiable. Suppose that the set £ is nonempty and that |« r;| > & forall
f € Fandalli =1, --- , n. With the variable-slope, fixed-intercept conjecture (4), both
the exogenous-arbitrage model and the endogenous-arbitrage model have equilibrium
solutions.

Proof. In view of above analysis, we write Fi’H(s, g) for F?H(s, v, z). The proof is
by a fixed-point argument. Define a set-valued map @ : Q :— by letting, for each
(s°, go) € Q, d(s°, go) be the set of (s, g) for which there exist (v, z, 7, ¢) such that
(v, z, 8, g, 1, ) solves the following monotone mixed LCP:

0 <wv L qv v 0 >0
0 <z 1| ¢ z 0 >0
FLI (g0 g0
0 <s L q, M s s (/s %) > 0 (13)
0 <glL| g g vee(c);(8%)) | = 0
0 <gpn L | CAP ] 0 >0
free ¢ 0 @ 0 = 0.

Provided that ® satisfies two properties:

e d(s, g) is a nonempty and convex subset of €2,

e @ is a closed set-valued map; i.e., for every sequence {(s¥, g%)} converging to
(s>, g) and for any sequence {(5, g¥)} converging to (5°°, 2°) with (5%, g¥) €
® (s, g¥) for every k, we have (5°°, g°) € ® (s, g*°),
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Kakutani’s fixed-point theorem then implies that ® has a fixed point; i.e., there exists
(s*, g*) € ®(s*, g). Such a pair along with the auxiliary variables (v, z, 5, ¢) then
provides a solution to the respective model. To show the first property, let (s, g°) € Q
be given. Since M is positive semidefinite, for ®(s°, g°) to be nonempty, it suffices for
the the LCP (13) to be feasible. By the definition of €2, there exists Y, 29 satisfying

(o) () Lo ()= [ o)
ZO ’ qz M, M, ZO M Mzg gO
It is clear that we can choose (°, ¢°) such that (v, 20, 59, g°, °, ) is feasible to
(13). Since M is positive semidefinite, the solution set of thls LCP is convex; thus so is
o(sY, g9%).

To show the closedness of the map @, let the sequence {(s¥, g%)} converge to
(s>, g*°) and let the sequence {(5, g%)} converge to (5%, g*) such that (5%, g¥) €
<D(sk, gk) forevery k. For each k, there exists (vk, zk, nk, <pk) such that (vk, X, §k, gk, nk,
©*) solves the LCP (13) with (s°, g%) replaced by (s*, g%). To complete the proof, it suf-
fices to demonstrate that we can choose a bounded sequence {(VX, 25, 9%, ¢*)} with this
property. The choice of the latter sequence is based on a complementary cone argument,
which in turn utilizes the fact that there are only finitely many such cones corresponding
to a given matrix that defines an LCP. The argument is fairly standard in LCP theory [8]
and is omitted. O

0
0

0
0.

IAIA
IV IV

Uniqueness of solutions Let (v, 2%, s*, g%, n*, ¢*), k = 1, 2, be two solutions of the
exogenous-arbitrage model under the variable-slope, fixed-intercept conjecture. Let

K= A(Q"—e" - §%)+[1 — ADiag(Q"/P) 11 (DEHTv* + HT K]

be the corresponding price vectors. We have, by Proposition 1 and the symmetry and
positive semidefiniteness of A,

ol — 2 T ol — 2

1 2 Zl 2

1 _ g2 5l sz
gl " gl )

-1 n

(pl 2 ol — 2

(v =\ [ M, M (0! =02 sh—s2 Mg Mg, | (s'—s2
B (zl —v2> [M M | <z1 —v2> " (gl —g2> [Mgs M, } <g1 —gz)

> 8 || [1 — ADiag(Q)/PH1L(DE“)  (v! —v*)+ HT (' =) 117 +
(S'— )T A(S' — §%) +
Y B/ (' =) +E/(g' — g/ 1" Diag(o)[B/ (s — sH/ +E/ (g' — g%
feF
> §||[1 — ADiag(QY/PY)1[(DE)" (v' —v*)+ HT (z' =22 1> +
ENACS =8P+ 3 min oy || B/ s' =57 + Ef (g — &)/ I,
feF — —
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where £ is the reciprocal of the largest eigenvalue of A; moreover,

sl _ g2 T Fil(sl’ " Zl) _ F?(s2, 2, Zz)
g —g* vec(c; (g7,) — vec(cf; (g,))

n 0 Sl ) -1 0 s2 . -1
1 2 Q; -f 1 Q; -/
=22 (spi = i) [P—éJf—l : ] Sfi_[_l+—2 l } i

