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"Prediction is very difficult, 
… especially about the future."

--Neils Bohr on Prediction

"There is no reason anyone would want a computer in 
their home."

--Ken Olsen, Digital Equipment Corporation, 1977

All quotes from:
http://www.blogcatalog.com/blog/joy-in-the-rain/70f370e405178aa7b352a4cf2384fd7e &

http://www1.secam.ex.ac.uk/famous-forecasting-quotes.dhtml
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Overview: Do Uncertainty & Risk Aversion Matter??

1.  Which uncertainties matter most in US power 
markets?
– Stochastic MARKAL

2. Risk averse agent modeling for power market 
design
– What parameters for the PJM Capacity market?

3. Including risk aversion in equilibrium models
– How does risk aversion and regulatory uncertainty affect 

generation investment choices?

4. Infrastructure design under uncertainty
– What transmission investments should be made now, 

given renewables & other uncertainties?
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I think there is a world market for maybe five 
computers."

-- Thomas Watson, IBM, 1943

"Those who have knowledge, don't predict. Those 
who predict, don't have knowledge. " 

--Lao Tzu, 6th Century BC Chinese Poet
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Uncertain Driver: Demand

Source: P.P. Craig, A. Gadgil, and J.G. Koomey, “What Can History Teach Us? A Retrospective Examination of Long-Term
Energy Forecasts for the United States,” Annual Review of Energy and the Environment, 27: 83-118

2000 Actual2000 Actual
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Past Biases May Not Persist!

Forecasts
from 

USDOE
AEO
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1. Which Long-Run Uncertainties Matter 
Most in the US Power Sector?

(M.C. Hu, B.F. Hobbs, working paper, 2009)
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Background

• Uncertainty + irreversible commitments
⇒ Risk of regret

• E.g.,
• Stranded costs (wrong fuels, too much capacity, 

restrictions on use of new capacity)
• High recourse costs (pollution control retrofits, 

construction of short lead-time facilities)

• Problem: Define “robust” strategies
• Perform well under wide range of scenarios
• Diverse portfolios; flexible resources

• Question: What uncertainties are most 
important in policy analysis models?
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Method

• Simulate energy market response in two stages:
• Stage 1: “Here and now” decisions: 

• 1995-2010 Investments made to MIN E(Cost) over scenarios 
(⇔ competitive market, zero elasticity)

• State 2: “Wait and see” decisions:
• 2015-2030 investments made after scenario realized
• One set of decision variables for each scenario

• MARKAL
• MARKet ALlocation: LP/least cost representation of energy 

economy
• Multiyear solution (5 yr time steps)
• Probability weighted scenarios for “wait and see” decisions
• Stochastic version modified so that that commitments to new 

2015 capacity made in 2010
⇒Possibility of regret

• Caveat: Unreviewed EPA data base 
⇒ Results merely indicative
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Uncertainty Analysis

•Perfect Info Solution
• Solve MARKAL separately for each scenario
• Calculate E(Cost) over scenarios

E(COST)

•Optimal strategy
• Solve stochastic MARKAL under base case assumptions

•Naïve Solution
• Solve MARKAL for single “base” scenario (no risk)
• Calculate E(Cost) under actual distribution

Cost of ignoring uncertainty (ECIU) (= VSS)

Value of perfect information (EVPI)
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Scenario Assumptions

Case Emission 1995 2000 2005 2010 2015-2035

NOx 7200 4750 4000 3500 3600

SO2 11600 10630 10540 9900 8950

NOx 7200 4750 4000 1510 1510

SO2 11600 10630 10540 2250 2250

 -  -  - 560000 560000

Existing 
Caps

CAIR-
Like 
Caps

Possible CO2 Cap

Emission Caps [Kt/yr]
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Demand
Scenarios

Code Description
CC Commercial Chillers, Air Conditioners
CE Commercial Computer & Office Equipment
CH Commercial Heating
CK Commercial Cooking Ranges
CL Commercial Lighting

