Benefit-Cost Analysis of Large-Scale Transmission for Renewable Generation: Principles & California Case Study

Keith E. Casey
Market Monitoring Unit, CAISO

Benjamin F. Hobbs
Johns Hopkins University and CAISO Market Surveillance Committee

Dariush Shirmohammadi
Transmission South, CAISO

Frank A. Wolak
Stanford University and CAISO Market Surveillance Committee

Outline of Talk

1. Renewable portfolio standards
2. Solving the Chicken-and-Egg quandary: “Third Category” of Transmission
3. The California TEAM methodology
4. Challenges in B/C analysis of renewables
5. Applications: Sunpath, Tehachapi
1. Renewable Portfolio Standards

Status of State Programs

➢ 33% in California by 2020
➢ National portfolio (15% by 2020) part of 2007 Energy Act?
 • Not in June 2007 Senate bill

CA Renewable Resource Locations

Source: California Energy Commission
2. Quandary: Which comes first? The transmission or the wind generation?

- FERC policy until 2007: The ISO has two types of transmission
 - Generation interties—paid for upfront by the generator
 - Network facilities—paid for by the ratepayer

- Problem with previous FERC policy
 - Gen-ties too costly for small renewables:
 - Most efficient scale of transmission >> size of individual wind developments
 - Classic infrastructure market failure
 - Not a network facility
Addressing the Market Failure

Merchant Transmission?
- Earn $ from:
 - contracts with wind generators
 - granted CRRs
- No proposals due to risks of $billion investment

State transmission development agencies?
- Texas “Competitive Renewable Energy Zones” (CREZ)
- NM “Renewable Energy Transmission Authority”
- Not in California

Federal Western “Energy Corridors” (EPAct 2005)?
- Might facilitate proposals that cross federal land

CAISO: “Third Category” of Transmission for dispersed generation
- Proposed to FERC 1/07 as general principle
- PTO (Participating Transmission Organization) puts $ up front
 - As development proceeds, generators pay pro rata share
 - Ratepayers bear “stranded asset” risk
- Safeguards:
 - Proposal subject to ISO review (“TEAM methodology”)
 - Showing needed (25-30% of capacity subscribed; another 25-35% reasonably expected)
 - Cap on amount that ratepayers pay for such facilities (15% of total high-voltage plant)
- FERC Declaratory Order 4/19/07
 - “Proposal is not unduly preferential or discriminatory and would be just and reasonable”

Issues with third category
- Favoring large concentrated development: Eggs in one basket
- Implicit subsidy claimed to discriminate against local renewables
California “Third Category” Proposals:
230kV/500kV Additions

Tehachapi Transmission Project

- Southern California Edison Company, $1.8B
- ISO Board approved 1/24/07
- Goals:
 - Link Tehachapi Wind Resource Area (4350 MW)
 - Provide reliability services to Antelope Valley

Sunrise 150 mile 500kV/230kV project

- SDG&E, $1.3B
- ISO Board approved 8/3/06
- Goals:
 - Meet reliability and economic needs of San Diego area
 - Integrate 2400 MW of renewable resources in Salton Sea, Imperial Valley

3. California ISO Transmission Economic Assessment Methodology (TEAM)

- In a market environment, economic benefits include:
 - Savings in resource operation & construction costs
 - Efficiency gains due to market power mitigation
 - Improve supplier access to markets
 ⇒ lower bid markups
 - Less incentive for strategic withholding of inexpensive generation (replaced by higher cost imports/competitive generation)
 - Transmission-DSM-Generation substitution

- TEAM attempts to calculate these benefits
Plan-- But Consider Market Response!

- A “multilevel” (Stackelberg) game:
 - **Upper level**: planners (& regulator, stakeholders), who anticipate reactions of …
 - **Lower level**: market response of consumers, generators

- **Commodities to consider**:
 - **Energy**: Δ dispatch, bidding behavior (market power)
 - **Gen capacity**: resource adequacy mechanisms
 - **Ancillary services**: consider needs of intermittents
 - **Renewable portfolio credits**: not yet implemented in California
 - **Emissions allowances**: RECLAIM, CO₂

TEAM Principles

1. **Benefits framework**: Multiple perspectives
 - Consumers; Generators; Grid operators; Societal
 - No one perspective is “right”
 - Exclude reliability benefits (hard to monetize)

2. **Full network representation** (linearized DC)

3. **Market-based pricing**
 - Recognize how upgrade might mitigate market power

4. **Recognize uncertainty**
 - Transmission as insurance against extreme events
 - Different parties have different probabilities

5. **Resource (supply/DSM) substitution**
 - Simulate market response to changed prices
 - Account for savings in all resource costs
The increase in social surplus as a result of the upgrade:

\[TS = \Delta CS + \Delta PS + \Delta TR \]

Where,
- TS = Total Societal
- CS = Consumer Surplus
- PS = Producer Surplus
- TR = Transmission Rental

= The difference in total system cost before and after upgrade

- If zero price elasticity

4. Challenges in B/C Analysis of Renewables Transmission

a. How should joint costs and benefits of renewable development be treated?

b. What is the appropriate “counterfactual” concerning the transmission and generation system?

c. What is the appropriate “counterfactual” concerning state and federal policy?
a. Treatment of Joint Costs and Benefits

- Can benefits of transmission to new renewables be considered separately from the benefits of the generation?

- Basic principle: All alternatives in B/C analysis should be feasible
 - Physically
 - Legally

- If generation could not be sited there without transmission, & transmission would have no benefits without the generation, then all benefits are joint
 - Must consider benefits together

b. “Counterfactual” concerning the G&T system?

