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Most previous Nash-Cournot models of competition among electricity generators have assumed smooth demand (price)
functions, facilitating computation and proofs of existence and uniqueness. However, nonsmooth demand functions are
an important feature of real power markets due, for example, to price caps and generator recognition of transmission
constraints that limit exports. A more general model of Nash-Cournot competition on networks is proposed that accounts
for these features by including (1) concave piecewise-linear demand curves and (2) joint constraints that include variables
from other generating companies within the profit maximization problems for individual generators. The piecewise demand
curves imply, in general, a nonmonotone multivalued variational inequality problem. Thus, for instance, imposition of a
price cap can destroy the uniqueness properties found in previous models, so that distinct solutions can yield different sets
of profits for market participants. The joint constraints turn the equilibrium problem into a quasi-variational inequality,
which also can yield multiple solutions. The formulation poses computational challenges that can cause Lemke’s algorithm
to fail; a restricted formulation is proposed that can be solved by that algorithm.
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1. Introduction
One of the major areas of application of complementarity-
based models of economic equilibria is electric power mar-
kets; see, e.g., Amundsen et al. (2001), Bushnell (2003),
Daxhalet and Smeers (2001), Day et al. (2002), Hobbs
(2001), Hobbs and Helman (2004), Hobbs and Pang (2004),
Rivier et al. (2001), Wei and Smeers (1999), and Yao et al.
(2005). One reason is that this is an economically cru-
cial industry that has been undergoing a transition from
tight regulation to competition subject to loose regula-
tory constraints. Furthermore, this transition has on occa-
sion resulted in spectacular failures, such as the California
2000–2001 crisis. Another reason is that technology and
cost information is widely available for the power indus-
try, which facilitates modeling, while at the same time
the unique characteristics of electricity transmission, such
as Kirchhoff’s laws, present intriguing challenges to the
modeler.
However, there are important features of power markets

that such models have omitted. One is price caps, which
exist in all U.S. markets. For instance, the U.S. Federal
Energy Regulatory Commission imposed a $250/megawatt-
hour (MWh) cap on market prices in the western United

States in response to the California crisis. Such caps
mean that the demand (price) functions faced by sellers
of power have a horizontal segment (Figure 1), and that
the linear or otherwise smooth demand functions assumed
by most complementarity-based models are inappropri-
ate, unless prices never approach the caps. In general,
demand functions might not be smooth, but most exist-
ing complementarity-based models have not accommodated
such functions. An exception is Yao et al. (2005), where the
authors are able to solve a price-capped market model that
makes two restrictive assumptions, thereby avoiding the
difficulties we encounter below of multiple equilibria and
the potential failure of Lemke’s algorithm. These assump-
tions are that only one firm owns generation capacity at
each network node, and that a generator at a node does not
consider how changes in its output might affect prices else-
where in the network. These assumptions mean that other
firms’ decision variables do not appear in each firm’s profit
maximization problem. In this paper, we do not impose
such restrictive assumptions; thus, our treatment is much
broader and more realistic.
Another important feature omitted in most complemen-

tarity-based models is the possibility that an electricity pro-
ducer can recognize joint constraints that involve its primal
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Figure 1. A price function with cap.
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decision variables along with primal variables controlled by
other generators. For instance, regulators might impose an
upper bound on the market share of the few largest pro-
ducers in some markets, or on the proportion of transmis-
sion capacity that is sold to such producers, as is the case
for transmission capacity into the Netherlands. Perhaps the
most important example would be a recognition by a gen-
erator that its sales and generation are limited by available
transmission capacity, less that capacity which is already
taken up by sales and generation by other producers. For
instance, consider Figure 2(a), where there are two genera-
tion companies A and B at node 1, and consumers having
an affine demand function at node 2. Sales by company f
to node 2 are designated sf 2, and the total amount sold
to node 2 equals S2. A transmission line with capacity T
links the two nodes and constrains sales so that S2 � T . If
T is smaller than the quantity intercept Q20 of the demand
curve, then the effective demand curve facing the two pro-
ducers is piecewise linear, as shown in Figure 2(b), with an
upper bound equal to the total quantity sold. More complex
sets of constraints on sales and generation result from more
elaborate network topologies.
As Oren (1997) and Stoft (1999) have shown, if Cournot

producers explicitly include such transmission limits in
their constraint sets, the resulting equilibrium problem is

Figure 2. A demand function with transmission cap.
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a quasi-variational inequality with possibly multiple solu-
tions. For instance, producer A might use up all the capac-
ity, leaving none for B, while another equilibrium might
be an equal splitting of that capacity. Wei and Smeers
(1999) point out that the problem of multiple equilibria
can be eliminated by assuming that the joint constraints
are instead incorporated in the producers’ objective func-
tion using Lagrangian multipliers (prices), and that the
prices, and thus marginal valuations of the constraint, are
the same for all producers. This result is exploited in most
complementarity-based models of transmission-constrained
Cournot competition, but it has the conceptual drawback of
being equivalent to assuming that producers are naïve price
takers with respect to transmission (Bertrand assumption),
believing that they cannot affect the price of transmission
by their actions. (This approach has computational advan-
tages, however, as pointed out in §4.1.)
A more realistic, but computationally challenging method

for including transmission limits in producer models is to
embed the first-order conditions for a transmission sys-
tem operator who sets prices for its constraints to clear
the market for transmission services (Cardell et al. 1997,
Ehrenmann 2004, Hu et al. 2004). These conditions are
described in §3.1. The producers then anticipate how their
outputs and sales and those by other producers affect the
amount of transmission capacity that is utilized and the
resulting transmission prices. The resulting formulation of
the producer’s profit maximization problem is a mathemat-
ical program with equilibrium constraints (MPEC), and the
calculation of an equilibrium among such MPECs is an
equilibrium problem with equilibrium constraints (EPEC)
(Daxhalet and Smeers 2001). In general, solutions might
not exist for this EPEC, or there might be multiple solutions
(Daxhalet and Smeers 2001, Hobbs and Helman 2004);
most importantly, the state of the art for computing a solu-
tion to an EPEC is in its infancy at best. This is an impor-
tant topic that requires further research.
In this paper, we generalize complementarity-based mod-

els of Nash-Cournot oligopolistic electric power markets to
include concave demand functions that are piecewise linear.
Price-cap-constrained demand functions are a special case
of such functions. These models also include linear joint
constraints within generator profit maximization problems.
The resulting generalization is a significant departure from
the models studied previously in Metzler et al. (2003),
Hobbs and Pang (2004), and Pang et al. (2003), where
the price functions are linear. The new model features are
computationally challenging; for one thing, they imme-
diately invalidate the solution methods employed for the
previous models, which rely on a straightforward varia-
tional inequality/complementarity formulation that needs to
be extended to accommodate the nondifferentiable objec-
tive functions in the firms’ profit-maximization problems.
In this paper, we begin with a multivalued complementar-
ity formulation of the equilibrium problem, from which an
equivalent single-valued linear complementarity problem
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(LCP) formulation is derived. We then provide examples
to illustrate some special features of both complementarity
formulations and propose a restricted formulation that can
be successfully solved by the well-known Lemke algorithm
(Cottle et al. 1992, Lemke 1965).
The class of piecewise linear price functions provides an

effective modeling device to handle price caps. The intro-
duction of joint constraints effectively turns the equilibrium
problem into a quasi-variational inequality (QVI) (Harker
1991, Pang and Fukushima 2005), as opposed to a familiar
variational inequality (Facchinei and Pang 2003), which is
the common framework for a vanilla Nash-Cournot model.
The “quasi-ness” of this variational problem is a feature
that requires special attention; the restricted LCP developed
in §4.1 is a targeted proposal to deal with such a QVI.
We begin our technical discussion with a basic model

of oligopolistic electric power markets with multiple gen-
erators and an independent system operator (ISO), who is
the principal agent for electricity transmission. Although
our previous models have considered additional players in
the markets (such as an allocator of inputs to production
and an arbitrager) and refinements of the basic model (such
as price function conjectures and endogenous arbitrage),
cf. Metzler et al. (2003), Hobbs and Pang (2004), and Pang
et al. (2003), the piecewise feature of the price functions
and the sales caps add two novel dimensions to the model
that have not previously been treated. For this reason, to
simplify the analysis while not sacrificing its generality, we
will treat the basic model exclusively and will discuss its
extensions only minimally.