CME Miscellaneous Commercial Appliances - Electricity
CR Commercial Refrigeration
CV Commercial Ventilation
CW Commercial Water Heaters
RC Residential Space Cooling
RF Residential Freezers
RH Residential Space Heating
RL Residential Lighting

RME Miscellaneous Household Appliances, Electric
RR Residential Refrigeration
RW Residential Water Heating
TR2 Passenger Servies Intercity Rail-Electricity

MARKAL Power Demand
Categories Considered

Scenario 2010 2015 2020 2025 2030 2035
Low 95 93.125 89.375 89.375 89.375 89.375

Base (Medium) 100 100 100 100 100 100
High 105 106.875 110.625 110.625 110.625 110.625

Demand [% relative to base case]
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Gas Scenario Assumptions

Code Description
IMPNGA1 Imported Natural Gas- Step1
IMPNGA2 Imported Natural Gas- Step2
IMPNGA3 Imported Natural Gas- Step3
IMPNGAZ Imported Natural Gas--For Debugging
MINNGA1 Domestic Dry Natural Gas- Step 1
MINNGA2 Domestic Dry Natural Gas- Step 2
MINNGA3 Domestic Dry Natural Gas- Step 3

MARKAL Gas supply categories

2005 2010 2015 2020 2025 2030 2035
Low 70 60 60 60 60 60

Base (Medium) 100 100 100 100 100 100
High 130 140 140 140 140 140

Gas prices [% relative to base case]
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Comparisons of Uncertainties:
Cost of Ignoring Carbon Policy Uncertainty

E(cost)
= 428.5

E(cost)
= 350.8

OPTIMUM:
(65 GW less 

pulverized, 32 
more IGCC, 32 
more gas than 

NAIVE)

NAÏVE:
Solution
Ignoring 

uncertainty

350.8

624.6

76.9

811.3

45.8

Decision node: 
2000-2014

investment and 
energy variables

Tight 
CO2 Cap

Tight 
CO2 Cap

No 
CO2 Cap

No 
CO2 Cap

p=0.5

p=0.5

p=0.5

p=0.5

Chance node: 
CO2 Cap

in 2015

624.6

811.3

76.9

45.8 

Decision: 
2015-2050
variables

Present 
worth of 

cost

ECIU = $77.8B
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Cost of Ignoring Demand Uncertainty

45.8

46.1
p=1/3

E(cost)
= 52.0

-280.6

-280.6

-281.1

389.9

389.9

-281.1

391.4

Hi Growth

E(cost)
= 51.8

OPTIMUM

ECIU = 
$0.2B

391.4

Decision node: 
2000-2014

investment and 
energy variables

Chance node: 
CO2 Cap

in 2015

Decision: 
2015-2050
variables

Present 
worth of 

cost

51.8

46.1

45.8

p=1/3

p=1/3

p=1/3

p=1/3

p=1/3

Hi Growth

Med Growth

Med Growth

Low Growth

Low Growth

NAIVE
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Cost of Ignoring Natural Gas Price Uncertainty

45.8

46.0
p=1/3

E(cost)
= -6.5

-687.6

-687.6

-687.4

621.6

621.6

-687.4

622.1

Hi Price

E(cost)
= -6.7

OPTIMUM

ECIU = 
$0.2B

622.1

Decision node: 
2000-2014

investment and 
energy variables

Chance node: 
CO2 Cap

in 2015

Decision: 
2015-2050
variables

Present 
worth of 

cost

-6.7

46.0

45.8

p=1/3

p=1/3

p=1/3

p=1/3

p=1/3

Hi Price

Med Price

Med Price

Low Price

Low Price

NAIVE
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Tight CO2

Cap

No CO2

Cap

p=0.5

p=0.5
E(cost)
= 332.1

Chance node: 
CO2 Cap

in 2015

Decision node: 
2000-2014

investment and 
energy variables

618.4

45.8

811.3

Decision: 
2015-2050
variables

Present 
worth of 

cost

45.8

618.4

Naïve solution

Optimal solution, 
given cap

Optimal solution, 
given no cap (Naïve)

EVPI under CO2 policy uncertainty

618.4

811.3

45.8Value of 
Perfect information

(EVPI = $18.7B)

