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Abstract — Transmission  planning  has  traditionally followed a 

“generation first” or “reactive” logic, in which network rein-

forcements are planned to accommodate assumed generation 

build-outs. The emergence of renewables has revealed deficien-

cies in this approach, in that it ignores the interdependence of 

transmission and generation investments.  For instance, grid 

investments can provide access to higher quality renewables and 

thus affect plant siting. Disregarding this complementarity in-

creases costs. In theory, this can be corrected by “proactive” 

transmission planning, which anticipates how generation invest-

ment responds by co-optimizing transmission and generation 

investments. We evaluate the potential usefulness of co-

optimization by applying a mixed-integer linear programming 

formulation to a 24-bus stakeholder-developed representation of 

the U.S. Eastern Interconnection (EI).  We estimate cost savings 

from co-optimization compared to both reactive planning and an 

approach that iterates between generation and transmission in-

vestment optimization.  These savings turn out to be comparable 

in magnitude to the amount of incremental transmission invest-

ment. We also evaluate three congestion metrics as screens for 

reducing the number of candidate transmission investments. 

They each improve solution times, but the Estimated Potential 

Benefit metric is much more effective in identifying cost-effective 

lines than the others. 

 
Index Terms-- Generation planning, Economics, Power 

transmission planning, Mixed integer linear programming 

I.  NOMENCLATURE 

Sets and Indices: 

�   Time blocks, indexed by b  

�  Generators, indexed g  

��  Candidate generators (subset of G), indexed ge  

��  Intermittent generators (subset of G), indexed gi  

��   Intermittency region (partition of N), indexed ir  

�  Transmission corridors, indexed l .  Each corridor has 

an arbitrarily defined forward and reverse flow direction. 

�  Nodes/regions, indexed n  

�  Planning reserve region (partition of N), indexed p  

�	  Pumped storage (subset of G), indexed ps  

�  RPS constraints region (partition of N), indexed r  

	   Seasons (partition of b), indexed s  


  Years, indexed t and u 
 

 

 

 

�   Transmission configurations at different voltage 
levels, indexed by v 

Parameters: 

�
��   Compliance payment in 2010$/MWh 

��
�,�  Annualized capital payment in 2010$/MW 



�,�   Capacity credit  


��,�,�   Capacity factor  

��  Discount rate 

����  Fixed operation & maintenance cost in 2010$/MW 

����  Forced Outage Rate  

����,�,�  Generation capital cost in 2010 $/MW 

���,�  Transmission capital cost of voltage v for   

   interface l    in 2010 $/unit 

��   Duration of a block in hours 

���  Hurdle rate in 2010 $/MWh 

�
  Initial capacity in MW with index g,n or l 

��,�,�  Load in MW 

��,�,�  Fraction of generation capacity in a region n that is 

past its lifetime in year t. 

����  Capacity of transmission at voltage v in MW/unit 

���,�  Peak load in MW 

����,�  Planned Outage Rate  

�
�,�,�  Renewable credit 

���  Planning reserve margin  

��	�,�  Renewable Portfolio Standard target 

	��,�  Max energy by pumped storage in MWh 

����,�  Resource potential in MW 

�
�,�,�,�  Variable cost of generator in 2010$/MWh 

Φ�,�  Element of node-line incidence matrix 

 
Variables: 

 �,�,� Capacity in MW 

 ℎ�,�,�  Charge of pumped storage in MW 

"#$ �,�,� Discharge of pumped storage in MW 

%�,�,�
&  Power flow in the forward direction in MW 

%�,�,�
'  Power flow in the reverse direction in MW 

#�,� Unmet RPS requirement in MWh 

�()�  Investment costs in year t in 2010$ 

*�,�,�,� Output of generator in MW 

�+�  Operational cost at year t in 2010$ 

,�,�,�
&   Shadow price for constraint (7a) in $/MW/year 

,�,�,�
'   Shadow price for constraint (7b) in $/MW/year 

 -�,�,� Number of interfaces added by year t (integer) 
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.��,�,� Generation Investment at year t in MW 

II.  INTRODUCTION 

RANSMISSION investments have grown significantly 

over the past decade in the USA [1].  They are expected to 

be sustained at high levels in the near future [2],[3] as policy-

makers and industry recognize the significant benefits of 

transmission upgrades and expansion [4],[5].  