2. The Firms’ Problems
Each generator firm is labelled by a letter f , which is an
element of the finite set � . The firms’ profits are revenues
less costs; in turn, the revenues are equal to regional sales
times the corresponding nodal prices, and the costs are gen-
eration costs and transmissions fees, the latter paid to the
ISO. The constraints are simple quantity balances between
sales and generation, the latter subject to capacity limits.
Specifically, firm f ’s optimization problem is as follows
(cf. the model in Metzler et al. 2003): with the transmission
fee wi and the rival firms’ sales s−fi ≡ �shi
 h �= f �, taken
as exogenous to this optimization problem and yet endoge-
nous to the overall equilibrium model, firm f computes its
nodal sales sfi and generations gfi for all i ∈ � , which is
the set of nodes in the electricity network, to

maximize
∑
i∈�
sfipi�Si�− cfigfi− �sfi− gfi�wi�

subject to
∑
i∈�
sfi =

∑
i∈�
gfi� and




0� sfi�

0� gfi �CAPfi�

Si ≡
∑
h∈�
shi � �i�




∀ i ∈� �

(1)

Here cfi, CAPfi, and �i are positive model constants, de-
noting unit generation costs, generation capacities, and re-
gional sales caps, respectively. The fee wi is interpreted as
the price paid to move power from an arbitrary hub node
(taken to be one; see below) to node i (�=1); it is a variable
from the point of view of the market, but it is exogenous
to the firm. Instead of the sales cap constraint

�i−
∑
h∈�
shi � 0� (2)

more general constraints of the kind

∑
i∈�
�sji

∑
h∈�
shi+

∑
i∈�
�
g
ji

∑
h∈�
ghi � �j�

where �sji, �
g
ji, and �j are constant coefficients, with the

index j suggesting the possibility of several of these con-
straints, that involve all firms’ sales and generation can be
treated. For simplicity, we focus on (2).
The above model of the generation firms’ decision mak-

ing is based on a bilateral market model in which gener-
ators contract with consumers to deliver electricity, with
generators paying the cost of transmission from the point
of generation to the point of consumption. Generators then
provide a schedule of injections and withdrawals to the
ISO, who charges the generator for the use of the grid.
The ISO may in addition operate a spot market in which
generators can unilaterally sell power and consumers can
unilaterally buy power at spot prices that are defined on
a nodal basis. This mix of bilateral and spot markets is
the model endorsed by the U.S. Federal Energy Regula-
tory Commission and followed by most U.S. ISOs in oper-
ating day-ahead markets. In fact, the bulk of transactions
take place on a bilateral basis, but a significant amount
flows through the spot market. (For simplicity, we model
the market as entirely bilateral, but the incorporation of a
spot market is a straightforward extension, as we explain in
§3.1.) It is not physically possible to unambiguously appor-
tion responsibility for power flows to individual generators
and consumers. However, the metering, accounting, and
settlement systems used by most U.S. ISOs allow financial
responsibility to be assigned to generators in the manner we
model above, while simultaneously ensuring that the phys-
ical flows implied by the transactions are feasible (which
we model in the manner described in §§3.1 and 3.2). An
important characteristic of transmission pricing as practiced
in the United States is that the fee for transferring power
from i to j is the negative of the fee for moving power in
the opposite direction. Furthermore, superposition applies:
the fee from i to j plus the fee from j to k equals the fee
from i to k. These characteristics result from the ISO using
scarcity pricing to determine fees (Schweppe et al. 1988);
as the ISO and market-clearing models in §§3.1 and 3.2
imply, fees are set to clear the market for scarce transmis-
sion capacity. Thus, for instance, if a generator schedules
a power flow from i to j that would worsen congestion on
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a binding transmission constraint, then the generator pays
the opportunity cost of that constraint. In contrast, a flow
from j to i would relieve that congestion, and therefore a
generator scheduling such a flow receives a payment equal
to that opportunity cost. These characteristics allow us to
express the transmission fees paid by the generator in the
manner shown in the objective function of (1). The first
characteristic means that power flowing from a generator
to the hub node is paid wi because wi is the fee for flow
in the opposite direction. The second characteristic (super-
position) means that sales from a generator node to a con-
suming node can be modelled as being routed through an
arbitrary hub node.
Defined on the entire real line, the price function pi�Si�

is postulated to be a concave, strictly decreasing, piece-
wise linear function of the regional sales Si. More general
assumptions could be made in which demand functions
at different i are interdependent, e.g., because of zonally
averaged pricing as is presently proposed in the California
market redesign. However, we assume zero cross-price
elasticities across space and time. Specifically, letting �i1 <
�i2 < · · · < �im be the breakpoints of the function pi�Si�,
we write the price function as follows:

pi���≡




Pi0−�i0� if −
< � � �i1�
pi��ij�−�ij�� −�ij�
if �ij � � � �ij+1� 1� j �m− 1�

pi��im�−�im�� −�im� if �im � � <
�

(3)

where �im > · · · > �i0 � 0 are the negatives of the slopes
of pi��� in the respective intervals of linearity. Because
pi��� is postulated to be a concave function defined on
the whole real line, it follows that pi��� is continuous; the
above representation confirms this continuity. Furthermore,
because the regional sales Si is restricted to be nonnegative,
we may assume without loss of generality that the first
breakpoint �i1 is a positive scalar and that the function
pi��� for � < 0 extends linearly (to the left) from � = 0.
Note that a function of the form

pi�Si�=min
(
PCAPi � Pi0−

Pi0
Qi0
Si

)

(where PCAPi is a positive constant), which models price
caps, is trivially a piecewise linear function. In contrast, the
explicit sales cap Si � �i or its generalization can be used
to represent transmission limits into a region.
It is easy to write the subgradients !pi��� of the concave

function pi��� for � � 0:

pi���=



�−�i0� if � = �i0�
�−�ij� if � ∈ ��ij ��ij+1��
−�ij+1�−�ij � if � = �ij+1�

(4)

where we have let �i0 = 0 and �im+1 =
. The next lemma
shows that firm f ’s nodal revenue function sfi �→ sfipi�sfi+
S−fi�, where S−fi ≡

∑
f �=h∈� shi, is concave in sfi for fixed

S−fi; the lemma also gives a natural expression for the sub-
gradients of this function.

Lemma 1. If p��� is a nonincreasing concave function on
�, then, for any constant c, the function r���≡ �p��+c� is
concave for � � 0; moreover, !r���= p�� + c�+ �!p�� +
c� for all � � 0.

Proof. For # ∈ 0�1�, we have, for any nonnegative �
and � ′,

r�#� + �1− #�� ′�− #r���− �1− #�r�� ′�
= #� + �1− #�� ′�p�#�� + c�+ �1− #��� ′ + c��

− #�p�� + c�− �1− #�� ′p�� ′ + c�
� #� + �1− #�� ′�#p�� + c�+ �1− #�p�� ′ + c��

− #�p�� + c�− �1− #�� ′p�� ′ + c�
=−#�1− #��� − � ′��p�� + c�−p�� ′ + c��� 0�

where the last inequality follows from the nonincreasing
property of p. To prove the subgradient formula of !p���,
we note that, for any nonnegative � and � ′ and any a ∈
!p�� ′ + c�,

�p�� + c�− � ′p�� ′ + c�
= �� − � ′�p�� ′ + c�+ �� − � ′��p�� + c�−p�� ′ + c��

+ � ′�p�� + c�−p�� ′ + c��
� �� − � ′��p�� ′ + c�+ a� ′��

where the last inequality holds by the definition of a and
because p is nonincreasing. Hence, p�� ′ + c�+ � ′!p�� ′ +
c� ⊆ !r�� ′�. The reverse inclusion follows from the well-
known product rule of subdifferentials of convex functions
(Clarke 1983, Proposition 2.3.13). (It is easy to show that
the function r is actually Fréchet differentiable at � = 0
with the derivative r ′�0�= p�c�.) �

2.1. Nonmonotone Multivalued QVI Formulation

With s−fi and wi fixed, (1) is a concave maximization prob-
lem; as such, its first-order conditions are both necessary
and sufficient for optimality. Because the objective function
is nondifferentiable, these conditions can be stated in terms
of a multivalued variational inequality (VI). Specifically, let

Xf �s
−f �≡ ��sf � gf � satisfies the constraints in (1)�

be the feasible set of (1) that depends on rival firms’ sales
S−fi, where the dependence is due to the sales cap con-
straint (2). It follows that �sf � gf � is optimal for (1) if and
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only if �sf � gf � ∈ Xf �s−f � and there exist bfi ∈ !pi�Si� for
all i ∈� such that

∑
i∈�
�ŝfi− sfi��−pi�Si�− sfibfi+w∗

i �

+ �cfi−w∗
i ��ĝfi− gfi��� 0

for all �ŝf � ĝf � ∈Xf �s−f �. The complexity of this problem
is due not only to the fact that the set Xf �s