0
feF i=1 i P Ty Fo iy
n
+Y D (ghi — &) ke pi(g ! —cfi(gF)
feF i=1
n 0 1 -1
Q; S—fi 1 242
DDA RO
feFi=t L'i PiT%fi
n 0 1 -1 0 2 -1
0; S_pi 0; SZfi 2
+ (sh =24 | =+ — | | =4 52,
;E e PY " pl —ayi P p}—ayi !
n
+Z Z(g]l‘i - g?‘i ) [C}i(g}‘i) - C}i(g%i)]'
feF i=l
We have

By Lemma 1, we have

1 2

S_ i 52 pi

1 2 }
Pi —ofi pp T Afi

< e lst ;=21 +1p7 = PPl

<l | D lsp—sil+IAS =85 |+
hf.heF
I — ADiag(QY/PY) 11 (DEY)T (v —v?) + H (z' = 29)11l].

where

lim t(x) = 0.

|| —o00
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Consequently,
s' =2 \T (PG ol 21y — FI(s2, 02, 22)
gl — g2 vec(c}, (gjlc,)) - Vec(c}i (gjl‘i))
-1

- ZZ[ = ] (s} = 02—

feFi=1 T
ZZr(af,-m}i—si,w DO dsp—si I+ IACS" =82 |1+
feFi=l1 h# f.he F

ILI — ADiag(Q?/ PO 1L (DEY)T (v' —v?) + HT (' = 22) 11| ]+

Z Z (8}',‘ - g%j ) [C}i(g}',') - C}'i (8%‘,‘) 15

feFi=1

Based on the above bounds, we can establish the following result that identifies certain
uniqueness properties of the solutions to the exogenous-arbitrage model.

Theorem 2. Assume that G has full row rank and that each cost function cr; (g ;) is
convex and continuously differentiable. Suppose that the set 2 is nonempty. There exists
a constant o such that if o s;| > o’ forall f € Fandalli =1, ---, n, the following
quantities are unique in any equilibrium solution to the variable-slope, fixed-intercept,
exogenous-arbitrage model :

(a) the sales s7; forall f € Fandi € N,

(b) the prices p; foralli € N,

(c) the arbitrage quantities a; for alli € N,

(d) the resource usage ryj and ry; forall f € Fand j =1,... ,m,

(e) the marginal generation costs ¢ }i (gyi) foreach f € Fandi € N,
n

(f) the total generation ngi for each f € F.
i=1

Moreover, if each c’ﬁ is strictly increasing, then the amounts generated gs; are also
unique. ‘

Proof. Continuing the above derivation, we note that, by complementarity,

T

) vl — 2
Zl 02 Zl v2
sl sz s! sz
1 2 M 1 2
gl 2 gl 2
”1 2 nl 2
2 1

st —s2\" [ Fi(st, vl 2l — FU(s2, 02, 22)
2 L (gh)) — Fie] =0
gl—g vec(cfi (gfi)) VeC(Cfi (gfi))
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The above derivations show that the sum of the two inner products in the left-hand side
is bounded below by a positive definite quadratic form in the quantities:

Iski —s7i . TACS" =S,

111 — ADiag(Q?/P) 11 (DEHYT (v! —v*) + HT (2! = 22)1|
and
| B (s' —sH/ + Ef(g' —gH/ |,

provided that the |o 7;| are sufficiently large. Consequently, there exists " such that if
loagi| > o' forall f € Fandi =1,---,n, then

[1 — ADiag(QY/P)1[(DE ) (v' =)+ HT (! =2%)1 =0

B/ (s'—s*) +Ef(g' —g*)/ =0, VfePF
andforall f € Fandi =1, ---,n,
spio= % and  (gp — g7 ) [chigr) —cpi(gF)] = 0.
Since, fork =1, 2,

P =A00° e — 55+ [1 - ADiag(QY/P) 11 (DE)Tv* + HT ],
(' = B/ + EF g —of, VfeF,
a* = Q° — s* — Diag(QY/P)) pt,

(rk)a — Eaak_wa’

and

n n
D8 =2 sh VIEF
i=1 i=1

the statements (a)—(f) all follow readily. The last assertion about the uniqueness of the
amounts of generation is also clear. O

Due to the close connection between the endogenous-arbitrage and the exogenous-
arbitrage model, it is interesting to explore the relationship between the solutions to the
two models. The next result identifies a simple condition under which a solution to one
model will provide a solution to the other model. See Theorem 4 for an application of
the result.
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Proposition 4. Assume that q has full row rank. If (v, z, s, g, 5, ¢) is a solution to the
NCP (10) or (11) and if Diag(B; (pi, s— i)~ 's/ is the range of G forall f € F, then
(v,z,8, 2,1, @) is a solution to both NCPs.