Compare to 
Stochastic 
Optimum 
E(cost)
= 350.8
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387.1

-283.2

387.1

Optimal
given Low Growth

p = 1/3
Low Growth

-283.2

E(cost)
= 49.9

Chance node: 
CO2 Cap

in 2015

Decision node: 
2000-2014

investment and 
energy variables

Decision: 
2015-2050
variables

Present 
worth of 

cost

Optimal
given Hi Growth

EVPI = 
$1.9B

45.8
45.8

Optimal
given Med Growth

(Naïve)

p = 1/3
Hi Growth

p = 1/3
Med 

Growth

EVPI: Demand growth uncertainty
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618.5

-689.2

618.5

Optimal
given Low Price

p = 1/3
Low price

-689.2

E(cost)
= -8.3

Chance node: 
CO2 Cap

in 2015

Decision node: 
2000-2014

investment and 
energy variables

Decision: 
2015-2050
variables

Present 
worth of 

cost

Optimal
given Hi Price

EVPI = 
$1.6B

45.8
45.8

Optimal
given Med Price

(Naïve)

p = 1/3
Hi price

p = 1/3
Med price

EVPI: Natural gas price uncertainty
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Upshot

• High variance doesn’t mean an uncertainty is 
decision-relevant
– A decision may dominate other decisions for all scenarios

• Long-term uncertainty can affect decisions today if:
– Investments are one-of-a kind that will shape system for 

decades
– Uncertainty affects relative performance of different 

alternatives
– Irreversibilities

⇒high possibility of regret

• Long-term uncertainty less important if:
– Decisions are about increments of capacity to meet 

growing demand
⇒ long-term uncertainties may only affect timing of later 
additions
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“No one will need more than 637 kb of memory for a 
personal computer. 640K ought to be enough for 

anybody.”
--Bill Gates, Microsoft, in 1981

"It is far better to foresee even without certainty than 
not to foresee at all. " 

--Henri Poincare in The Foundations of Science, page 129.
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http://www.eia.doe.gov/emeu/cabs/AOMC/Overview.html

Uncertain Driver: Fuel PricesUncertain Driver: Fuel Prices

Crude Oil Prices 1970Crude Oil Prices 1970--20072007
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USDOE Annual Energy 
Outlook 1996

Uncertain Driver: Fuel Prices
EIA Lower 48 Crude Oil Price Forecasts

AEO 
2004

AEO 2007
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Volatile Forecasts from Uncertain Drivers: 
The Case of Gas Prices

2000
AEO

2008
AEO

1996
AEO

BkWh
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2.  Designing PJM’s Capacity Market 
with A Risk-Averse Agent Model

B. Hobbs, M.-C. Hu, J. Inon, M. Bhavaraju, S. Stoft, IEEE TPWRS, 2007, 3-11
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Why Capacity Markets?

Demand-Side market failures can lead to 
wrong prices and capacity shortages

– E.g., Retail price rigidities and price caps
⇒Prices don’t reflect consumer “Willingness to Pay” for 

reliability

⇒ Missing money: energy market revenues don’t support 
investment

Cost of overcapacity << Cost of undercapacity
⇒ Capacity markets = insurance
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How Can Market Designers Respond?

1. Demand-side reform
• Correct the market failure

2. Capacity markets (“top down”): 
• Tradable “Installed Capacity” (ICAP) rights or 

auctions, or
• Capacity payments

3. Mandatory contracts (“bottom up”)
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ICAP Variant: Demand Curves for Capacity

• Administrative payment from 
ISO depends on reserve 
margin ….