−f � depends
on the rival firms’ sales (therefore resulting in a quasi-
variational inequality), but also to the fact that the set-
valued map ' from ��� �� � into closed-convex subsets of
��� �� � defined by

'�s�≡ �−pi�Si�− sfi!pi�Si���f � i�∈�×�

for s = �sfi��f � i�∈�×�

is not monotone, as illustrated by the example below. Recall
that ' is monotone on ��� �� �

+ if and only if �s̃ − ŝ�T �ũ−
û�� 0 for all s̃, ŝ � 0 and ũ ∈'�s̃� and û ∈'�û�.
Example 1. Let � = �1� and � = �1�2�, and consider the
piecewise linear function: for a constant c ∈ �0�1�,

p�S�≡
{
1+ c− cS if S � 1�

1− c−1�S− 1� if S � 1�

We have

!p�S�≡



�−c� if S < 1�

−1/c�−c� if S = 1�
�−1/c� if S > 1�

Hence,

'�s1� s2�=




{(−1− c+ c�2s1+ s2�
−1− c+ c�s1+ 2s2�

)}
if s1+ s2 < 1�

�−1− s1−1/c�−c��× �−1− s2−1/c�−c��
if s1+ s2 = 1�{(−1− c−1+ c−1�2s1+ s2�

−1− c−1+ c−1�s1+ 2s2�

)}

if s1+ s2 > 1�

Consider the two pairs of vectors �s̃1� s̃2�≡ �0�45�0�55� and
�ŝ1� ŝ2�≡ �0�55�0�45�. We then have

'�s̃1�s̃2�=�−1−0�45−1/c�−c��×�−1−0�55−1/c�−c��
and

'�ŝ1� ŝ2�= �−1− 0�55−1/c�−c��
×�−1− 0�45−1/c�−c���

Choose �ũ1� ũ2� = �0�45/c�0�55c� and �û1� û2� = �0�55c�
0�45/c�. We then have(
s̃1− s̃2
ŝ1− ŝ2

)T (
ũ1− ũ2
û2− û2

)
=−0�1�0�45/c− 0�55c� < 0

for 0< c <
√
0�45/0�55, establishing that ' is not mono-

tone.

The nonmonotonicity of ' means that the extensive the-
ory and methods for monotone multivalued VIs, as champi-
oned by the work of Auslender and Teboulle (see Chapter 12
in Facchinei and Pang 2003), are not applicable to our equi-
librium problem on hand. Instead, we develop a restricted,
single-valued, linear complementarity formulation for this
problem and establish its solution by Lemke’s method (Cot-
tle et al. 1992, Lemke 1965). Another implication of the
lack of monotonicity is that uniqueness of a solution to
the equilibrium problem is no longer ensured; in fact, the
numerical example given above can easily be turned into
one where both vectors s̃ and ŝ are solutions. See also
Example 2 below and the numerical example in §5, where
multiple equilibria exist.

2.2. Complementarity Formulation of Piecewise
Quadratic Revenue

The key to the single-valued formulation of the overall
equilibrium problem is to cast the piecewise linearity of the
price functions in terms of certain complementarity condi-
tions. For this purpose, we let

rfi�sfi� S−fi�≡ sfipi�sfi+ S−fi�
be firm f ’s sales revenue, which is a piecewise quadratic
function of the firm’s variables sfi. The key to the refor-
mulation lies in the expression of the elements of the sub-
differential !sfi rfi�sfi� S−fi�, which are the marginal sales
revenues, in terms of some special complementarity rela-
tions. Let

�′
ij ≡ �ij −�ij−1 ∀ j = 1� � � � �m+ 1
be the lengths of the respective intervals of linearity of
pi��� for � � 0. Let �

′
i0 ≡ �i0 and define inductively,

�′
ij ≡ �ij −�ij−1 ∀ j = 1� � � � �m�
Clearly, �ij =

∑j
k=0 �

′
ik. We have the following result,

whose proof consists essentially of verifying the identified
complementarity description of the subdifferential !pi�Si�
in (4).

Proposition 1. For nonnegative sfi and Si, a scalar a
belongs to !sfi rfi�sfi� S−fi� if and only if there exist scalars
��fi1� � � � � �fim� and �vfi1� � � � � vfim� such that

a=Pi0−�i0
(
sfi+Si−

m∑
j=1
�fij

)
−

m∑
j=1
�ij−1�fij−

m∑
j=1
�′
ijvfij (5)
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and

0� vfi1 ⊥ �′
i1−

(
Si−

m∑
j=1
�fij

)
� 0�

0� vfij+1 ⊥ �′
ij+1− �fij � 0 ∀ j = 1� � � � �m− 1�

0� �fij ⊥ sfi− vfij + �fij ∀ j = 1� � � � �m�

(6)

Proof. First write

Si =
m∑
j=0
�fij � (7)

where �fij denotes the portion of Si in the interval �ij �
�ij+1� (recall that �i0 = 0 and �im+1 =
), satisfying
0� �fij � �

′
ij+1 ∀ j = 0� � � � �m�

and

��′
ij+1− �fij ��fij+1 = 0 ∀ j = 0� � � � �m− 1�

The subscript f in �fij indicates that this variable is used in
firm f ’s problem to represent segment j of the piecewise
linear demand curve at region i. Note that �fij < �

′
ij+1 ⇒

�fik = 0 for all k > j . In terms of the above representation,
we have

pi�Si�= Pi0−
m∑
j=0
�ij�fij �

From (7), we have

�fi0 ≡ Si−
m∑
j=1
�fij � (8)

Suppose that a ∈ !sfi ri�sfi� s−fi�. Then,

a= pi�Si�+ sfib= Pi0−
m∑
j=0
�ij�fij + sfib

for some b ∈ !pi�Si�. If j ∈ �0�1� � � � �m� is the first index
such that �fij < �

′
ij+1, then defining

vfik




≡ sfi+ �fik for k= 1� � � � � j − 1�
≡ sfi+ �fij for k= j and �fij > 0�
∈ 0� sfi� for k= j and �fij = 0�
≡ 0 for k= j + 1� � � � �m�

we see that the complementarity conditions (6) are imme-
diately satisfied. We verify that (5) also holds. Indeed, if
�fij > 0, then Si ∈ ��ij ��ij+1� and b=−�ij . Hence,

a= Pi0−
m∑
k=0
�ik�fik− sfi�ij

= Pi0−�i0�fi0−
m∑
k=1
�ik�fik−

j∑
k=0
�′
iksfi

= Pi0−�i0
(
sfi+ Si−

m∑
k=1
�fik

)
−

m∑
k=1
�ik�fik

−
j∑
k=1
�′
ik�vfik− �fik�

= Pi0−�i0�sfi+ Si�−
m∑
k=1
��ik−�′

ik−�i0��fik−
m∑
k=1
�′
ikvfik

= Pi0−�i0�sfi+ Si�−
m∑
k=1
��ik−1−�i0��fik−

m∑
k=1
�′
ikvfik�

which is (5). If �fij = 0, then Si = �ij , which yields b =
−�i0 if j = 0 or b ∈ −�ij�−�ij−1� if j > 0. In the former
case, the same derivation as above establishes (5). If j > 0,
write b = −�ij + ��−�ij−1 + �ij� for some � ∈ 0�1�. Let
vfij ≡ �1− ��sfi. Then, vfij ∈ 0� sfi�. Moreover,

a= Pi0−
m∑
k=0
�ik�fik+ sfib

= Pi0−
m∑
k=0
�ik�fik− si�ij + �sfi�′

ij

= Pi0−�i0�fi0−
m∑
k=1
�ik�fik−

j∑
k=0
�′
iksfi+ �sfi− vfij ��′

ij �

At this point, the above proof applies. This completes the
proof of the “only if” part. To prove the converse, suppose
that ��fi1� � � � � �fim� and �vfi1� � � � � vfim� exist, satisfying (5)
and (6). Define �fi0 by (8). We must have �fi0 � 0. Indeed,
if �fi0 < 0, then vfi1 = 0, which then implies �fi1= 0. Hence,
�fik = 0 for all k > 1. Therefore, �fi0 = Si � 0, which is
a contradiction. Consequently, �fi0 � 0, as claimed. Fur-
thermore, we must have �fij+1��ij+1 − �fij �= 0 for all j =
0�1� � � � �m− 1. Indeed, suppose that �fij < �ij+1. We must
have vfij+1 = 0. Hence, 0� �fij+1 ⊥ sfi + �fij+1 � 0, which
implies �fij+1 = 0. From here on, we can reverse the argu-
ment in the proof of the “only if” statement. �

3. Linear Complementarity Formulation
of the Nash Model

Before giving the optimality conditions for firm f ’s opti-
mization problem (1), we first eliminate one of the gen-
eration variables, thereby converting the sales-generation
equality constraint into an inequality. Specifically, using the
equation

gf 1 ≡
∑
i∈�
sfi−

∑
1�=i∈�

gfi� (9)

we can reformulate the optimization problem (1) equiv-
alently as a concave maximization problem in firm f ’s
sales variables �sfi
 i ∈ � � and generation variables �gfi

i ∈ � \�1�� parameterized by rival firms’ sales variables
�s−fi
 i ∈� �:

maximize
∑
i∈�
sfi�pi�Si�− cf 1�− �wi−w1�sfi�

− ∑
1�=i∈�

�cfi− cf 1�− �wi−w1��gfi�

subject to
∑
1�=i∈�

gfi−
∑
i∈�
sfi � 0�
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∑
i∈�
sfi−

∑
1�=i∈�

gfi �CAPf 1�




0� sfi�

Si ≡
∑
h∈�
shi � �i�


 ∀ i ∈� � and

0� gfi �CAPi ∀ i ∈� \�1��

By Proposition 1, it follows that for fixed but arbitrary
s−fi � 0, �gf � sf � is an optimal solution of the above opti-
mization problem if and only if there exist scalars ��fi1� � � � �
�fim� and �vfi1� � � � � vfim� and multipliers +f , ,fi, and -fi
such that

0�sfi⊥cf 1−Pi0+�i0
(
sfi+Si−

m∑
j=1
�fij

)
+

m∑
j=1
�ij−1�fij

+
m∑
j=1
�′
ijvfij+wi−w1−+f +,f 1+-fi�0 ∀i∈� �

0� gfi ⊥ �cfi− cf 1�− �wi−w1�++f −,f 1+,fi � 0
∀ i ∈� \�1��

0� +f ⊥
∑
i∈�
sfi−

∑
1�=i∈�

gfi � 0�

0� ,f 1 ⊥CAPf 1−
∑
i∈�
sfi+

∑
1�=i∈�

gfi � 0�

0� ,fi ⊥CAPfi− gfi � 0 ∀ i ∈� \�1��
0� -fi ⊥ �i− Si � 0 ∀ i ∈� �

0� vfi1 ⊥ �′
i1−

(
Si−

m∑
j=1
�fij

)
� 0 ∀ i ∈� �

0� vfij+1 ⊥ �′
ij+1− �fij � 0 ∀ j = 1� � � � �m− 1� ∀ i ∈� �

0� �fij ⊥ sfi− vfij + �fij � 0 ∀ j = 1� � � � �m� ∀ i ∈� �

3.1. The ISO and Transmission Fees

The ISO sets the transmission fees w to efficiently clear
the market for transmission capacity. Specifically, taking w
as exogenous to his problem, the ISO solves the following
linear program to determine the transmission flows y to

maximize
∑
i∈�
yiwi

subject to
∑
i∈�
PDFikyi � Tk ∀k ∈��

where � is the arc set of the electric power network and
the constants Tk are the transmission capacities on the indi-
vidual arcs, which we assume to be positive. The decision
variables yi represent transfers of power (in MW) by the
system operator from a hub node to node i. The PDFik are
the so-called power transmission distribution factors that
describe how much MW flow occurs through constraint k
as a result of a unit MW injection at an arbitrary hub node
and a unit withdrawal at node i. In the linearized DC power

flow model that is the basis for the above ISO model,
these factors are constant, and the principle of superposi-
tion applies (Schweppe et al. 1988).
The above linear program (LP) has been used several

times in previous models; see, e.g., Hobbs (2001) and
Metzler et al. (2003). Letting /k be the associated dual vari-
ables of the above constraints, we can write the optimality
conditions of the LP:

wi =
∑
k∈�

PDFik/k ∀ i ∈� �

0� /k ⊥ Tk−
∑
i∈�
PDFikyi � 0 ∀k ∈��

These optimality conditions for the ISO of a linearized DC
transmission system without resistance losses were derived
by Hogan (1992) and analyzed by Boucher and Smeers
(2001). A formulation with quadratic losses is presented
by Chen et al. (2006). In effect, the first-order conditions
show that the system operator simply sets prices to clear a
market for each transmission constraint: prices can only be
positive if the constraint is binding, and prices are set high
enough so that the constraints are not violated.
A more general formulation would have the ISO per-

form an arbitrage (spot market clearing) function, as well
as providing transmission services for bilateral transactions
by generators. For instance, if the hub price differs from
the price at another i by an amount different from wi, then
a price-taking arbitrager would find it profitable to buy (or
sell) power at i and resell (or buy) it at the hub. This can be
modelled by inserting unrestricted arbitrage variables in the
ISO’s problem with objective function coefficients equal to
the price difference (Hobbs and Helman 2004), or equiva-
lently, by defining a separate price-taking trading firm that
gains revenue equal to the price difference but pays the
transmission fee (Hobbs 2001, Hobbs and Pang 2004). An
alternative formulation of the ISO’s problem would be to
reallocate power not to maximize arbitrage profits but to
maximize consumer welfare (Yao et al. 2005), which can
yield different decisions if marginal consumer willingness
to pay for power differs from the price function because
of the presence of price caps. Including an arbitrage func-
tion in the ISO’s problem is straight forward. However, that
would complicate the presentation below without chang-
ing the fundamental results concerning the multiplicity of
solutions and difficulties with Lemke’s algorithm.

3.2. The Market-Clearing Conditions

To clear the market, the transmission flows yi must balance
the net sales at each node:

yi =
∑
h∈�
�shi− ghi� ∀ i ∈� �

From (9), we deduce

y1 =
∑
h∈�

∑
1�=i∈�

�ghi− shi��
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Hence,

Tk−
∑
i∈�
PDFikyi = Tk−PDF1ky1−

∑
1�=i∈�

PDFikyi

= Tk−
∑
h∈�

∑
1�=i∈�

�PDFik−PDF1k��shi− ghi�

= Tk−
∑
h∈�

∑
1�=i∈�

PDFik�shi− ghi��

The simplification in the last line results from assuming
that the hub node is node 1, in which case PDF1k becomes
zero. (That is, an injection and withdrawal of power both
occurring at node 1 results in zero incremental flow in the
network.) This convention is adopted throughout the fol-
lowing discussion.

3.3. The Complete LCP Formulation

Putting together the firms’ optimality conditions, the ISO’s
problem, and the market-clearing condition, we obtain the
complete formulation of the market equilibrium problem as
the following LCP:

0� sfi ⊥ cf 1−Pi0+�i0
(
sfi+

∑
h∈�
shi−

m∑
j=1
�fij

)

+
m∑
j=1
�ij−1�fij +

m∑
j=1
�′
ijvfij +

∑
k∈�

PDFik/k−+f

+,f 1+-fi � 0 ∀ �f � i� ∈� ×� �

0� gfi ⊥ �cfi− cf 1�−
∑
k∈�

PDFik/k++f −,f 1+,fi � 0

∀ �f � i� ∈� × �� \�1���
0� +f ⊥ gf 1 ≡

∑
i∈�
sfi−

∑
1�=i∈�

gfi � 0 ∀ f ∈� �

0� /k ⊥ Tk−
∑
h∈�

∑
1�=i∈�

PDFik�shi− ghi�� 0 ∀k ∈��

0� ,f 1 ⊥CAPf 1−
∑
i∈�
sfi+

∑
1�=i∈�

gfi � 0 ∀ f ∈� �

0� ,fi ⊥CAPfi− gfi � 0 ∀ �f � i� ∈� × �� \�1���
0� -fi ⊥ �i−

∑
h∈�
shi � 0 ∀ �f � i� ∈� ×� �

0� vfi1 ⊥ �′
i1−

(
Si−

m∑
j=1
�fij

)
� 0 ∀ �f � i� ∈� ×� �

0� vfij+1 ⊥ �′
ij+1− �fij � 0

∀ j = 1� � � � �m− 1� ∀ �f � i� ∈� ×� �

0� �fij ⊥ sfi− vfij + �fij � 0
∀ j = 1� � � � �m� ∀ �f � i� ∈� ×� �

(10)
The proof of Proposition 1 shows that as long as the last
three conditions hold, we must have

�fi0 ≡ Si−
m∑
j=1
�fij � 0 ∀ �f � i� ∈� ×� � (11)

which recovers Equation (7) that is used to express the
regional sales variable Si.

