

- I. Why power?
- **II. Model definition**
- III. Model uses
- **IV. The basics**
 - A. Supply Dispatch
 - **B. Demand Bidding**
 - C. Commitment
 - **D.** Transmission
 - E. Investment

ELECTRICITY-Ready to Serve You!

Have a Contractor Wire Your Home THE EDISON ELECTRIC ILLUMINATING COMPANY OF BOSTON

I. Why Power? (1) Lynchpin of the Economy

Economic impact

- ~\$1000/person/y in US (~oil)
 2.5% of GDP (10x water sector)
- ~50% of US energy use
- Most capital intensive

Consequences when broken

- 1970s UK coal strikes
- 2000-2001 California crisis
- Chronic third-world shortages

Ongoing economic restructuring

- Margaret & Fred
- Vertical disintegration
 - generation, transmission, distribution
 - Access to transmission
- Spot & forward markets
- Horizontal disintegration, mergers

Why Power? (2) Polar Bears

- **Environmental impact**
 - Transmission lines & landscapes
 - 'Conventional' air pollution: 3/4 US SO₂, 1/3 NO_x
 - 3/8 of CO₂ in US; CO₂ increasing

Figure 4. Electricity generation by fuel, 1980-2030 (billion kilowatthours)

Why Power? (3) The Ultimate Just-In-Time Product • Little storage/buffering • Must balance supply & demand in real time • Huge price volatility • Just balance supply & demand in real time • Just balance supply & demand in real time • Just balance supply & demand in real time • Just balance supply

II. Definition of Electric Power Models

Models that:

- simulate or optimize ...
- operation of & investment in ...
- generation, transmission & use of electric power ...
- and their economic, environmental & other impacts ...
- using mathematics &, perhaps, computers

Focus here: "bottom-up" or "process" engineering economic models

- Technical & behavioral components
- Used for:
 - firm-level decisions
 - MIN costs, MAX profits
 - policy-analysis
 - simulate reaction of market to policy

Process Optimization Models

Elements:

- Decision variables. E.g.,
 - Design: MW of new combustion turbine capacity
 - Operation: MWh from existing coal units
- Objective(s). E.g.,
 MAX profit or MIN total cost
 - Constraints E a
- Constraints. E.g.,
 - $-\Sigma$ Generation = Demand
 - Capacity limits
 - Environmental rules
 - Build enough capacity to maintain reliability

The Supply Chain & the "Deciders"

Fuel extractors

Power plant owners (GENCOs)

Transmission operators (TSOs) Distribution companies (DISCOs)

Retail suppliers, Energy service companies (ESCOs)

Consumers

III. Process Model Uses Company Level Decisions

Real time operations:

- <u>Automatic protection</u> (<1 second): auto. generator control (AGC) methods to protect equipment, prevent service interruptions.
 – TSO
- <u>Dispatch</u> (1-10 minutes): MIN fuel cost, s.t. voltage, frequency constraints
 - TSO or GENCOs

Operations Planning:

- <u>Unit commitment</u> (8-168 hours). Which generators to be on line to MIN cost, s.t. "operating reserve" constraints
 - TSO or GENCOs
- <u>Maintenance & production scheduling</u> (1-5 yrs): fuel deliveries, maintenance outages
 <u>GENCOs</u>

Company Decisions Made Using Process Models, Continued

Investment Planning

- <u>Demand-side planning</u> (3-15 yrs): Modify consumer demands to lower costs

 consumers, ESCOs, DISCOs
- Transmission & distribution planning (5-15 yrs): add circuits to maintain reliability and minimize cost – TSO, DISCOs
- <u>Resource planning</u> (10 40 yrs): most profitable mix of supplies, D-S programs under projected prices, demands, fuel prices

 GENCOs

Company Decisions Made Using Process Models, Continued

Pricing Decisions

- <u>Bidding</u> (1 day 5 yrs): optimize offers to provide power to MAX profit, s.t. fuel & power price risks – GENCOs
- <u>Market clearing price determination</u> (0.5- 168 hours): MAX social surplus/match offers – *TSOs, traders*

• What did John Nash's father do for a living?