Proof. This is easy because if Diag(,éfi (pi, s_fi))_lsf is the range of G7, then

Diag(Byi(pi»s— i)~ 's/ = Al (p.s™ s/
Hence F i (s,v,2)=F il(s, v, z) and the desired conclusion follows readily. O

The practical importance of this equivalence result is that whichever model is easiest
to compute can be used.

3.2. The fixed-slope, variable-intercept conjecture

Unlike the exogenous-arbitrage model, uniqueness results are not readily available for
the solutions to the endogenous-arbitrage model under the variable-slope, fixed-intercept
conjecture (4) (but see the next subsection for a special model). Nevertheless, a subset
of the solution uniqueness properties remain valid in the endogenous-arbitrage model
under the fixed-slope, variable-intercept conjecture. In what follows, we write

0
~ _ i )
api = P_io +oayi,

which is equal to ﬁf,- (x,y) when By;(x, y) is the constant « r;, which we assume is
positive.

Theorem 3. Assume that G has full row rank and that each cost function c; (g ;) is
convex and continuously differentiable. Suppose that the set €2 is nonempty. In the case
of the fixed-slope, variable-intercept conjecture (3), equilibrium solutions exist for both
the endogenous- and exogenous-arbitrage models. Moreover, for any such solution, the
following quantities are unique in the respective models:

(a) thesales sy; forall f € Fandi =1, ... ,n in the exogenous model;

(b) the vector Gs/ for all f € F in both models,

(c) the prices p; for alli € A in both models,

(d) the arbitrage quantities a; for all i € N and the arbitrage resource usage r4; for

j =1,...,m in the exogenous model,
(e) the sum of arbitrage and firms’ sales a; + Z sy¢i forall i € NV in both models,
feF
(f) the firm’s resource usage ry; foreach f € Fand j =1, ..., m in both models,
(g) the marginal generation cost ¢ }l. (gri) foreach f € Fandi € N in both models,
and

n
(h) the total generation Z gyi foreach f € F in the exogenous model.
i=1
Finally, if each ¢ }I. is strictly increasing, then the amounts generated g y; are unique in
both models.
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Proof. We focus on the endogenous-arbitrage model because the results for the exoge-
nous-arbitrage model follow easily from a similar analysis to that in the last subsection.
In the fixed-slope, variable-intercept model, we have

F(s,v,z) = Diag(GT(GDiag@;)G")™'G)s

which is a monotone, linear function of s. From this observation, it follows from the
same proof as in Theorem 2 that the following vectors are unique,:

Gs/, AS, [I— ADiag(Q?/P)1[(DE) v+ HTz],
and B/ s/ + E/ g/ Again, since
p=AQ°—e®—8)+[I— ADiag(Q?/PH1[(DE) v+ H 7],

rl = BlsI +Elgl —0wf, VfePF,
and
a+S = Q" Diag(Q)/P) p.

it follows that statements (b), (c), (e) and (f) hold. Finally, as in Theorem 2, statement
(g) and the last assertion also hold for the endogenous-arbitrage model. O

3.3. A special model

Animportant special case of the models presented in the last two sections occurs under the

following specifications: the resources utilized by each firm are only for production and

not for sales (thus B/ = 0 forall f € F), the arbitrage does not use input resources (so
n

E? = 0), and the arbitrage constraint is Za[ = 0 (thus G is the row vector of all ones).
This is the case, for instance, with emilssilons allowances, which are only required for
electricity generation. In this circumstance, some uniqueness properties of the solutions
to the endogenous-arbitrage model with the variable-slope, fixed-intercept conjecture
(4) can be derived and further connections between the solutions to the endogenous-
arbitrage model and the exogenous-arbitrage model can be established. Before stating
these results, we note that under these specifications, the matrices A and Al (p, s )
both become special rank-one matrices given by

n 0o\ !