As a result of restructuring of electricity markets in parts of 

the USA, generation investments have become more market 

driven while transmission investments have largely continued 

to be made on a regulated cost recovery basis [6]. In this 

framework, Independent System Operators (ISOs) play a cen-

tral role in identifying and/or approving transmission projects.  

ISO planning procedures have mainly focused on projects 

addressing reliability and facilitating interconnections [7]. For 

those purposes, ISOs and other organizations, such as the 

Western Electricity Coordinating Council (WECC) [8], devel-

oped procedures that evaluate transmission expansion plans by 

simulating system production costs given an assumed genera-

tion mix. This approach is usually called “reactive” or “gener-

ation-first” planning, since the transmission planner responds 

to a pre-defined generation fleet [7]. Since then, issuance of 

FERC Order 1000 and the emergence of renewables driven by 

policy incentives have led to changes in planning processes.  

In particular, the growing amount of renewables has com-

plicated the forecasting of future generation siting. There are 

at least two reasons for this. First, high quality wind resources 

are often located at remote areas with weak or no transmission 

connections under the current network configuration [9]. The 

cost-effectiveness of such resources depends in part on the 

expense of the new transmission needed to deliver them, 

which may be highly uncertain until detailed transmission 

plans are made.  Second, wind generators have shorter con-

struction lead times than transmission, and generation expan-

sion plans might change depending on where the transmission 

planner decides to expand the grid [10]. 

To overcome those challenges, transmission planners have 

developed new approaches to account for wind siting in reac-

tive planning procedures. For example, the ERCOT Competi-

tive Renewable Energy Zones (CREZ) study [11] estimated 

costs under four wind siting scenarios. After consulting with 

stakeholders, the regulator then decided to build the transmis-

sion plan identified by one scenario [12]. In contrast, MISO 

[13] identified wind zones and ranked them using criteria such 

as proximity to load and capacity factor. Then they developed 

wind siting scenarios by allocating equal amounts to zones 

starting from the top ranked zones until the renewable re-

quirement was satisfied for each region. 

These examples illustrate the efforts of planners to improve 

generation mix projections in generation-first transmission 

planning. However, as Kahn [14] points out, this general ap-

proach still does not capture the trade-offs between transmis-

sion investment costs and generation mixes. By decomposing 

the problem into two separate and successive sub-problems 

(wind siting and then transmission planning), the interactions 

of these decisions are only partially captured, and the planner 

is unable to determine if the overall strategy selected is indeed 

least-cost. With this approach, the planner can only conduct 

“what-if” analyses and simulations of the system under a few 

wind siting scenarios, and significant cost savings that might 

be gained from co-optimization may be overlooked.  

Moreover, this reactive approach is also problematic since 

it does not account for the possibility that the optimal response 

of generator investors to that transmission plan might differ 

from the assumed generation projection. To account for this 

interaction, some planners adopt an iterative approach in 

which two optimization models, one for generation and one 

for transmission, are alternately applied until convergence is 

achieved (e.g., WECC’s Long Term Planning Tool [15]).  

However, as proven mathematically [16], such an iterative 

approach cannot guarantee convergence to the joint transmis-

sion-generation optimum.  This joint optimum, though, can in 

theory be identified by a co-optimization planning approach 

(also called proactive or anticipative transmission planning) 

[7][16]. That approach optimizes generation and transmission 

investment simultaneously on a system-wide basis, and so 

endogenously accounts for any interdependency between 

transmission and generation investments. We implement the 

proactive transmission planning concept, which is further ex-

plained in Section III, as a mixed integer linear programming 

(MILP) model in Section IV. Because the number of transmis-

sion candidates in transmission planning can be large relative 

to the capabilities of existing software [17], we also evaluate 

the performance of three alternative screening metrics for lim-

iting the number of candidates considered. 