PICAP

Total ICAP 

ICAP Demand Curve
ICAP Supply Curve

Penalty for shortfall

…. instead of fixed 
requirements, with  
penalty for falling short 
(“vertical demand”)
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Overview of PJM “Reliability Pricing Model” 

1. Previous PJM system: ICAP
A vertical demand curve
One market covering all of PJM
Short-term (annual, monthly, daily markets)

2. Why replace ICAP?
Prices too volatile: “bipolar”
• Discouraged risk-averse investors
Didn’t reflect locational value: capacity in wrong places
Failed to provide a sufficient forward signal

3. RPM proposal
Stakeholder process, JHU analysis 2004-2005
August 31, 2005: initial filing
Settlement talks, Fall 2006, JHU reanalysis
FERC approved settlement, Dec. 2006
Implemented: June 1, 2007
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Example of a Local RPM Curve
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Overview of Dynamic Analysis:  Questions

1. How do different RPM curves affect….
• Stability of capacity market?
• Costs to consumers? 
• Ability to meet reserve requirement, reliability 

criterion?

2. How robust are these conclusions to 
different assumptions about….
• Generator behavior? 
• Demand curve parameters?
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PJM Dynamic Analysis: Basic Assumptions

Capacity additions are a dynamic process.  
Investment depends on:
1. Forecast revenue streams

– Based on capacity and energy prices from recent 
auctions

More forecast net revenue 
more investment

2. Revenue stream variability
– Variations due to forecast changes and weather
Highly variable energy and capacity prices 

less investment (due to risk aversion)

3. Risk attitudes: 
– No hedges (incomplete market) 
– Risk aversion
– Short-sightedness

Random shocks (weather, economic 
fluctuations) cause variation in returns

• Result: boom/bust cycles in investment
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Dynamic Model Overview

1. The model assesses profitability of CTs needed to 
meet the reliability requirement 

• “Representative Agent” approach

2. Simple & transparent model simulates dynamic 
process of investment: 

• annual construction of turbine capacity, 

• revenues from energy, ancillary services, & capacity 
markets,

• market stability in face of random demand shocks, 

• consumer costs

3. Allows exploration of assumptions
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Simulation Overview: Auction in Year y-4
for Capacity Installed by Year y: Repeated for 100 years

Risk-Adjusted Forecast Profit (RAFPy)
(Increases if profits higher, decreases if profits more variable)

Year y-7:
Profit =

PICAP + E/AS
Gross Margin
– Fixed Cost

Year y-6:
PICAP

+
E/AS GM

– FC

Year y-5:
PICAP

+
E/AS GM

– FC

Year y-4:
PICAP

+
E/AS GM

– FC

Year y-3:
PICAP

+
E/AS GM

– FC

Year y-2:
PICAP

+
E/AS GM

– FC

Year y-1:
PICAP

+
E/AS GM

– FC

Year y:
PICAP

+
E/AS GM

– FC

Actual and Estimated Profits: Blue = Known at Auction in Year y-4; Brown = Estimated

NCAy

1.7%

0% RAFPy
Maximum New Capacity Additions NCAy

PICAP,y

0
Total ICAP 

Capacity Price from Demand Curve
(Assume existing capacity bids 0, and NCAy bids B)

Exponential risk averse U( )
penalizing variable profits

Weights for profits in each year

B
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Agent makes decisions to maximize E(U) 
– Constant relative risk aversion

– Risk neutral: Max E(Profit)
( ) 0, 0rU a b e b rππ −= − ⋅ > >

Profit

Utility
Risk-neutral

Risk-averse

Utility Function
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Initial PJM Analysis: Five Curves Considered

Vertical Demand   
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PJM Results: Summary

2. More stable payments 
even out investment, 
forecast reserves
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Original PJM Proposal

3. More stable revenues 
lowers capital costs. 
Consumer costs 
(capacity, scarcity) fall:

• $127/peak kW/yr for 
vertical

• $71/peak kW/yr for 
sloped curve

(values depend on assumptions)

4. Results robust
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1. Sloped curve stabilizes 
capacity payments
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Sample Results: Average

(Risk aversion parameter = 0.7; Results depend on specific assumptions)

12769104564{35%}-0.49393. Vertical 
Demand

19

21

Scarcity

Rev.