Q:

A= <Z P—E) E,,
i=1 "1

and for all f € F,

: " (0 -
Alp,s™)) = [Z (P—;) +ﬂfl-(p,-,s_fi)>] E,.
i=1 i
where E, is the square matrix of all ones of order n. Exploiting this observation, we
state the following additional result for the special model.
The following theorem extends the results in the previous papers [23, 28].
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Theorem 4. For the special model described above, the following statements hold.

(a)

(b)

()

If (v, z, 8, g, 1, ¢) is a solution to the NCP (11), then for all f € F,

Sf1 _ Sfi C
5 = — , Vi=1,...,n.

o 0;
—é + Br1(p1,s—51) —5 + Bri(piss—fi)
P P

Consequently, (v, z, §, g, 7, ¢) is also a solution to the NCP (10); thus any solution
to the exogenous-arbitrage model is a solution to the endogenous-arbitrage model,
under either the variable-slope, fixed-intercept or the fixed-slope, variable-intercept
conjecture.

Conversely, if (v, z, st g, 1, ¢) is a solution to the NCP (10) under the fixed-slope,
variable-intercept conjecture, by defining, forall f € Fandi =1,... ,n,
0
1l P_é) e 1
J— 1
i T w700 PR
J i=1
> ( S0 T ) !
j=1 J

then (v, z, s, g, 1, ¢) solves the NCP (11) under the fixed-slope, variable-intercept
conjecture.

The following equilibrium quantities in the endogenous-arbitrage model under the
fixed-slope, variable-intercept conjecture are equal to the respective (unique) quan-

tities in the exogenous-arbitrage model:
n n

(i) the firms’ total sales Zs fi (and hence the total generation Z gri) for each
i=1 i=1
fexF
(i) the prices p; for alli € N;
(iii) the firm’s resource use ryj foreach f € Fand j =1, ... ,m;
(iv) the marginal generation cost c}i (gfi) foreach f € Fandi € N.

Proof. The sole difference between the endogenous-arbitrage model and the exoge-
nous-arbitrage model is in the functions F i,'H, which affect only the expression that is
complementary to the variables s ;. Hence, we can write out these complementarity
relations in the two models, using the superscripts I and II to distinguish the variables
in the former and the latter models, respectively: forall f € Fandi =1,... ,n,

2
- =1
I 0 0 I —
OSSfIJ_Z[e]_Q]—i_ZshJ}—F n <QO
j=l

he? > —"+ﬂf,-<p§-,s1_fj)) (14)

0
S\ P

~
=

n
Z sf"j
j=1

n 0

[0
+ZP—(]) [(HTzl)j—i-(p;] >0
j=1"J



Spatial oligopolistic equilibria 87

and

~. O

n

Z% a
0 i

j=1 PJ

0<SIIJ_Z|:E—Q +Zsh]j| o0

her _0 ﬂ (pl ’ —fl)

Ny~

n

0
Z—{) [Tz +61] = 0.
j=1 /

Let (s, zI', o) be a triple satisfying the latter complementarity condition for all f and
i. Fix f; we claim that

11 11

S S,

/1 < ; fi L Vil (15)
+/3f1(P17 _f1)

0

+ IBfl (Pl ’ —fl)

PO PO

This inequality is clearly valid if sII =0.1If su > 0, then

n 0
AR
n = Pj(.) f1 n QO
4oz g £ G [ ]
j=1 heF PO +/3f](P1 s—fl) j=1 "]
n 0
J I
n Z:_jo sfi n QO
|:e —Q +Zs,1jj| QO +ZP_(]) [(HTZII),'-{-(/J}I],
Jj=1 heF +/3f,(p sy =t

which clearly implies the inequality (15). Reversing the role of the index 1 with the index
i, we deduce that the inequality must hold as an equality. Thus the first part of statement
(a) is established. From this, it follows that

n
I
I Z Sfi

S '= —

0 fi = 0,1 . Vi=1...,n
o; oI }n: Q/; + i
PO +Bripis 5= i) po Pripj 5=y)