We present an application of the co-optimization model to 

the Eastern Interconnection (EI), using the EI Planning Col-

laborative (EIPC) database [18]. This allows us to address the 

following question:  How do plans and total system costs re-

sulting from traditional planning approaches (generation-first 

or iterative) compare to costs under full co-optimization of 

transmission and generation investment?  Thus, our first con-

tribution is to estimate the benefits co-optimization can 

achieve for a 24-bus representation of a real system (the EI). 

Our second contribution is to address the question: Can 

congestion-based screening metrics be used as screening met-

rics in order to reduce the pool of candidate transmission in-

vestments without diminishing the benefits of co-optimization? 

Most screening metrics rely on shadow price information, 

which may mis-estimate the benefit of the expansion of an 

interface because they do not consider the extent of the inter-

face expansion and its interaction with potential augmentation 

of other interfaces. To quantify the potential inefficiencies 

introduced by those screening procedures, we compare the 

solution of the co-optimization model considering a full set of 

alternatives with solutions that only consider subsets of inter-

faces that survive the three screening methods considered. 

The rest of the paper is structured as follows. Section III 

reviews recent research on methods to consider generation-

transmission investment interactions. Section IV defines the 

theoretical basis for applying co-optimization in a restructured 

electricity market and summarizes our model. Section V de-

scribes the experimental design of our EIPC case study and 

T
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presents the definitions of the screening metrics that we com-

pare. Section VI presents the results of the optimization and 

screening analyses, followed by conclusions in Section VII. 

III.  THEORETICAL TRANSMISSION PLANNING FRAMEWORKS 

Two basic frameworks aiming at net benefits maximization 

have been proposed as alternatives to reactive (generation-

first) transmission planning: (1) proactive transmission plan-

ning and (2) iterative or coordinated transmission planning.  

A proactive or anticipative transmission planner expands 

transmission while anticipating how generation investment 

and operations will respond. In [7], Sauma and Oren assume 

that the transmission planner has an objective of maximizing 

net market surplus and prove that the proactive planner will 

lead to superior solutions in terms of market surplus compared 

to the reactive network planner’s approach but inferior com-

pared to an integrated (or composite) resource planner [19].  

Under the assumptions of perfect competition among gen-
erators and efficient transmission pricing (locational marginal 
pricing), the proactive transmission planning problem is 
equivalent to integrated resource planning, which can be 
solved as a single-level maximization of market surplus prob-
lem [20]. But in the most general case, in which generators 
may possess market power, the proactive planner has to solve 
a hierarchical, multi-level optimization problem in order to 
maximize social welfare [7].  

The authors of [21] assume that generators add capacity 
strategically but operate under perfect competition. Thus they 
formulate the three-level problem (transmission planning—
generation planning—market clearing) of [7] as an equivalent 
MILP under a binary expansion discretization assumption. 
Changing the perfect competition assumption of [21] to 
Cournot competition, the problem is formulated as a Mixed 
Integer Non Linear Program (MINLP) in [22], [23]. In [24],1 
Cournot competition is relaxed and a fourth level is introduced 
representing generator’s bidding problem. There, an iterative 
solution method employing search-based techniques and 
agent-based models is proposed. However, the reader should 
be aware that in case strategic behavior is assumed, questions 
of existence or multiplicity of generation equilibria can arise 
[22],[25]. 

The second alternative to reactive planning that has been 

proposed in the literature assumes coordination of generation 

and transmission planning through a multi-step, iterative pro-

cess that iterates between investment decisions by different 

parties. The authors i n [26] consider merchant transmission, 

generation investors, and a system planner, the latter being 

responsible for the security of the network. The planner 

broadcasts capacity payment signals if security criteria are not 

met; if on the other hand those criteria are met, she broadcasts 

LMPs and FMPs (Locational and Flowgate Marginal Prices). 