IV.A. Operations Model: System Dispatch Linear Program In words:

- Choose level of operation g of each generator to minimize total system cost subject to demand level
- **Decision variable:**
 - g_{it} = megawatt [MW] output of generating unit i
 during period t

• Coefficients:

- CG_{it} = variable operating cost [\$/MWh] for g_{it}
- **H**_t = length of period t [h/yr].
- **CAP**_i = MW capacity of generating unit i.
- **CF**_i = maximum capacity factor [] for unit i
- **D**_t = MW demand to be met in period t

Operations Linear Program (LP)

MIN Variable Cost = $\Sigma_{i,t}$ H_t CG_{it} g_{it}

subject to:

$\Sigma_{i} g_{it} = D_{t}$	∀t
g _{it} ≤CAP _i	∀i,t
$\Sigma_{\rm t} \mathbf{H}_{\rm t} \boldsymbol{g}_{it} \leq \mathbf{CF}_{\rm i} 8760 \mathbf{CAP}_{\rm i}$	∀i
$g_{it} \ge 0$	∀i,t

Operations LP Answer: Model Formulation

 $\begin{array}{l} \text{MIN} \quad 760(70 \ g_{A,Pk} + 25 \ g_{B,Pk}) \\ + \ 8000(70 \ g_{A,OP} + 25 \ g_{B,OP}) \\ \text{subject to:} \\ \text{Meet load:} \\ g_{A,Pk} + \ g_{B,Pk} = 2200 \\ g_{A,OP} + \ g_{B,OP} = 1300 \\ \text{Generation} \leq capacity: \\ g_{A,Pk} \leq 800; \ g_{A,OP} \leq 800 \\ g_{B,Pk} \leq 1500; \ g_{B,OP} \leq 1500 \\ \text{Nonnegativity:} \ g_{A,Pk}, \ g_{A,OP}, \ g_{B,Pk}, \ g_{B,OP} \geq 0 \end{array}$

Operations LP Answer: Model Formulation with Hydro

IV.B. Towards a Smart Grid: Price
Responsive Demand in an Operations LPMAXNet Benefits from Market =
 $\Sigma_t H_t \int_0^{d_t} P_t(x) dx - \Sigma_{i,t} H_t CG_{it} g_{it}$ subject to: $\Sigma_i g_{it} - d_t = 0 \quad \forall t$
 $g_{it} \leq CAP_i \quad \forall i, t$
 $\Sigma_t H_t g_{it} \leq CF_i 8760 CAP_i \quad \forall i$

Define:

 $g_{it} \geq 0$

- $u_{it} = 1$ if unit i is committed in t (0 o.w.)
- CU_i = fixed running cost of i if committed
- MR_i = "must run" (minimum MW) if committed

∀i.t

- Periods t =1,...,T are consecutive, and H_t=1
- RR_i = Max allowed hourly change in output
- $\begin{array}{lll} & \mathsf{MIN} \quad \Sigma_{i,t} \ \mathsf{CG}_{it} \ g_{it} \ + \Sigma_{i,t} \ \mathsf{CU}_{i} \ u_{it} \\ & \mathsf{s.t.} \ \Sigma_{i} \ g_{it} \ = \mathsf{D}_{t} & \forall t \\ & \mathsf{MR}_{i} \ u_{it} \ \leq g_{it} \ \leq \mathsf{CAP}_{i} \ u_{it} & \forall i,t \\ & -\mathsf{RR}_{i} < (g_{it} \ g_{i,t} \) < \mathsf{RR}_{i} & \forall i,t \end{array}$

$$\sum_{t} g_{it} \leq CF_{i} T X_{i} \qquad \forall i$$

$$g_{it} > 0 \quad \forall i,t; u_{it} \in \{0,1\} \qquad \forall i,t$$

Implications of Laws

- Use laws to calculate flows
 - If you know generation and load at every "bus" except the "swing bus", then ...
 - ...The "load flow" (currents in each line, voltages at each bus) is uniquely determined by Kirchhoff's two laws!
 - = The "load flow" problem
- Some odd byproducts of laws:
 - Can't "route" flow: "Unvalved network"
 - Power follows many paths: "Parallel flows"
 - Power from different sources intermingled. What you do affects everyone else:
 - 1 sells to 2 -- but this transaction congests 3's lines, increasing 3's costs
 - One line owner can restrict capacity & affect entire system
 - Adding a line can worsen transmission capacity of system

AC Load Flow is More Complex

- Sinusoidal voltage at each bus (with RMS amplitude and phase angle), as are line currents
- "Reactive" (vs. "real" power) a result of "reactance" (capacitance and inductance)
 - power stored and released in magnetic fields of capacitors and inductors as the current changes direction
- Although reactive power doesn't do useful work, it causes resistance losses & uses up capacity

"DC" Linearization of AC load flow

Assumptions

- Assume reactance >> resistance
- Voltage amplitude same at all buses
- Changes in voltage angles $\theta_A \theta_B$ from one end of a line to another are small

Results:

- Power flow *t*_{AB} proportional to:
 - current I_{AB}
 - difference in voltage angle θ_A - θ_B
- Linear analogies to Kirchhoff's Laws:
 - Current law at A: $\Sigma_i g_{iA} = \Sigma_{neighboring n} t_{An} + LOAD_A$
 - Voltage law: $t_{AB} * R_{AB} + t_{BC} * R_{BC} + t_{CA} * R_{CA} = 0$
- Given power injections at each bus, flows are unique

 $PTDF_{mn,jk}$ = the MW flowing from *j* to *k*, if 1 MW is injected at *m* and 1 MW is removed at *n*

E.g., $PTDF_{AC,AB} = 0.33 (= -PTDF_{CA,AB})$

Principle of Superposition

Exercise in Transmission Modeling

Assumptions Equal reactances Line from B to C: 100 MW limit

- Two plants:
 A: MC = 20 \$/MWh
 B: MC = 70 \$/MWh
- Load:
 - A: 400 MW B: 500 MW

What's the optimal dispatch?

- What are the prices?
 - Dual variables (Lagrange multipliers) at each node

Linearized Transmission Constraints in Operations LP

 g_{int} = MW from plant i, at node n, during t z_{nt} = Net MW injection at node n, during t

MINVariable Cost = $\Sigma_n \Sigma_{i,t} H_t CG_{int} g_{int}$ subject to:Net Injection: $\Sigma_i g_{int} - D_{tn} = z_{nt}$ $\forall t, n$ Hub Balance: $\Sigma_n z_{nt} = 0$ $\forall t$ GenCap: $g_{int} \leq CAP_{in}$ $\forall i, n, t$ Transmission: $T_{k-} \leq [\Sigma_n PTDF_{nk} z_{nt}] \leq T_{k+}$ $\forall k, t$ $g_{int} \geq 0$ $\forall i, n, t$

Linearized Transmission Constraints in Operations LP: Example

MIN Variable Cost = $20g_A + 70g_B$

subject to:

Net Injection: g

 $g_A - 400 = z_A$ $g_B - 500 = z_B$ Hub balance:

Transmiss'n C \rightarrow B: -100 \leq [0.33 z_A + 0.0 z_B] \leq +100

 $z_{A} + z_{B} = 0$

Nonnegativity: $g_A, g_B \ge 0$

Note: In calculating PTDFs, I assume that all injections "sink" at node B (= "Hub")

• E.g., injection z_A at A is assumed to be accompanied by an equal withdrawal $-z_A$ at B

Exercise in Transmission Modeling: Answer

Optimal Dispatch

Two plants: A: Meet load at A (400 MW) plus maximum amount that transmission limit allows (100 MW/PTDF = 100/.33 = 300 MW)

= 700 MW

B: Serve the load at B not served by A (= 500 MW-300 MW) = 200 MW

Total cost = \$28,000/hr

IV.E Investment Analysis: LP Snap Shot Analysis

- Let generation capacity *cap_i* now be a <u>variable</u>, with:
 - (annualized) cost CRF [1/yr] CCAP_i [\$/MW]

Planning LP Exercise

- Two generation types
 - A: Peak:
 - Operating Cost = \$70/MWh
 - Capital Cost = \$70,000 / MW/yr
 - **B: Baseload:**
 - Operating Cost = \$25/MWh
 - Capital Cost = \$120,000 / MW/yr
- Load
 - Peak: 2200 MW, 760 hours/yr
 - Offpeak: 1300 MW, 8000 hours/yr
 - Reserve Margin: 15%
- Assignment:
 - Write down LP
 - What is best solution (by inspection?)

Planning LP Answer: Model Formulation

MIN 760(70 $g_{A,Pk}$ +25 $g_{B,Pk}$)+ 8000(70 $g_{A,OP}$ +25 $g_{B,OP}$) + 70,000 cap_A + 120,000 cap_B

subject to:

Meet load:

 $g_{A,Pk} + g_{B,Pk} = 2200$ $g_{A,OP} + g_{B,OP} = 1300$

Generation \leq capacity:

 $\begin{array}{ll} g_{A,Pk}-cap_A \leq \mathbf{0}; \ g_{A,OP}-cap_A \leq \mathbf{0} \\ g_{B,Pk}-cap_B \leq \mathbf{0}; \ g_{B,OP}-cap_B \leq \mathbf{0} \\ Reserve: & cap_A+cap_B \geq 1.15^*2200 \\ Nonnegativity: & g_{A,Pk}, g_{A,OP}, \ g_{B,Pk}, g_{B,OP} \geq \mathbf{0} \end{array}$