! j=1 J

Consequently, (s™, 21, gDH) satisfies (14). This establishes statement (a).
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To prove statement (b), note that for each f, the expression that is complementary
to s;i in (14) depends only on f but is independent of i. Also recall that B¢;(x, y) is

equal to the constant « ; in this case. Consequently, if slﬁ > ( for some i, then

nQO

n
1
S .
. 0 0 I j=1"J J; Y
; ej—Q,-+I§Esh,~ t— (Q )
Z fi

~
O~

0
J
0
j=1 Pj
QO
+Z ][(HTZI)]+(pf]—0

j= 1

Now let (v, z, s1, g, 1, ¢) be a solution to the NCP (10) under the fixed-slope, variable-
intercept conjecture. Let s'! be defined in part (b). Clearly,

n n

I I
E Spi = E Spis VfelF.
i=1 i=1

n
Fix f and consider two situations: Z slﬁ =0and Z sgc,- > 0. In the former situation,

i=1 i=1
we have s;ll = sl i = = 0 for all i. In the latter situation, we have

0
n& Sl
n P]Q Sfi n QO
Z[ Q+Zw} RS P LA
j=1 heF —+Olfz Jj=1
P

1

Thus (v, z, s, g, 1, @) solves (11) under the fixed-slope, variable-intercept conjecture.
By part (a) and the uniqueness in Theorem 3, the respective quantities in (1)—(iv)
must be equal in the exogenous-arbitrage and the endogenous-arbitrage model. O

3.4. The nonemptiness of Q2

To complete the analysis of the models, we consider the issue of nonemptiness of the
polyhedron 2. Since M is a symmetric positive semidefinite matrix,

qv Mvs Mvg]<s> 1/
(qz> +[Mzs M., |\g € R(M) (16)

if and only if there exists (v, z) such that

)+ L G+ Lo e ] ()
+ + > 0.
(‘]Z) |:Mzs M, 4 M, M, z) -
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Reversing the process in Subsection 2.5 whereby the above inequality is obtained, we
deduce that a pair (s, g) belongs to the set €2 if and only if (a) (s, g) is an admissible
pair of sales and generation, i.e., this pair is nonnegative and satisfies
n
g/ < CAP/ and ) (sji—gpi) =0 VfeF
i=1

and (b) there exists a pair of shadow prices (v, z) on the resources and transmission
flows, respectively, such that the induced resource usage u and flow y are feasible, i.e.,
d < Duand h < Hy, where

u = Z(stf—f—Efgf—wf)—i—E“a—w”

feF
and
y = Z (Sf _gf)+av
feF
with
a = Q"—S—Diag(Q)/P)) p
and

p=A(Q°—e—S)+[1— ADiag(Q}/P)I(DE*) v+ H'z]

being the vectors of arbitrage quantities and nodal prices, respectively, which are induced
by the tuple (s, g, v, z). Based on this observation, we give below a sufficient condition
on the model data for the set 2 to be nonempty, and hence for the qualitative results in the
previous subsections to hold. Roughly speaking, this condition stipulates that there is an
admissible pair of sales and generation by the firms such that the resources used and the
induced transmission flows are feasible (conditions (b) and (c) below, respectively) and
that ¢ is an optimal arbitrage amount when both the resource price and the transmission
fee are equal to zero (see condition (a) and the proof below).

Proposition 5. Suppose that there exists an admissible pair (s, g) of sales and genera-
tion such that

(@) P°—Diag(P?/0%) (e’ +S) = Gy for some y,

(b) D Z (B's! + Efg/ —w/)y+ E*" — 0" | <d, and
| feF

© H| Y ' —gh+e| <h,
L feF
then Q # .

Proof. 1tis not difficult to verify that the given pair (s, g) is an element of 2 by verifying
the aforementioned necessary and sufficient condition for such membership, with v = 0,
z=0,a=¢" and p = A(Q" — ¢° — 5). Incidentally, condition (a) is equivalent to the
condition that a = ¢ is an optimal solution to the arbitrage’s problem with p* = 0 and
w* = 0. |
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4. A numerical example

An undergraduate student in the Department of Applied Mathematics & Statistics at
the Johns Hopkins University, Grant Roch, wrote an AMPL code that implements a
simple numerical example to illustrate the special model presented in Subsection 3.3.
The PATH solver on the NEOS server at Argonne National Laboratory (http://www-
neos.mcs.anl.gov/neos/) was used for solving the example, which is an endogenous-
arbitrage problem with 2 firms and 4 regions. The ISO’s constraint Hy < h is:

1

2
3Y2+3y3 =<

thus, H = [0 1/32/3 0] and £ is a scalar to be specified. This constraint corresponds
to an upper bound on flow from node 1 to node 3 in a linearized DC load flow model
in which nodes 1, 2, and 3 are arranged in triangular network with equal impedances
for the three lines. Node 1 is assumed to be the hub node, while node 4 is assumed to
be radially connected to node 1. There is only one resource; the resource allocator’s
constraint Du < d is a simple upper bound: u < d; thus D = 1 and d is a scalar to
be specified. The firms’ generation cost functions are all linear: ¢ ; (gfi) = crigyi. Of
course, these cost functions exclude the resource cost. Firms do not have pre-allocated
resources, thus @, = 0; firm f has only one resource usage constraint E/ g/ = r/,
which can be written as

4
Y esigri =y

i=1

The remaining data of the problem are summarized in the following table. Results of our

Table 1. Data for numerical example

firm node ¢y  CAPy ey or
1 Oorl
1 1 50 50 .1
1 2 0 0 0
1 3 0 0 0
1 4 10 50 4
2 Oorl
2 1 0 0 0
2 2 20 100 3
2 3 0 0 0
2 4 0 0 0

runs are reported in Table 2 below, which shows seven solutions in order to contrast the
impact of various assumptions about the intensity of competition and the presence of
resource and transmission constraints. The first four rows summarize the assumptions
of each solution. In the energy market, the generation firms are assumed to hold one
of the following conjectures: price taking (competitive, also called Bertrand), Cournot
(Bfi = 0 MWh/($/MWh) in the fixed slope conjecture), or conjectured supply func-
tion (“CSF”, B¢; = 0.2). In the resource market, firms are either price takers (o = 0
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Table 2. Results for numerical example

Case Bertrand  Cournot  Cournot CSF CSF CSF CSF
1 11 1 I I v
Energy market Price Cournot  Cournot CSF CSF CSF CSF
conjecture taker
Resource price 0 0 1 0 1 1 1
conjecture oy
Resource limit d 35 35 35 35 35 no limit 35
Transmission 40 40 40 40 40 40 no
limit limit
Total sales
f=1 50.0 433 45.4 429 46.2 52.9 69.1
f=2 100.0 88.3 81.1 99.0 88.1 100.0 74.5
g1l 50.0 29.4 25.0 39.5 33.0 2.9 50.0
g4 0 14 20 3 13.1 50.0 19.1
822 100.0 88.3 81.1 99.0 88.1 100.0 74.5
p1 68.3 77.8 78.5 74.6 75.5 65.9 85.5
)23 83.3 89.4 91.2 86.0 88.6 82.4 85.5
D3 98.3 101.1 103.8 97.5 101.6 98.8 85.5
pa 68.3 77.8 78.5 74.6 75.5 65.9 85.5
r1 5.0 8.5 10.7 53 8.6 20.3 12.7
r 30.0 26.5 24.3 29.7 26.4 30.0 22.3
p* 183.4 133.3 122.7 133.3 124.8 0.0 130.5
Power flow (1,3) 40.0 40.0 40.0 40.0 40.0 40.0 56.4
Profit, f =1 0 626 800 484 634 2843 1565
Profit, f =2 833 2601 2788 2578 2744 6238 1959
ISO profit 1800 1400 1523 1372 1570 1972 0
Net welfare 14858 14486 14298 14775 14518 16908 14864
Change in Welfare® 0 -373 -560 -83 -340 2049 6

2Compared to Bertrand case.

($/unit)/unit) or they conjecture that the resource price will rise if more is demanded
(of = 1). The results shown include the total sales (to all nodes) by each firm, generation
from each plant, nodal prices, resource use by each producer, the resource prices, power
flow in the constrained transmission link, producer and ISO profits, and total welfare.
Total welfare is a standard measure of economic efficiency. It equals the sum of net ben-
efits received by all parties, including consumer surplus (demand curve integral minus
purchase costs), profits received by producers and the ISO, and revenue earned by the
resource owner.

The first aspect of the obtained results we consider is the impact of different types of
competition in the energy market, assuming producers are price takers in the resource
market. Perfect competition yields the lowest consumer prices, equal to the marginal
cost of supplying power to each node, including the shadow prices of transmission and
the resource. By the famous welfare theorem, competition also yields the highest total
welfare. The table indicates that CSF I prices are next lowest and Cournot I prices are
highest, consistent with [11]. This is as expected, since a producer expects the least loss
of market share in response to its raising price in the Cournot solution (where rivals are
assumed not to respond to price increases) and the most loss in the competitive case
(where it assumes that it loses its entire market share if it tries to charge more than the
market price). Profits are highest when prices are highest (the Cournot solution). Mean-
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while, the resource price is highest ($183.4/unit) under competition, because generators
produce the most power in that case, which puts the most pressure on the resource. The
high resource price means that producer f = 1 produces all its output from its plant at
node i = 1, which has the lowest resource use rate of its two plants.

