We Need Electric Policy Models with Uncertainty and Risk Aversion!

Benjamin F. Hobbs

Schad Professor of Environmental Management Whiting School of Engineering, The Johns Hopkins University

Electricity Policy Research Group, University of Cambridge

California ISO Market Surveillance Committee

bhobbs@jhu.edu

The 1st International Ruhr Energy Conference Stochastics and Risk Modelling for Energy and Commodity Markets 5 October 2009

Thanks to coauthors & collaborators: Lin Fan, Catherine Norman, Javier Inon (JHU); Ming-Che Hu (UIUC); Steve Stoft; Murty Bhavaraju (PJM); Harry van der Weijde (Cambridge); Anthony Patt, Keith Williges, Volker Krey (IIASA)

Scenario Assumptions

			1			
Case	Emission	1995	2000	2005	2010	2015-2035
Existing	NO _x	7200	4750	4000	3500	3600
Caps	SO_2	11600	10630	10540	9900	8950
CAIR-						
Like	NO _x	7200	4750	4000	1510	1510
Caps	SO ₂	11600	10630	10540	2250	2250
Possible CO ₂ Cap		_	_	- (560000	560000

Emission Caps [Kt/yr]

JHU Cambridge EPRG

Demand	Code	Description
2 .	CC	Commercial Chillers, Air Conditioners
Scenarios	CE	Commercial Computer & Office Equipment
	CH	Commercial Heating
	CK	Commercial Cooking Ranges
	CL	Commercial Lighting
	CME	Miscellaneous Commercial Appliances - Electricity
	CR	Commercial Refrigeration
	CV	Commercial Ventilation
	CW	Commercial Water Heaters
	RC	Residential Space Cooling
	RF	Residential Freezers
RKAL Power Demand	RH	Residential Space Heating
	RL	Residential Lighting
Categories Considered	RME	Miscellaneous Household Appliances, Electric
	RR	Residential Refrigeration
	RW	Residential Water Heating
	TR2	Passenger Servies Intercity Rail-Electricity

MAR (

Demand [% relative to base case]

	Scenario	2010	2015	2020	2025	2030	2035
_/	Low	95	93.125	89.375	89.375	89.375	89.375
œ-	Base (Medium)	100	100	100	100	100	100
	High	105	106.875	110.625	110.625	110.625	110.625

Gas Scenario Assumptions

MARKAL Gas supply categories

Code	Description
IMPNGA1	Imported Natural Gas- Step1
IMPNGA2	Imported Natural Gas- Step2
IMPNGA3	Imported Natural Gas- Step3
IMPNGAZ	Imported Natural GasFor Debugging
MINNGA1	Domestic Dry Natural Gas- Step 1
MINNGA2	Domestic Dry Natural Gas- Step 2
MINNGA3	Domestic Dry Natural Gas- Step 3

Gas prices [% relative to base case]

	2005	2010	2015	2020	2025	2030	2035
	Low	70	60	60	60	60	60
X	Base (Medium)	100	100	100	100	100	100
	High	130	140	140	140	140	140

- A decision may dominate other decisions for all scenarios

- Long-term uncertainty can affect decisions today *if*:
 - Investments are one-of-a kind that will shape system for decades
 - Uncertainty affects relative performance of different alternatives
 - Irreversibilities
 ⇒high possibility of regret
- Long-term uncertainty less important if:
 - Decisions are about increments of capacity to meet growing demand

 \Rightarrow long-term uncertainties may only affect timing of later additions

Overview of PJM "Reliability Pricing Model"

1. Previous PJM system: ICAP

- A vertical demand curve
- > One market covering all of PJM
- Short-term (annual, monthly, daily markets)

2. Why replace ICAP?

JHU

Cambridge EPRG

- Prices too volatile: "bipolar"
 - Discouraged risk-averse investors
- > Didn't reflect locational value: capacity in wrong places
- > Failed to provide a sufficient forward signal

3. RPM proposal

- > Stakeholder process, JHU analysis 2004-2005
- > August 31, 2005: initial filing
- > Settlement talks, Fall 2006, JHU reanalysis
- > FERC approved settlement, Dec. 2006
- Implemented: June 1, 2007

PJM Results: Summary

1. Sloped curve stabilizes capacity payments

JHU

Cambridge **EPRG**

- 2. More stable payments even out investment, forecast reserves
- 3. More stable revenues lowers capital costs. **Consumer costs** (capacity, scarcity) fall:
 - \$127/peak kW/yr for vertical
 - \$71/peak kW/yr for sloped curve

(values depend on assumptions)

4. Results robust

IHU

Cambridge EPRG

40

60

Time

80

100

Sample Results: Average

20

0.98

0.96

0

(Risk aversion parameter = 0.7; Results depend on specific assumptions)

Curve	% Years meet or Exceed IRM	Average % Reserve over IRM	Generation Profit \$/kW-yr {ROE}	Scarcity Rev. \$/kW-yr	E&AS Revenue \$/kW-yr	ICAP Payment \$/kW-yr	Scarcity + ICAP Payment by Consumers (Peak Ld Basis)
1. Initial PJM Proposal	98	1.79	11{17%}	21	10	42	71
2. Final RPM Proposal	98	2.17	13{17%}	19	2	52	81
3. Vertical Demand	39	-0.49	64{35%}	45	10	69	127

 \Rightarrow Alternate (sloped) curves have better adequacy ... and lower consumer cost

- How will investment decisions differ if we model risk averse generators under alternative regulatory scenarios?
- How do these results change with alternate policy instruments?
 - Tax vs. cap and trade?

JHU

Cambridge FPRC

Auction vs. grandfathering vs. contingent allocation of allowances?

- P_{0} , \hat{Q}_{0} : inverse demand parameters;
- d: demand;
- *E*^{cap}: total emission cap.

Can also include allowance allocation rules

- auctioned
- free depending on sales
- free depending on investment

Capacity Effects of Risk Aversion with CSP (Auction Allowances)

CONAES Report (1978) Generation Capacity Projections (GW)

Type of Power Plant	Scenario	I: Busines	s-as-Usual	Scenario	III: National	Commitment
	1990	2000	2010	1990	2000	2010
Nuclear breeder	0	0	0	0	45	175
Wind Thermal conversion Photovoltaic OTEC	0 0 0	0 0 0	0 0 0	14 3 4 1	40 15 34 20	50 95 41 50
Geothermal	3	7	19	16	60	145
Thermonuclear fusion	0	0	0	0	0	0

JHU Cambridge EPRG Transmission Planning Considering Market Response

- A "multilevel" (Stackelberg) game:
 - Upper level: planners (& regulator, stakeholders), who anticipate reactions of ...
 - Lower level: market response of consumers, generators
- Account for responses:
 - Price effects on resource type and siting decisions
 - Effect of CO₂, renewable policies
- Possible methods:
 - Multilevel program/math program with equilibrium constraints, or
 - Simulate market response to finite number of transmission plans
- Some Literature
 - Sauma & Oren (2007); Roh, Shahidehpour, Wu (2009)

June 2004

- Approach: invest in planning studies & approval for all
 - · creating options to build

Modeling Approaches

Presently:

- Single stage decisions under uncertainty
 - E.g., CAISO TEAM; Roh et al. (2009); Merrill et al. (2009)
- Characterization of random flows
 - E.g., Bresceti (2004)

• Proposed approach:

- Stochastic Two-Stage MPEC with 0-1variables (multiple scenarios), or
- Decision tree analysis with discrete transmission options
 - Quantify ECUI, EVPI, option value