$/kW-yr

2

10

E&AS

Revenue

$/kW-yr

815213{17%}2.17982. Final RPM 
Proposal

714211{17%}1.79981. Initial PJM 
Proposal

Scarcity + 
ICAP 

Payment by 
Consumers   
(Peak Ld 

Basis)

ICAP 
Payment 

$/kW-yr     

Generation 
Profit

$/kW-yr 
{ROE}

Average

% 
Reserve 
over IRM

% Years

meet or 
Exceed 

IRMCurve

⇒Alternate (sloped) curves have better adequacy
… and lower consumer cost 
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Sensitivity Analyses

Sloped demand almost always preferred to vertical

More risk aversion ⇒ sloped curve more advantageous
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PJM Conclusions:
Advantages of Sloped Demand

• Compared to vertical demand, lower risk to 
generators.  Result:

– Lower required return to capital
– More investment in generation 
– Dampened capacity cycles
– Lower consumer cost

• More advantageous if generators more risk 
averse

– Risk neutrality ⇒ sloped demand unnecessary
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“Heavier-than-air flying machines are impossible.”
--Lord Kelvin, ca. 1895, UK mathematician,  physicist

"This is the first age that's ever paid much attention to 
the future, …

which is a little ironic since we may not have one. " 
--Arthur C. Clarke 
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\

\

Uncertain Driver: Regulation & Technology

Example: 1985-2000 Power Plant Siting Scenario
1978 National Coal Utilization Assessment (Hobbs & Meier, Water Resources Bulletin, 1979)

\Assumptions:
• 3.5% load growth
• 50:50 Coal:Nuclear
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3. Regulatory Uncertainty 
& Risk Aversion 

in a Power Market Equilibrium Model: 
Are Deterministic & Risk-Neutral Policy Models 

Biased?
L. Fan, B.F. Hobbs and C.S. Norman, in review
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Motivation

• Future GHG regulation timing & form are unknown
• Agents risk averse when investing 
• Investments today will affect costs of carbon policy 

for decades
– Consequences of poor modeling of decisions will also 

persist!

• Energy policy strongly linked to models, but they 
simplify risk:
– Deterministic models, or
– Stochastic with risk-neutral agents

• Are resulting equilibria & policy conclusions biased?
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Previous Energy Work

• Evaluation of generation optionality under 
uncertain (exogenous) price processes
– Investment

• e.g., Fleten (2002)

– Operations
• e.g., Tseng (2004), Liu (2008)

• Some stochastic equilibrium models
– Bottom-up modeling of investment under risk 

neutrality
• e.g., Stochastic Markal (Loulou, 2000; Hu and Hobbs, 

2009), MCP (Gabriel, 2008)

– Equilibrium operations and financial hedging 
under risk aversion

• e.g., Willems (2007)

– Short-run equilibrium among risk-averse (CVar-
constrained) generators

• e.g., Ventosa et al. (2008); Shanbhag et al. (2008)
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• How will investment decisions differ if we 
model risk averse generators under 
alternative regulatory scenarios? 

• How do these results change with alternate 
policy instruments?

• Tax vs. cap and trade?

• Auction vs. grandfathering vs. contingent allocation of 
allowances?

Under uncertain carbon regulations
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Competitive Model Formulation

• Two firms face a capacity expansion problem, with 
different technologies (one coal-fired and one gas-
turbine)
– Variation: 3rd technology (solar thermal)

• Scenarios: 
– With regulation

• Cap-and-Trade
– Auctioned allowances
– Freely allocated allowances

• Carbon Tax 

– Without regulation

• Two stage problem:
– 1st stage: investment under uncertainty
– 2nd stage:

• regulation scenario revealed
• plants are operated
• profits realized
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Model Formulation (Cont.)

capi

Ui(πiNR(capi,qiNR))qiNR

qiR

Ui(πiR(capi,qiR))

Ui(πiNR(capi,•))

Ui(πiR(capi,•))

.5*Ui(πiNR)
+.5Ui(πiR)

Sc

p=.5
No Reg

p=.5
CO2 Reg

Sc

p=.5
No Reg

p=.5
CO2 Reg

Each party i
maximizes E(Ui), 
subject to
prices:

Equilibrium problem:
•Find cap, q for all i such
that each i is optimal, 
market clears
•An open loop Nash-
Cournot equilibrium

E(U)
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• Stochastic Equilibrium problem
– Consists of KKTs for each market party’s optimization problem
– Plus market clearing conditions