Second, we turn to the effect of a positive conjecture regarding the effect of resource
demand upon resource price. This effect can be gauged by comparing Cournot solutions
I and II, and, in the CSF case, CSF solutions I and II. Both comparisons show that
such a conjecture lessens producer willingness to pay for the resource, resulting in a
lower resource price. (For instance, p* falls from 133.3 to 122.7 $/unit in the Cournot
case.) Willingness to pay falls because when o > 0, producer f becomes an oligopson-
ist with respect to the input resource, anticipating a marginal expenditure higher than
the resource price. Meanwhile, this higher marginal resource expenditure increases the
apparent marginal cost of production, ultimately translating into higher energy prices.
Between the higher energy price and lower resource price, each producer earns $150—
190 more profit than if they were price takers relative to the resource price. Welfare falls
because artificially higher consumer prices mean that, on the margin, consumers are not
buying power whose true social cost is less than its value to consumers.

Third, we consider the separate effects of relaxing the resource and transmission
constraint. Under this particular set of assumptions, removing the resource constraint
(resulting in no cost to the producer for using the resource) increases resource use from
35 to 50.3 (cf. solutions CSF II and III). Producer f = 1 switches nearly all of its pro-
duction to its more resource-intensive plant (at node 4). Lower input costs then translate
to significantly lower consumer prices for energy. In contrast, relaxing the transmission
constraint from node 1 to node 3 has a less drastic effect on the equilibrium. Comparing
solutions CSF II and IV, we see that flow on the link from i = 1 to i = 3 does increase
from 40 to 56.4 MW, and firm f = 1 is now able to expand its production (and profit) at
the expense of f = 2. Nodal energy prices are now the same everywhere, as they should
be in the absence of binding transmission constraints. However, total sales expand only
slightly (from 141.9 to 143.6 MW), and the effect on average prices (across nodes) is
less than when the resource constraint is relaxed. Of course, the relative importance of
the transmission and resource constraints depends on the assumptions made; the point
of this example is that the input resource limit and producer conjectures about its price
can significantly affect the solution.

5. Conclusion

Experience with restructured power markets indicates that the exercise of market power
can often involve strategies much more sophisticated than the simple withholding of
generation capacity. Power producers interact not only in power markets, but also in
markets for resource inputs, such as emissions allowances and fuel. Evidence from Cali-
fornia indicates that manipulation of natural gas and NOy allowances markets may have
allowed power producers to further increase their profits during the 2000-2001 crisis by
providing justifications for increasing prices or shutting down generation capacity (e.g.,

[18]).
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The models presented and analyzed in this paper represent a first step towards rep-
resenting strategic interaction in both power and input markets while explicitly consid-
ering transmission network constraints. The models can represent Cournot competition
in power markets, along with a more general form of competition we term “conjectured
supply function” competition in which firms anticipate how rival sales will change if
price changes. The conjectured supply function can be either of two types: a fixed-inter-
cept/variable-slope version in which the intercept of the rival output-price relationship
is predetermined, and a variable-intercept/fixed-slope version in which it is the slope
of the function that is preset. The former version yields a nonlinear complementarity
problem, while the latter instead gives an LCP. Meanwhile, in input markets, either Ber-
trand (price-taking) or “conjectured resource price function” behavior is modeled. In
the latter case, firms anticipate that if they change their resource consumption from the
equilibrium value, the price of the resource will rise. Finally, power producers’ expec-
tations concerning arbitrage among nodes in the power market is represented in two
ways. One approach has the producers anticipating how arbitragers will react if prices
change (“endogenous arbitrage”), while in the other, producers assume that the amount
of arbitrage is exogenous.

Existence and uniqueness properties are proven for several of these models, including
the variable-intercept and, under specified conditions, variable-slope versions. Equiva-
lence of the endogenous and exogenous arbitrage solutions is shown under certain con-
ditions, permitting use of whichever formulation is computationally most convenient.
In future work, we will apply these models to actual power markets.
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