Investors react to those signals, and the procedure iterates until 

a defined stopping criterion is met.  

A more realistic iterative approach, given present US mar-

                                                           
1 In [24] the transmission planner does not maximize market surplus. In-

stead, she minimizes a function based upon the maximum regret across plan-
ning criteria. 

ket designs and tools, has been proposed by Gu et al. [27]. 

Their planning procedure starts with generation planning; 

then, given the generation investments identified, the proce-

dure continues with transmission planning.  After defining a 

tentative set of transmission investments, it adjusts the genera-

tion investment plan, and continues iterating between the two 

planning modes (generation, transmission) until a convergence 

criterion is satisfied (similar to WECC’s LPTP model [15]).  

Despite the proven result [7] that proactive planning, in 
theory, leads to superior results compared to traditional ap-
proaches, papers estimating the practical improvements in net 
benefits compared to traditional planning practice are lacking. 
The existing literature has instead focused on: 1) resolution of 
the computational problems arising because of the MINLP 
nature of the generation and transmission planning problem in 
case strategic behavior is assumed [21], [22], [24] and 2) 
model enhancement through addition of new features such as 
outage contingencies [28]. However, transmission planners 
should consider the benefits of more complex models, in terms 
of improved plans, before changing existing transmission 
planning practice. To the best of our knowledge, only one 
paper presents relevant benefit estimates [16] and reports up to 
5% savings for co-optimization relative to reactive planning 
for a simplified 13-zone US network.  In contrast to [16], our 
analysis employs a more detailed network and scenario as-
sumptions that were developed by EIPC stakeholders [29].  

IV.  MODEL DESCRIPTION 

Because of the size of the EI problem in terms of number 
of zones, companies, and resources, our analysis assumes per-
fect competition and efficient transmission pricing. As men-
tioned above, this allows us to solve the problem using an 
efficient single-level model that co-optimizes generation and 
transmission expansion [30]. Another simplifying assumption 
that makes computation easier is that of perfectly inelastic 
demand.  As a result, maximization of net market surplus or 
benefits (which is a nonlinear objective function under elastic 
demand) reduces to minimization of cost, which is a linear 
objective in our formulation.  

In summary, our model identifies a set of transmission and 
generation investments over a multiyear planning period in 
order to achieve minimum system cost. Specifically, the costs 
considered include investment expenses along with fuel, vari-
able and fixed maintenance costs for generators, carbon taxes, 
Renewable Portfolio Standards Alternative Compliance Pay-
ments, and hurdle rates that apply to power trade between re-
gions. 2  The problem is formulated as a MILP with decision 
variables for generation and transmission investments in each 
year from 2011 to 2030. Transmission investments are mod-
eled as discrete, integer variables to consider the lumpiness in 
line additions, while all other variables are modeled as contin-
uous. Transmission expansion is possible only for existing 
interfaces, consistent with the EIPC study.  Dispatch is mod-
eled for three seasonal load duration curves, defining a total of 
20 periods per year, representing a range of load and renewa-
ble output conditions. 

                                                           
2 We assume that carbon tax and hurdle rate taxes reflect actual costs for 

the society. 
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Investment decisions for 20 years are modelled, which is a 
typical long term planning horizon. Because investments have 
benefits beyond year 20 and full overnight capital costs are 
included in the cost objective for new infrastructure, there 
could be large “end effects” distortions in cost calculations 
and investment decisions if no years after year 20 are simulat-
ed [31].  Therefore, we adopt an end-effects correction ap-
proach similar to EGEAS [32].  Specifically, we model a 40-
year extension period with stationary conditions identical to 
year 20, essentially assuming that the last year’s capacity and 
dispatch are maintained in years 2031-2070. We also include 
annualized capital payments for any generation infrastructure 
that would exceed its lifetime over the 2031-2070 period, as-
suming that retired plants are replaced with similar facilities. 
This end effects treatment is captured in the second term of 
the objective function, shown below:   

