Capacity Markets: Principles & What's Happening in the US

Benjamin F. Hobbs

Sr. Research Associate Electricity Policy Research Group, University of Cambridge

Theodore K. and Kay W. Schad Professor of Environmental Management. Whiting School of Engineering , The Johns Hopkins University

> Member, Market Surveillance Committee California Independent System Operator

European Electricity Workshop, 15-16 July 2010, Berlin

Thanks to EPSRC FlexNet, NSF, MPPRP, & PJM for funding; & Javier Inon, Ming-Che Hu, Steve Stoft, Murty Bhavaraju, & Matt Kahal for their collaboration

UNIVERSITY OF | Electricity Policy CAMBRIDGE | Research Group

-

JOHNS HOPKINS

IVERSIT

U. Cambridge EPRG JHU

Why Not Just Use Energy Markets?

- Saint Fred's (Schweppe) 1978 vision of a demandresponsive market unfulfilled
 - Demand-side market failures lead to wrong P's, capacity shortages

Reasons:

- No market information on value of reliability
 - Height of price spikes reflect:
 - regulatory decisions
 - willingness of ISOs and suppliers to stomach political fallout
 - Least valued uses not curtailed during shortages
 - Long-term contracts with consumers infeasible
 - \Rightarrow Optimal amount of capacity unlikely under a pure energy market
- Bid & price caps in response to market power
 ⇒'Missing money' energy revenues don't cover peaker fixed costs
- Cost of overcapacity << Cost of undercapacity ⇒ Capacity markets = insurance

In response to California melt-down:

- (I)n this highly integrated business, where the system requires everyone, and not just the visionary, to be prudent or face losing service and paying high spot prices, enforced customer-side planning ahead will be a small price to pay to avoid ... periodic reliability crises with energy price booms followed by price busts

(FERC Chairman Hoecker, 4 Jan. 2001, Docket Nos. EL00-95-000,002,003)

0

0.94

0.96

1.00

1.02

1.04

Ratio of Unforced Reserve to Target Unforced Reserve Margin

1.06

1.08

1.10

1.12

1.14

1.16

0.98

PJM Results: Summary

1. Sloped curve stabilizes capacity payments

U. Cambridg

EPRG JHU

- 2. More stable payments even out investment, forecast reserves
- 3. More stable revenues lowers capital costs. Consumer costs (capacity, scarcity) fall:
 - \$127/peak kW/yr for vertical
 - \$71/peak kW/yr for sloped curve

(values depend on assumptions)

4. Results robust

U. Cambridge *EPRG*

JHU

But misguessing the "Cost of New Entry" can affect system performance

Source: Brattle analysis of PJM RPM data.

Note: A small amount of new oil (~21 MW), retired oil (~46 MW), and retired gas (~11 MW) not shown.

From J. Pfeifenberger & S. Newell, "Review of PJM's Reliability Pricing Model," Brattle Group, Presentation to PJM Stakeholders, July 11 2008