4. Solution by Lemke’s Method
The system (10) can easily be written compactly as the
LCP:

0� z⊥ y ≡ q+Mz� 0 (12)

for some vector q matrix M whose entries are not difficult
to identify (details are omitted). The variable z concate-
nates several groups of variables: �s� g� the firms’ primal
variables, �+� the special multipliers associated with the
constraints

∑
i∈� sfi−

∑
1�=i∈� gfi � 0, �m� the multipliers of

the ISO’s transmission constraints and those of the firms’
decoupled constraints, �-� the multipliers of the firms’
common constraints, and �a� the auxiliary variables of the
nodal price functions:
�s� �sfi
 �f � i� ∈� ×� �,
�g� �gfi
 �f � i� ∈� × �� \�1���,
�+� �+f 
 f ∈� �,
�m� �/k
 k ∈�� and �,fi
 �f � i� ∈� ×� �,
�-� �-fi
 �f � i� ∈� ×� �,
�a� �vfij � �fij 
 �f � i� ∈� ×� � j = 1� � � � �m�.

Partitioned accordingly, the constant vector q and the
matrix M are of the form

q ≡




qs

qg

0

qm

q-

qa



�

M≡




Mss 0 � Ms+ Msm Ms- Msa

0 0 � Mg+ Mgm 0 0

−− −− −− −− −− −− −−
−�Ms+�T −�Mg+�T � 0 0 0 0

−�Msm�T −�Mgm�T � 0 0 0 0

−N-s 0 � 0 0 0 0

Mas 0 � 0 0 0 Maa




�

(13)

It is not difficult to see that the principal submatrix Mss

is symmetric positive definite. Hence, it follows that the
principal submatrix

�M ≡




Mss 0 Ms+ Msm

0 0 Mg+ Mgm

−�Ms+�T −�Mg+�T 0 0

−�Msm�T −�Mgm�T 0 0
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is positive semidefinite (albeit not symmetric). The subma-
trix Ms- is clearly nonnegative. Because for each fixed i,
the scalars �ij satisfy �im > · · · > �i0, the matrix Msa is
nonnegative. Based on these preliminary facts, Proposi-
tion 2 establishes that the matrix M in the LCP (12) is
semicopositive (Facchinei and Pang 2003) (originally called
semimonotone in Cottle et al. 1992); i.e.,

0 �= z� 0⇒∃i such that zi �= 0 and zi�Mz�i � 0�

Proposition 2. The matrix M in (12) of the Nash equilib-
rium problem is semicopositive.

Proof. The matrix M has the form

M ≡
[ �M C

E �Maa

]
� where �Maa ≡

[
0 0

0 Maa

]

for some suitable matrices C and E, with C being non-
negative. We claim that Maa is semicopositive; to demon-
strate this, let vfij and �fij be given nonnegative scalars,
not all equal to zero. If vfi1 > 0 for some pair �f � i�, then
clearly vfi1

∑m
j=1 �fij � 0. Hence, without loss of general-

ity, assume that vfi1 = 0 for all pairs �f � i�. If �fi1 > 0
for some �f � i�, then �fi1�−vfi1 + �fi1� > 0. Therefore, we
may assume, without loss of generality, that �fi1 = 0 for all
pairs �f � i�. If vfi2 > 0 for some �f � i�, then vfi2�−�fi1�=
0. Hence, without loss of generality, we may assume that
vfi2 = 0 for all pairs �f � i�, which then implies �fi2�−vfi1+
�fi2�= ��fi2�2. Continuing the argument inductively, we can
eventually show that Maa is semicopositive.
To complete the proof, let z be a nonzero, nonnega-

tive vector whose components are partitioned in six groups
�s� g�+�m�-�a� as described above. If any one of the first
four groups �s� g�+�m� of variables has a nonzero com-
ponent, then the semicopositivity of M follows easily from
the positive semidefiniteness of �M and the nonnegativity
of C. If the variables in the four groups �s� g�+�m� are all
zero, and if -fi is positive for some pair �f � i�, then the
semicopositivity of M follows readily. Finally, if the vari-
ables in the five groups �s� g�+�m�-� are all zero, then the
semicopositivity of M follows from that of the principal
submatrix Maa. �

In spite of the favorable property ofM , the example below
shows that Lemke’s method is not guaranteed to success-
fully compute a complementarity solution of the Nash equi-
librium model formulated as the LCP (10).

Example 2. Consider a three-firm, two-node problem with
the nodal price functions being linear and given by

p1�S1�= 1− 1
2S1 and p2�S2�= 2− 1

4S2�

There are two common coupling constraints:

S1 � 3/4 and S2 � 2�

The unit production costs are as follows:

�c11� c12�= �0�5�1�� �c21� c22�= �0�5�1�5�� and

�c31� c32�= �1�5�0�5��
The generation capacities are all equal to one unit; i.e.,
CAPfi = 1 for all f = 1�2�3 and i = 1�2. The matrix M
defining the LCP (10) is of order 21× 21. When this LCP
is solved by Lemke’s method (1965), it turns out that there
is a significant number of degenerate pivots. We used a
Matlab code written by Michael Ferris that resolves such
degeneracy by means of a tie breaking rule based on the
random number generator Rand within Matlab. For most
of the runs, degeneracy was not an issue and the method
successfully terminated with a complementary solution to
the problem. Nevertheless, there were runs where termi-
nation occurred on a secondary ray. One such failed run
involves the following sequence of leaving variables: y2, y4,
y9, y21, y16, y3, y11, y1, z16, y18, z3, y16, z1, z11, y7, y15, and
ray termination.
Even worse performance resulted when we changed the

unit production costs to cfi = 3 for all f = 1�2�3 and i =
1�2. Again, many pivots are degenerate, and none of the
runs is successful, although the problem has a complemen-
tary solution.
To understand the cause of the failure of the pivoting

algorithm, we consider a simpler problem with two players
whose optimization problems are as follows:

maximize
x1

x1
(
1− 1

2x1− 1
2x2

)
subject to x1+ x2 � 1 and

x1 � 0�

maximize
x2

x2
(
2− 1

2x1− 1
2x2

)
subject to x1+ x2 � 1 and

x2 � 0�

Note the common constraint x1+ x2 � 1. The LCP formu-
lation of this equilibrium problem is as follows:

0�−1+ x1+ 1
2x2+-1 ⊥ x1 � 0

0�−2+ 1
2x1+ x2+-2 ⊥ x2 � 0

0� 1− x1− x2 ⊥ -1 � 0
0� 1− x1− x2 ⊥ -2 � 0�
To initiate Lemke’s algorithm (1965), we augment the LCP
by adding an artificial variable z0 and an artificial column
of all ones:

0� y1 =−1+ z0+ x1+ 1
2x2+-1 ⊥ x1 � 0�

0� y2 =−2+ z0+ 1
2x1+ x2+-2 ⊥ x2 � 0�

0�71 = 1+ z0− x1− x2 ⊥ -1 � 0�
0�72 = 1+ z0− x1− x2 ⊥ -2 � 0�
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In the first pivot, z0 enters the basis driving out y2. The
next entering variable is thus x2. At this point, there is a tie
in the ratio test, with both 71 and 72 being the candidate
variables to become nonbasic. The system is as follows:

0� y1 = 1+ y2+ 1
2x1− 1

2x
↑
2 +-1−-2 ⊥ x1 � 0�

z0 = 2+ y2− 1
2x1− x↑2 −-2�

0�71 = 3+ y2− 1�5x1− 2x↑2 −-2 ⊥ -1 � 0�
0�72 = 3+ y2− 1�5x1− 2x↑2 −-2 ⊥ -2 � 0�
If 71 is chosen to be the leaving variable, then -1 becomes
the next entering variable, and ray termination occurs. In-
stead, if 72 is chosen to be the leaving variable, then the
method successfully computes the equilibrium solution of
�x1� x2�= �1�0� and �-1�-2�= �0�3/2�. Note that the two
multipliers -1 and -2 are not equal in this solution. The
problem has an equilibrium solution �x1� x2�= �0�1� with
equal multipliers -1 = -2 = 1. Finally, every solution to the
problem must have -2 > 0. �

4.1. A Restricted-Multiplier Formulation

The culprit in the failure of Lemke’s method (1965) for
solving the LCP (10) is the fact that while the joint sales
cap constraint (2) is the same for all firms f ∈� , we have
associated with it a multiplier -fi that is firm-dependent.
Whereas this is theoretically correct, the generality leads to
an LCP that is difficult to solve. Therefore, as a remedy,
we propose a restricted LCP whereby the multiplier associ-
ated with the above constraint depends only on the region i
and applies to all firms. Specifically, the restricted LCP is
obtained from (10) by setting -fi = -i for all f ∈� :

0� sfi ⊥ cf 1−Pi0+�i0
(
sfi+

∑
h∈�
shi−

m∑
j=1
�fij

)