∑ 0��1&231

(5&67)1
9:
�;5 + ∑

2�=>&∑ ?0@A,B∗DA,B,1A,B

(5&67)1
E:
�;95         (1)           

where: 

�()� = 	∑ ����,�,�.��,�,���,� + ∑ ���,� ∗ (-�,�,� −-�,�'5,�)�,�  (2) 

 

�+� = ∑ ���
�,�,�,�*�,�,�,��,�,� + ∑ ���� �,�,��,� +
∑ �����(%�,�,�

&
�,� + %�,�,�

' ) + ∑ �
��#�,��  (3) 

This objective is minimized subject to the constraints below:  

∑ Φ�,�(%�,�,�
&

� − %�,�,�
' ) + ∑ *�,�,�,�� + "#$ �,�,� = ��,�,� +

		 ℎ�,�,�, ∀J, K, (  (4)    

*�,�,�,� ≤ M1 − ����OM1 − ����,�O
��,�,� �,�,�,			∀P, J, K, ( (5) 

 �,�,� ≤  �,�'5,� + .��,�,� , ∀P, J, (	 

-ℎQRQ						 �,:,� = �
�,� (6) 

%�,�,�
& ≤ �
�

& + ∑ ���� ∗ -�,�,�� , ∀S, K, J (7a) 

%�,�,�
' ≤ �
�

' + ∑ ���� ∗ -�,�,�� , ∀S, K, J   (7b) 

 ��,�,� ≤ ����,� 	,					∀J, PQ, (  (8) 

∑ 

�,� �,�,��	∈3,� ≥ M1 + ���O���,�,											∀+, J    (9) 

0.75 ∗ ∑  ℎ�,�,����∈Z ≥	∑ "#$ �,�,����∈Z , ∀$, J, ( (10) 

 ℎ�,�,� ≤	  ��,�,� 	, "#$ �,�,� ≤	  ��,�,�,			∀J, K, (			 (11) 

∑ "#$ �,�,����∈Z ≤ 	��,�,								∀$, J, ( (12)  

#�,� + ∑ ���
�,�,�*�,�,�,��,�,� ≥ ��	�,� ∗ ∑ ����,�,��,� , ∀J, R  (13)  

∑ ��*�,�,�,��,�[,�∈07 ≤ 0.35 ∗ ∑ ����,�,��,�∈07 , ∀J, #R   (14) 

In addition, all variables are assumed to be nonnegative, and 

the transmission planning variable -�,�,� is integer. 

      The constraints modeled include a load balance constraint 
for each zone and time period (4), generator capacity con-
straints taking into account forced and planned outages along 
with output profiles for intermittent resources (5), interface 
flow limits (7), limits on resource construction (8), planning 
reserve constraints (9), storage operational constraints (10-12), 
and renewable policy constraints (13-14).  Constraint (6) al-
lows units to retire in any year, which might be optimal if a 
unit is not dispatched often and its fixed O&M costs are high 
enough. For storage constraints, a 75% efficiency was as-

sumed (10). Since  pumped storage’s energy capability was 
not available, an upper bound constraint (12) was imposed on 
its discharge based on EIPC study results  [33]. A similar ap-
proach was followed for hydro units. Constraint (13) models 
Renewable Portfolio Standards (RPS) and (14) imposes an 
upper bound on wind and solar generation in each intermitten-
cy region equal to 35% of annual load, which was considered 
by EIPC to be a plausible penetration level. 