- In the absence of the transmission project, what would be the configuration of the G&T?
 - Would renewable resources still be sited at the same location but “bottled up” more frequently?
 - Or would they have been sited elsewhere or even not developed at all?

- The answers to these questions significantly affect the scope of the market and environmental analysis

- Remember the basic principle: All alternatives in B/C analysis should be feasible
c. “Counterfactual” concerning state & federal policy?

- Basic principle: assume that economic benefits are to be maximized subject to state policy constraints, such as renewable standards.
 - Otherwise: you're assessing the net benefits of these standards.
 - Without externalities, would be negative (otherwise, why is RPS necessary)?
 - Should ISO value CO2 & pollution reductions, ...?

- How about policies that don't yet exist, but are possible/likely?
 - E.g., CO2 trading in California
 - ...and states that export power to California?

5. Examples

Sunrise Powerlink Project

One of many alternative routes considered
Categories of Sunrise Benefits:
The Cost of Meeting Constraints

- Lower cost of meeting energy constraint
 - Lower energy payments by CAISO customers
- Lower cost of meeting reliability constraint
 - Avoided CT costs and RMR payments
- Lower cost of meeting renewables constraint
 - Assumes that renewables are paid full cost, as premium above LMP

Summary of Sunrise Benefits & Costs (One Variant)

Table 6: Levelized costs and benefits by alternative assuming Supplemental Non-Local Capacity Purchases, the $27/kW-year RA price floor, Exclusion of Non-TAC paying utilities, and Revised Local Capacity Requirements

<table>
<thead>
<tr>
<th>Energy and Reliability Costs</th>
<th>A Costs</th>
<th>B Costs</th>
<th>C Costs</th>
<th>D Costs</th>
<th>E Net Benefits</th>
<th>F Net Benefits</th>
<th>G Net Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease Case</td>
<td>Sunrise</td>
<td>South Bay</td>
<td>LEAPS</td>
<td>Sunrise</td>
<td>South Bay</td>
<td>LEAPS</td>
<td>Sunrise</td>
</tr>
<tr>
<td>Customer Payments from Gridview</td>
<td>10,700</td>
<td>10,029</td>
<td>10,097</td>
<td>10,708</td>
<td>121</td>
<td>53</td>
<td>42</td>
</tr>
<tr>
<td>Less CAISO congestion cost (reduces TAC)</td>
<td>(124)</td>
<td>(89)</td>
<td>(102)</td>
<td>(110)</td>
<td>(36)</td>
<td>(21)</td>
<td>(13)</td>
</tr>
<tr>
<td>Less IOU excess loss payments</td>
<td>(809)</td>
<td>(793)</td>
<td>(803)</td>
<td>(800)</td>
<td>(18)</td>
<td>(9)</td>
<td>(9)</td>
</tr>
<tr>
<td>Subtotal Energy Cost and Benefit</td>
<td>10,676</td>
<td>10,035</td>
<td>10,060</td>
<td>10,666</td>
<td>35</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>RMR Capacity Payments - Levelized</td>
<td>00</td>
<td>58</td>
<td>120</td>
<td>79</td>
<td>32</td>
<td>(30)</td>
<td>11</td>
</tr>
<tr>
<td>RMR Operating Payments - Levelized</td>
<td>60</td>
<td>42</td>
<td>60</td>
<td>55</td>
<td>18</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>CT Capacity Costs - Levelized</td>
<td>93</td>
<td>26</td>
<td>48</td>
<td>52</td>
<td>67</td>
<td>45</td>
<td>41</td>
</tr>
<tr>
<td>Transmission cost for new CTs-Levelized</td>
<td>33</td>
<td>9</td>
<td>17</td>
<td>18</td>
<td>24</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Remediation cost to provide reactive support</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RA Costs to replace CTs and RMR contracts</td>
<td>-</td>
<td>26</td>
<td>-</td>
<td>(8)</td>
<td>(26)</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Subtotal Reliability Cost and Benefit</td>
<td>276</td>
<td>162</td>
<td>245</td>
<td>196</td>
<td>114</td>
<td>31</td>
<td>81</td>
</tr>
<tr>
<td>Total Energy and Reliability Benefits</td>
<td>13,942</td>
<td>11,657</td>
<td>12,315</td>
<td>12,262</td>
<td>150</td>
<td>32</td>
<td>91</td>
</tr>
<tr>
<td>RPS Procurement Cost</td>
<td>4,272</td>
<td>4,272</td>
<td>4,272</td>
<td>4,272</td>
<td>45</td>
<td>-</td>
<td>45</td>
</tr>
<tr>
<td>Total Benefits</td>
<td>15,214</td>
<td>15,929</td>
<td>16,587</td>
<td>16,537</td>
<td>195</td>
<td>32</td>
<td>136</td>
</tr>
<tr>
<td>Transmission Cost</td>
<td>14,818</td>
<td>14,580</td>
<td>14,506</td>
<td>14,688</td>
<td>38</td>
<td>22</td>
<td>70</td>
</tr>
</tbody>
</table>

Source: CAISO June 15, 2007 testimony
Possible “counterfactual” framing: Tehachapi developed without transmission
- Renewables bottled up, won’t meet RPS
- Higher CO₂ emissions
- Higher energy costs in west

Actual framing: Cost-effectiveness of transmission alternatives to link 4350 MW of Tehachapi wind
- Assumes: Wind so cheap that it will be developed
- Avoids need to consider any other benefits (although there might be others)

Conclusion

Several possible solutions to Chicken-Egg quandary
- California: “Third Category”
- But carefully assess energy, capacity, RPS, and other benefits to be confident that proposal is the most beneficial

Questions?