+
m∑
j=1
�ij−1�fij +

m∑
j=1
�′
ijvfij +

∑
k∈�

PDFik/k−+f

+,f 1+-i � 0 ∀ �f � i� ∈� ×� �

0� gfi ⊥ �cfi− cf 1�−
∑
k∈�

PDFik/k++f −,f 1+,fi � 0

∀ �f � i� ∈� × �� \�1���
0� +f ⊥ gf 1 ≡

∑
i∈�
sfi−

∑
1�=i∈�

gfi � 0 ∀ f ∈� �

0� /k ⊥ Tk−
∑
h∈�

∑
1�=i∈�

PDFik�shi− ghi�� 0 ∀ f ∈��

0� ,f 1 ⊥CAPf 1−
∑
i∈�
sfi+

∑
1�=i∈�

gfi � 0 ∀ f ∈� �

0� ,fi ⊥CAPfi− gfi � 0 ∀ �f � i� ∈� × �� \�1���
0� -i ⊥ �i−

∑
h∈�
shi � 0 ∀ i ∈� �

0� vfi1 ⊥ �′
i1−

(
Si−

m∑
j=1
�fij

)
� 0 ∀ �f � i� ∈� ×� �

0� vfij+1 ⊥ �′
ij+1− �fij � 0

∀ j = 1� � � � �m− 1� ∀ �f � i� ∈� ×� �

0� �fij ⊥ sfi− vfij + �fij � 0
∀ j = 1� � � � �m� ∀ �f � i� ∈� ×� � (14)

Originally discussed in Harker (1991) and subsequently
applied to transmission constraints by Wei and Smeers
(1999), the above restricted-multiplier formulation is appli-
cable to all generalized Nash games where the players have
the same joint constraint (also called “coupled constraints”
by some authors). For a recent application of such a game
in electric power markets, see Contreras et al. (2004). In
these cited papers on joint constraints (as well as in others,
such as Berridge and Krawczyk 1997 and Krawczyk and
Uryasev 2000), there is no discussion on either piecewise
objectives or the applicability of Lemke’s method. There-
fore, our contribution distinguishes itself from the cited
works in two major ways: From a modeling point of view,
our model includes both features (piecewise objectives and
joint constraints); algorithmically, we establish the success-
ful termination of Lemke’s method.
In the case of the sales-cap constraints (2), the economic

interpretation of the restricted formulation is that a limited
resource represented by �i is rationed among the produc-
ers by an auction or market process that produces a single
clearing price. This clearing price is, in effect, treated as
exogenous by all producers. Other joint constraints can be
handled by the same approach as long as they are common
to all firms’ problems. See the concluding remarks (§6) for
further comments on the restricted formulation.
In the special case where the joint constraint set is the

same for all producers and coincides with the transmission
constraint set in the ISO’s problem (§3.1), the problem can
be simplified as follows: Delete the joint constraint set and
associated dual variables from each producer’s problem so
that those constraints appear only in the ISO’s problem.
The resulting model was proposed in Hobbs (2001) and
analyzed in Metzler et al. (2003). However, the resulting
solution is, in general, only a subset of the many possi-
ble solutions of the original problem. For some network
configurations (such as the two node example in Figure 2
and §5, and the three node case considered by Oren 1997),
an important possible solution that would be excluded is
one in which the w are zero and the multipliers of the
joint constraints are positive and possibly different for the
various producers. The zero w is important from a practi-
cal standpoint because it means that the ISO receives no
revenue from providing transmission services, even if the
transmission constraints are binding. This, as Oren (1997)
explains, is a type of market power in which electricity
producers exploit the network operator. Oren’s model dif-
fers from the one of this paper; it is instead an example
of the MPEC/EPEC formulation referred to in §1 in which
generators are assumed to sell power only at the nodes
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at which they generate, with the system operator purchas-
ing the power there and then reselling it to consumers
elsewhere. Nevertheless, the prices, profits, and generation
amounts obtained in those of his solutions that have zero
transmission prices and a multiplicity of possible alloca-
tions of transmission capacity among producers are also
equilibria in our model.
To initiate Lemke’s method on the LCP (14), we consider

the following augmented system with z0 as the artificial
variable and positive auxiliary vectors ds , dg , and d+ added
to the first three conditions in (14):

0� sfi ⊥ cf 1−Pi0+ z0dsfi+�i0
(
sfi+

∑
h∈�
shi−

m∑
j=1
�fij

)

+
m∑
j=1
�ij−1�fij +

m∑
j=1
�′
ijvfij +

∑
k∈�

PDFik/k−+f

+,f 1+-i � 0 ∀ �f � i� ∈� ×� �

0�gfi⊥cfi−cf 1+z0dgfi−
∑
k∈�
PDFik/k++f −,f 1+,fi�0

∀ �f � i� ∈� × �� \�1���
0� +f ⊥ z0d+f +

∑
i∈�
sfi−

∑
1�=i∈�

gfi � 0 ∀ f ∈� �

0� /k ⊥ Tk−
∑
h∈�

∑
1�=i∈�

PDFik�shi− ghi�� 0 ∀k ∈��

0� ,f 1 ⊥CAPf 1−
∑
i∈�
sfi+

∑
1�=i∈�

gfi � 0 ∀ f ∈� �

0� ,fi ⊥CAPfi− gfi � 0 ∀ �f � i� ∈� × �� \�1���
0� -i ⊥ �i−

∑
h∈�
shi � 0 ∀ i ∈� �

0� vfi1 ⊥ �′
i1−

(∑
h∈�
shi−

m∑
j=1
�fij

)
� 0 ∀ �f � i� ∈� ×� �

0� vfij+1 ⊥ �′
ij+1− �fij � 0

∀ j = 1� � � � �m− 1� ∀ �f � i� ∈� ×� �

0� �fij ⊥ sfi− vfij + �fij � 0
∀ j = 1� � � � �m� ∀ �f � i� ∈� ×� �

4.2. Proof of Successful Termination

Referring to the structure (13) of the pair �q�M� in (10),
we first establish the following preliminary result, whose
proof is similar to that of Proposition 2.

Lemma 2. Let

q0 ≡




ds

dg

d+

dm

�

qa




with dm ≡
(
T

CAP

)
�

where ds , dg , and d+ are arbitrary positive vectors. The
only solution z to the system

0� z⊥ q0+Mz� 0
is the zero vector.

Proof. By the remark made at the end of § 3.3, it follows
that (11) holds. Consequently, we deduce that

0= ∑
�f � i�∈�×�

sfi

[
dsfi+�i0�sfi+ �fi0�+

m∑
j=1
�ij−1�fij

+
m∑
j=1
�′
ijvfij−+f +,f 1+-i+

∑
k∈�
PDFik/k

]

+ ∑
�f � i�∈�×�� \�1��

gfi

[
d
g
fi−

∑
k∈�

PDFik/k++f

−,f 1+,fi
]
+ ∑
f∈�
+f

[
d
+
f +

∑
i∈�
sfi−

∑
1�=i∈�

gfi

]

+∑
k∈�
/k

[
Tk−

∑
h∈�

∑
1�=i∈�

PDFik�shi− ghi�
]

+ ∑
f∈�
,f 1

[
CAPf 1−

∑
i∈�
sfi+

∑
1�=i∈�

gfi

]

+ ∑
�f � i�∈�×�� \�1��

,fi�CAPfi− gfi�

�
∑

�f � i�∈�×�

sfi�d
s
fi+�i0sfi�+

∑
�f � i�∈�×�� \�1��

gfid
g
fi

+ ∑
f∈�
+f d

+
f +

∑
k∈�
/kTk+

∑
�f � i�∈�×�

,fiCAPfi�

Because the constants dsfi, d
g
fi, d

+
f , Tk, and CAPfi are all

positive, it follows that

sfi = gfi = +f = /k = ,fi = 0 ∀k ∈�� �f � i� ∈� ×� �

Because

0= vfi1
(
�′
i1− Si+

m∑
j=1
�fij

)
= vfi1

(
�′
i1+

m∑
j=1
�fij

)
�

it follows that vfi1 = 0, and thus �fi1 = 0 for all �f � i� ∈
� ×� . Inductively, we can deduce that vfij+1 = �fij+1 = 0
for all �f � i� ∈� ×� and j = 1� � � � �m. Because
0� -i ⊥ �i− Si = �i > 0�
it follows that -i = 0 for all i ∈� . �

The above proposition does not imply that the matrix
defining the overall LCP (14) is an “R0 matrix” (Cottle
et al. 1992) (although it must be semicopositive). There-
fore, the successful termination of Lemke’s method for
solving this LCP does not follow from known results. A
detailed proof of success proceeds in the usual way, i.e.,
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by assuming that the method terminates on a secondary
ray. It then follows that there exist �z∗0� z