• KKTs for Operators’ utility maximization problem:

• i: scenario indicator (reg, nreg);
• j: time period indicator;
• k: fuel/firm indicator;
• HRj: hours in the time period;
• MCik: marginal cost;
• CCk: capacity cost;
• Zi: scenario indicator: Zi=1 for 

regulation, Zi=0 otherwise;

,

, , ,

( )

1  

:

:

. . 0 , , ( )

0 ( )

ik

e
ik j ijk ij ik k k i reg reg k

j

r
ik

k i ik
i

k i ik
i

ijk k ijk

k j reg jk reg k k reg k
j

HR q p MC CC cap Z p t

e

Risk Neutral Max PR

Risk Averse Max U PR U

s t q cap i j k

E HR q t Allowance

U π

μ

λ

π

π π

−

= ⋅ ⋅ − − ⋅ − ⋅ ⋅

= −

= ⋅

= ⋅

− ≤ ∀

⋅ ⋅ − − ≤

∑

∑

∑

∑
• Ek: emission rate;

• Allowancek: free allowance allocated;

• qijk: generation variable;

• pij: electricity price variable;

• pe: emission price variable;

• capk: capacity to be built;

• treg,k: net emission permit purchase.

Model Formulation (Cont.)
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– KKTs for Consumers’ problem:
0 2

0
0

1
[( ) ]

2

. . 0 ,

ij
i j ij ij ij ij ij

j ij

ij

P
Max CS HR P d d p d

Q

s t d i j

= ⋅ ⋅ − ⋅ − ⋅

≥ ∀

∑

,

, ( )

( )

ijk ij ij
k

cap e
reg k reg

k

q d i j p

t E p

= ∀

=

∑

∑

– Can also include allowance allocation rules
- auctioned

- free depending on sales

- free depending on investment

Model Formulation (Cont.)

– Market Clearing condition:

• P0, Q0: inverse demand parameters;

• d: demand;

• Ecap: total emission cap.
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Solutions

• Solve as a Nonlinear MCP (Mixed 
Complementarity Problem)
– No analytical solution

– Allows flexibility in the constraints

– Commonly used in this policy setting

• PATH solver in GAMS
– Successive linear approximation
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Carbon tax / 100% Auction

Effect of risk aversion on capacity decisions 
(Carbon tax, 

Emissions 80% of baseline)
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Effect of risk aversion on capacity decisions
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More Complex Model Formulation
(Fan, Patt, Williges, & Krey, Working Paper, IIASA, 2009)

• Existing fossil fuel sector, with a new 
entrant “Concentrating Solar Power”
– Coal-fired steam (existing)
– Gas-fired turbines (existing)
– CSP (new entrant)

• Scenarios (2×6×2=24): 
– Carbon regulatory uncertainty

• No-regulation
• Cap-and-Trade 

– CSP cost uncertainty
• assumptions vary across capacity growth rates (5% or 10%), 
• learning rates (5%, 10% or 15%)

– Fossil fuel price uncertainty
• high fuel price scenario
• low fuel price scenario
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Capacity Effects of Risk Aversion with CSP
(Auction Allowances)

CSP 
capacity ↑
and coal ↓
as risk-
aversion 
increases

Effect of Risk 
Aversion!
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Comments

• Risk aversion ⇒ profit under the least profitable 
scenario gets more weight
⇒ Investments sensitive to financial positions (e.g., allocation 

scheme for allowances)

• Risk-neutral owners make the same decisions, 
regardless of how emissions allowances distributed 

• Effects on capacity as owners become more risk-
averse: 
– If carbon taxed / allowances auctioned

• gas capacity ↑
• Coal ↓

– If allowances are allocated for free, the reverse happens
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• Yes, risk aversion matters in simplified 
model
– Are policy implications different?  (E.g., welfare 

impacts of policy)
– Will differences persist if there are many firms, 

more diverse set of technologies, and financial 
hedges?

• How might risk aversion be incorporated in 
large-scale policy models?
– Defensible heuristics?
– Estimating degree of risk aversion?