∗� with z∗ �= 0 and
�z̃0� z̃� �= 0 (these are obvious shorthand representations for
the actual variables as in the compact formulation (12))
such that, for all :� 0,

0� s∗fi+:s̃fi ⊥ cf 1−Pi0+ �z∗0+:z̃0�dsfi
+�i0

(
s∗fi+:s̃fi+

∑
h∈�
�s∗hi+:s̃hi�

−
m∑
j=1
��∗fij +:��fij �

)

+
m∑
j=1
�ij−1��

∗
fij+:��fij �+

m∑
j=1
�′
ij �v

∗
fij+:ṽfij �

+∑
k∈�

PDFik�/
∗
k+:/̃k�− �+∗

f +: �+f �

+ �,∗
f 1+: �,f 1�+ �-∗

i +: �-i�� 0�
0� g∗fi+:g̃fi ⊥ cfi− cf 1+ �z∗0+:z̃0�dgfi

−∑
k∈�

PDFik�/
∗
k+:/̃k�+ �+∗

f +: �+f �

− �,∗�+
f 1 +: �,f 1�+ �,∗

fi+: �,fi�� 0�
0� +∗

f +: �+f ⊥ �z∗0+:z̃0�d+f +
∑
i∈�
�s∗fi+:s̃fi�

− ∑
1�=i∈�

�g∗fi+:g̃fi�� 0�

0� /∗k+:/̃k ⊥ Tk−
∑
h∈�

∑
1�=i∈�

PDFik�s
∗
hi+:s̃hi

− g∗hi−:g̃hi�� 0�
0� ,∗

f 1+: �,f 1 ⊥CAPf 1−
∑
i∈�
�s∗fi+:s̃fi�

+ ∑
1�=i∈�

�g∗fi+:g̃fi�� 0�

0� ,∗
fi+: �,fi ⊥CAPfi− �g∗fi+:g̃fi�� 0�

0� -∗
i +: �-i ⊥ �i−

∑
h∈�
�s∗hi+:s̃hi�� 0�

0� v∗fi1+:ṽfi1 ⊥ �′
i1−

[∑
h∈�
�s∗hi+:s̃hi�

−
m∑
j=1
��∗fij +:��fij �

]
� 0�

0� v∗fij+1+:ṽfij+1 ⊥ �′
ij+1− ��∗fij +:��fij �� 0�

0� �∗fij +:��fij ⊥ s∗fi+:s̃fi− �v∗fij +:ṽfij �
+ ��∗fij +:��fij �� 0�

The following proof aims at deriving a contradiction by
showing that the pair �z̃0� z̃� must be zero. Because the
above system holds for all :> 0, it follows from Lemma 2
that z̃0 = 0. Because
CAPfi− �g∗fi+:g̃fi�� 0 ∀:� 0�

it follows that g̃fi = 0 for all f ∈ � and all i ∈ � \�1�.
Because

CAPf 1−
∑
i∈�
�s∗fi+:s̃fi�+

∑
1�=i∈�

g∗fi � 0 ∀:� 0�

it follows that s̃fi = 0 for all f ∈� and all i ∈� . Because

�′
ij+1− ��∗fij +:��fij �� 0 ∀:� 0�
it follows that ��fij = 0 for all f ∈ � , i ∈ � , and all
j = 1� � � � �m− 1. Adding the two inequalities
�′
ij+1− �∗fij � 0 and

s∗fi− �v∗fij +:ṽfij �+ �∗fij � 0 ∀:� 0�
which holds for all f ∈� , i ∈� , and all j = 1� � � � �m− 1,
we deduce ṽfij = 0 for all such triples �f � i� j�. Because
0� ��fim ⊥−ṽfim+ ��fim � 0�

it follows that ��fim = ṽfim. Similar to the last part in the
proof of Proposition 1, we can deduce

0�
∑
h∈�
�s∗hi+:s̃hi�−

m∑
j=1
��∗fij +:��fij �

= ∑
h∈�
s∗hi−

m∑
j=1
�∗fij −:��fim�

which easily implies ��fim = 0 for all f ∈� and i ∈� .
Taking into account what has been shown so far, we

obtain

0= ∑
�f �i�∈�×�

s∗ficf 1−Pi0+ z∗0dsfi�

+ ∑
�f � i�∈�×�

s∗fi

[
�i0

(
s∗fi+

∑
h∈�
s∗hi−

m∑
j=1
�∗fij

)

+
m∑
j=1
�ij−1�

∗
fij +

m∑
j=1
�′
ijv

∗
fij +-∗

i +: �-i
]

+ ∑
�f � i�∈�×�� \�1��

g∗ficfi− cf 1+ z∗0dgfi�

+ ∑
f∈�
�+∗

f +: �+f �z∗0dgf 1+
∑
k∈�
�/∗k+:/̃k�Tk

+ ∑
�f � i�∈�×�

�,∗
fi+: �,fi�CAPfi�

Again, because this has to hold for all :> 0, it follows that
/̃k = s∗fi �-i = �+f 1 = �,fi = 0 for all �f � i� ∈� ×� . Therefore,
all the tilde variables have been shown to equal zero, except
for the �-i variables. But we must have the latter variables
equal to zero, too, because

0= �-i
(
�i−

∑
h∈�
s∗hi

)
= �-i�i

and �i > 0. Therefore, z̃ and z̃0 are both zero, which is a
contradiction. Summarizing the above proof, we have there-
fore established Theorem 1.

Theorem 1. Under a standard nondegeneracy assumption,
Lemke’s method will successfully compute a solution to the
restricted LCP (14).
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5. A Numerical Example
This example includes both price caps and a joint (trans-
mission) constraint, and illustrates several economic impli-
cations of these complications. The network topology
is shown in Figure 2. The nodal prices are equal to
min�0�25�1− Si� for i= 1�2. Thus, there is a price cap of
0.25 imposed as a market power mitigation measure: Price
at neither node is allowed to exceed 0.25. In terms of the
representation (3), we have m= 1, and for i= 1�2,
Pi0 = 0�25� �i1 = 0�75� �i0 = 0� and �i1 = 1�
which yield �′

i1 = 1 and �′
i1 = 0�75. The transmission

capacity T between the nodes is 0.5. (The subscript k on
that constraint is omitted, because there is only one such
constraint.) The resulting transmission constraint, sA2 +
sB2 � 0�5, is a joint constraint that is included not only in
the ISO’s problem but also in the profit maximization prob-
lems for firms A and B. Thus, for instance, given that the
game is Cournot, firm A can choose any sales 0 � sA2 �
0�5− sB2. Firms A and B each have one power plant (at
node 1) without a capacity upper bound, but they have dif-
ferent marginal costs: cA1 = 0�1 and cB1 = 0�0. The LCP
(10) for this example is as follows:

0� sA1 ⊥−0�15+ vA11−+A � 0�
0� sA2 ⊥−0�15+ vA21+/−+A+-A2 � 0�
0� sB1 ⊥−0�25+ vB11−+B � 0�
0� sA2 ⊥−0�25+ vB21+/−+B +-B2 � 0�
0� +A ⊥ gA ≡ sA1+ sA2 � 0�
0� +B ⊥ gB ≡ sB1+ sB2 � 0�
0� /⊥ 0�5− sA2− sB2 � 0�
0� -A2 ⊥ 0�5− sA2− sB2 � 0�
0� -B2 ⊥ 0�5− sA2− sB2 � 0�
0� vA11 ⊥ 0�75− �sA1+ sB1− �A11�� 0�
0� vA21 ⊥ 0�75− �sA2+ sB2− �A21�� 0�
0� vB11 ⊥ 0�75− �sA1+ sB1− �B11�� 0�
0� vB21 ⊥ 0�75− �sA2+ sB2− �B21�� 0�
0� �A11 ⊥ sA1− vA11+ �A11 � 0�
0� �A21 ⊥ sA2− vA21+ �A21 � 0�
0� �B11 ⊥ sB1− vB11+ �B11 � 0�
0� �B21 ⊥ sB2− vB21+ �B21 � 0�
Table 1 shows five different solutions representing alterna-
tive equilibria under these assumptions. The variable names
have all been defined above, except for aA1, aA2, aB1, and
aB2, which are the firms’ marginal sales revenues at the
two nodes calculated according to (5). All five solutions

Table 1. Five alternative equilibria for the example
problem.