Comments (Cont.)
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“Computers in the future may weigh no more than 
1.5 tons.”

--Popular Mechanics, 1949

"Wall Street indices predicted nine out of the last five 
recessions ! " 

--Paul A. Samuelson in Newsweek, 19 Sep. 1966

"The herd instinct among forecasters makes sheep 
look like independent thinkers. " 

--Edgar R. Fiedler, June 1977
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Uncertain Driver: Regulation & Technology

CONAES Report (1978)
Generation Capacity Projections (GW)
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Future UK Wind Scenarios
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4. Transmission Planning
Under Hyper Uncertainty
(Hobbs, van der Weijde, in process)
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Transmission Planning Considering Market Response

Transmission 
Planner

Demand-Side 
Planning

Emissions 
Markets

System 
Operation

Gen 
1

Gen 
2 Gen 

3 Gen 
4

Consumers

Regulator Stake-
holders

MARKETS

• A “multilevel” (Stackelberg) game:
– Upper level: planners (& regulator, 

stakeholders), who anticipate reactions 
of …

– Lower level: market response of 
consumers, generators

• Account for responses:
– Price effects on resource type and 

siting decisions

– Effect of CO2, renewable policies

• Possible methods:
– Multilevel program/math program with 

equilibrium constraints, or

– Simulate market response to finite 
number of transmission plans

• Some Literature
– Sauma & Oren (2007); Roh, 

Shahidehpour, Wu (2009)
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• Dramatic changes a-coming!
• Renewables

– How much?
– Where?
– What type?

• Other generation
– Centralized?
– Distributed?

• Demand
– New uses? (EVs)
– Controllability?

• Electricity trade
• Policy

Hyperuncertainty

Do these uncertainties 
have implications for

transmission investments now?
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California’s Approach: TEAM
(A. Awad et al., in X.-P. Zhang, ed., “Restructured Electric Power Systems - Analysis of Electricity Markets with 

Equilibrium Models”, in press)

Goal: Estimate transmission benefits

Considers:
– Savings in operation & construction 

costs

– Efficiency gains due to market power 
mitigation

• Improve supplier access to markets          

⇒ lower bid markups

– Transmission-DSM-Gen substitution

Uncertainty:
~ 12 large remote renewable areas—which 

will be developed?

– Approach: invest in planning studies & 
approval for all

• creating options to build  



JHU___
Cambridge
EPRG

Modeling ApproachesModeling Approaches

• Presently:
– Single stage decisions under uncertainty

• E.g.,CAISO TEAM; Roh et al. (2009); Merrill et al. (2009)

– Characterization of random flows
• E.g., Bresceti (2004)

• Proposed approach:
– Stochastic Two-Stage MPEC with 0-1variables 

(multiple scenarios), or

– Decision tree analysis with discrete 
transmission options

• Quantify ECUI, EVPI, option value
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“Radio has no future.”
--Lord Kelvin, ca. 1897

"An economist is an expert who will know tomorrow 
why the things he predicted yesterday didn't 

happen today. " 
--Evan Esar

"There is not the slightest indication that nuclear 
energy will ever be obtainable. It would mean that 

the atom would have to be shattered at will."
--Albert Einstein, 1932
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Uncertain Drivers: Technology

Log Scale

Source: P.P. Craig, A. Gadgil, and J.G. Koomey, “What Can History Teach Us? A Retrospective Examination of Long-Term
Energy Forecasts for the United States,” Annual Review of Energy and the Environment, 27: 83-118

Overestimation:
• Demand by 150%

• Nuclear capacity by 800% 
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Conclusion: Uncertainty & Risk Aversion Matter!!

1.  Which uncertainties matter most in US power 
markets?
– CO2 regulatory uncertainty!

2. Risk averse agent modeling for market design
– Risk aversion ⇒ sloped demand curves for generation 

capacity are preferred

3. Including risk aversion in equilibrium models
– Risk aversion shifts equilibrium towards “worst case” for 

owners 

4. Transmission planning under uncertainty
– Two-stage stochastic leader-follower game framework for 

insights on robust investments