Equilibria

Variables I II III IV V

sA1 0�375 0�375 0�15 0�5 0�15
sA2 0�25 0�25 0 0�5 0
sB1 0�375 0�375 0�6 0�25 0�6
sB2 0�25 0�25 0�5 0 0�5
gA 0�625 0�625 0�15 1 0�15
gB 0�625 0�625 1�1 0�25 1�1
+A 0 0 0 0 0
+B 0 0 0 0 0
/ 0�15 0 0�15 0�15 0�25
w 0�15 0 0�15 0�15 0�25
-A2 0 0�15 0 0 0
-B2 0�1 0�25 0�1 0�1 0
aA1 0�1 0�1 0�1 0�1 0�1
aA2 0�25 0�25 0�25 0�25 0�25
aB1 0 0 0 0 0
aB2 0�25 0�25 0�25 0�25 0�25
vA11 0�15 0�15 0�15 0�15 0�15
vA21 0 0 0 0 0
vB11 0�25 0�25 0�25 0�25 0�25
vB21 0 0 0 0 0
�A11 0 0 0 0 0
�A21 0 0 0 0 0
�B11 0 0 0 0 0
�B21 0 0 0 0 0
p1 0�25 0�25 0�25 0�25 0�25
p2 0�25 0�25 0�25 0�25 0�25

Notes. Italics indicate values that differ from equilibrium I.
I: Firms’ sales equal, highest possible transmission fee w ∗.
II: Firms’ sales equal, lowest possible transmission fee w ∗.
III: Highest possible sales for B.
IV: Highest possible sales for A.
V: A solution from the restricted-multiplier formulation.

yield the same prices to consumers, but they have various
amounts of sales, generation, and profits for the produc-
ers, as well as varying transmission prices. Equilibria I
and II represent symmetric primal equilibria, in that the
sales and generation by the two firms are equal. Com-
paring the two equilibria reveals the range of alternative
transmission prices that can arise because firms A and B
both explicitly recognize the joint transmission constraint
in their profit maximization problems. In equilibrium I, the
transmission fee w∗ charged by the ISO is the highest pos-
sible among these symmetric solutions: 0.15. This means
that the shadow prices for each firm’s internal transmission
constraint are the smallest possible: -A2 = 0 and -B2 = 0�1.
Because -A2 cannot be negative, a higher w

∗ (and thus a
higher /, which equals w∗ in this case) would force the
right side of sA2’s complementarity condition in (9) to be
strictly positive; this would be inconsistent with sA2 remain-
ing positive. These solutions indicate that when the trans-
mission fee is this high, generator A is indifferent at the
margin about selling to node 2—if it could expand its sales
there, its profit would not increase (indicated by -A2 = 0).
On the other hand, this is not true for company B. Because
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its marginal generation cost is less than A’s, it would earn
more profit if it could expand sales to node 2. In particu-
lar, its profit would increase by -B2 = 0�1, on the margin,
per unit of additional transmission capacity that is made
available.
On the other hand, equilibrium II represents the situa-

tion in which the ISO’s transmission fee w∗ is zero, so
that the ISO earns no revenue, while the internal transmis-
sion shadow prices are high (-A2 = 0�15 and -B2 = 0�25).
The generators pay nothing to the ISO for the transmis-
sion services they receive, while their sales revenue and
generation costs are unchanged. Thus, this equilibrium is
more profitable for each of them than equilibrium I; so, if
they have a choice, they would choose this equilibrium. In
practice, they can accomplish this by imposing an inter-
nal joint constraint that is slightly tighter than the ISO’s
constraint (i.e., �= T − =). As a result, the ISO’s shadow
price / will be zero and so will be the transmission fee w∗.
Oren (1997) has previously pointed out that this strategy
and the resulting solution are optimal for the more sophisti-
cated MPEC/EPEC game described in §1. Although this is
true for the two-node case we consider here and for Oren’s
three node case, Stoft (1999) shows that this is not nec-
essarily optimal for a general network. For instance, some
generators may earn higher profits if w is nonzero if their
generators and sales are located such that they are relieving
rather than exacerbating binding transmission constraints
(i.e., providing so-called “counterflows”). In that case, the
w they pay is negative, and they would prefer nonzero
values.
Turning to equilibria III and IV, they represent asymmet-

ric primal outcomes. Equilibrium III represents the highest
possible sales and profits at each node for company B. At
node 1, instead of splitting the maximum possible sales at
the price cap equally (0�75/2= 0�375 each), B sells 0.6 and
A only sells 0.15. This represents the maximum possible
equilibrium sales by B because if it sold more (sB1 > 0�6),
A would not respond by selling sA1 = 0�75− sB1. Instead,
A would sell more, which would cause the price to drop
below the price cap; B’s optimal response would then be to
shrink its sales so that total sales fall back to 0.75, allowing
the price to rise again to the price cap. For node 2, it is not
the price cap that results in alternative equilibrium sales,
but the joint transmission constraint. In equilibrium III, B is
in the lucky position of having all the transmission capacity
to itself, so it is responsible for the entire sales S2 = 0�5 at
node 2.
The other extreme asymmetric primal equilibrium is equi-

librium IV, where A has its maximum possible sales at each
node. The most it can sell at node 1 in equilibrium is 0.5
out of the total price-capped sales S1 to that node of 0.75.
If it sold any more, B would prefer to expand sales so that
the price falls below the cap, similar to the reverse situation
just explained for equilibrium III. The upper bound to A’s
sales there (0.5) is less than B’s upper bound (0.6, equi-
librium III) because B has a lower marginal cost, which

translates into a greater willingness to expand sales and
cut prices. Considering node 2, A’s maximum equilibrium
share of the limited transmission capacity is 0.5, the entire
capacity. Thus, equilibrium III and IV show that any split
of the transmission capacity between the two generators is
an equilibrium. This, however, is not a general result; it
depends on the slopes of the demand curves, size of the
transmission limit, and marginal generation costs.
Equilibrium V, the last solution in Table 1, is a solu-

tion from the restricted-multiplier formulation of §4.1. This
forces each company to have the same multiplier -2 for
the sales cap constraint for node 2 (equivalent here to the
transmission constraint between 1 and 2), rather than sep-
arate -A2 and -B2. The only value of -2 for which that
is possible is -2 = 0, which occurs if the transmission fee
w∗ = 0�25. Only firm B finds it profitable to sell at node 2
in the restricted-multiplier formulation, and market shares
of the two firms are the same as in equilibrium III. Thus,
restricting the multipliers has eliminated any solutions in
which the more costly firm A sells power at the node with
the sales constraint. However, there are still multiple equi-
libria at node 1; equilibrium V is just one of the possibili-
ties. Other possibilities give A a greater share of the market
at node 1, as much as sA1 = 0�5 (just as in equilibrium IV).
Therefore, restricting the multipliers as in §4.1 can elimi-
nate multiple solutions that result from the joint sales con-
straint, but not multiple solutions that arise because of price
caps or other piecewise linearities that are modeled in the
manner described in §2.2.

6. Concluding Remarks
A generalization of a standard Cournot model of com-
petition among electricity generators on a transmission
network has been presented that includes in each genera-
tor’s profit maximization problem two new features: (1) a
set of joint constraints involving other producers’ decision
variables, and (2) piecewise-linear demand curves. These
extensions have important economic applications because,
for example, liberalized electricity markets often are sub-
ject to price caps that transform affine demand curves into
piecewise linear ones. This generalization presents analyti-
cal and computational challenges, some of which have been
addressed in this paper.
An open analytical question concerns whether it is pos-

sible to show that consumer prices and consumption levels
might be unique in these models, and under what circum-
stances. This is true for the simple example in §5, even
though the piecewise-linear demand curves and joint trans-
mission constraints mean that producer outputs and prof-
its and transmission operator revenues are not unique. A
remaining computational question is whether alternatives
to Lemke’s algorithm might perform better in uncovering
alternative equilibria. It has been shown in this paper that
successful application of that algorithm is only assured if a
restricted formulation of the generalized model is applied
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in which each firm’s set of multipliers for the joint con-
straints are constrained to be equal. This can be a reason-
able assumption if the joint constraint represents a resource
that the producers compete for in a market process, and if
each producer is a price-taker with respect to the resource
prices. However, this assumption is difficult to defend in
general, so alternative algorithms which do not require that
assumption are desirable.
The restricted LCP formulation that we have employed

to treat the joint sales constraints Si � �i, i ∈ � � can be
extended to deal with other similar constraints that cou-
ple the firms’ variables, provided that these constraints are
common to all the firms’ problems. For problems where
the firms have distinct joint constraints, it is no longer
clear whether the restricted LCP approach remains applica-
ble to compute an equilibrium solution. Such problems are
instances of a generalized Nash game in its broadest form;
for more discussion on the latter game, we refer the reader
to Pang (2003) and Pang and Fukushima (2005).
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