Additional constraints, which are mainly slight modifica-
tions of constraint (8), are imposed to take into consideration 
licensing issues for nuclear, lead time issues (e.g., for all gen-
erators, except natural gas, no investment is considered the 
first 4 years), maximum amount of investment per transmis-
sion interface (set to 20,000 MW), and limits on regional con-
centrations of investments (e.g., wind capacity installed in the 
SPP region cannot be higher than 50% of the total EI wind 
capacity). Many of these constraints represent stakeholder 
judgments concerning the feasibility of different resource de-
velopment patterns. Consistent with the original EI study, 
Kirchhoff’s Voltage Law is not included in the constraints as 
the stakeholders agreed to represent the EI as a transshipment 
model.  As pointed out in [34], omission of KVL constraints 
might lead to different than the true optimal plan. However, 
according to results presented in [34, Fig. 11] it appears that 
the discrete transportation model, which we essentially assume 
here, performs well in approximating the cost of the dis-
crete+KVL model. If reactances are available for the reduced 
network, it is possible to impose the voltage law at the ex-
pense of additional binary variables [30]. However, data from 
[35] for 2010 indicates that loop flows occur frequently (e.g., 
more than half of the time flows are from TVA to SOCO, 
SOCO to VACAR, and then from VACAR back to TVA), 
suggesting that KVL does not hold for this zonal model. 

Other widely used continental-scale planning tools such as 
IPM [36], which is used for both policy making and planning, 
and ReEDS [37], which is applied by NREL to investigate 
power system futures, employ similar formulations to the one 
described above. While both of those models have some addi-
tional features such as more detailed representations of air 
pollution control options in IPM, both of them are linear prob-
lems. In contrast, our model treats transmission as discrete 
investments using binary variables, which Ref. [34] concludes 
is more realistic. While in this particular application, we focus 
on benefits society might enjoy if the proposed model is 
adopted by transmission planners, other parties might find it 
useful in their policymaking or decision making processes.  
Examples include generation investors who might apply the 
model for market intelligence purposes, and regulators who 
could use the model when reviewing applications for new 
transmission facilities. 

The problem is modeled in AIMMS.  The CPLEX 12.6 
solver is used to solve the model with a MIP gap tolerance of 
10-6 (expressed as a fraction of the objective function). 

V.  EXPERIMENTAL DESIGN 

A.  Eastern Interconnection representation  

For all results reported in this paper, we use the 24-bus rep-
resentation of the Eastern Interconnection from the original 
study [28]. We omit regions outside of the EI in this case as 
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the interchanges between them and the EI are relatively small. 
The EI is represented with 24 nodes (set N) where Balancing 
Authorities are aggregated to nodes. Nodes are connected 
through 47 interfaces (set L). Transfer limits3 are approximate 
estimates of the maximum power that could be transmitted 
between any adjacent nodes in 2020.  

The network was defined by knowledgeable experts from 
planning coordinators through a transparent multi-stakeholder 
process. In the original study, this network was judged suffi-
cient for generating conceptual transmission plans that would 
capture the fundamental economics of interregional transmis-
sion and be of sufficient interest to justify further study.   

However, the EIPC study recognized that this representa-
tion has a number of simplifications rendering more detailed 
analyses necessary in an actual planning process. 4 Some of 
those simplifications included disregarding of internal conges-
tion within the regions, the assumption of a single interface 
between any two regions instead of multiple lines at different 
voltages and locations, and the absence of physical corre-
spondence of interfaces to lines, thus making contingency 
analysis impractical.  

Another major simplification of the previous study was the 

employment of heuristics, which ignore transmission expan-

sion costs, to decide on conceptual transmission build-outs. In 

this paper, we attempt to overcome this simplification by co-

optimizing the planning of transmission and generation. How-

ever, we also had to simplify some other assumptions, includ-

ing the following: 

1) Transmission capital costs are estimated based on EIPC 

data on costs per MW-mile for eligible configurations 

(345 kV single and double circuits, 500 kV, 765 kV), ad-

justed for regional differences.5  

2) We approximated interface lengths using distances be-

tween the region’s center points.6 

3) To represent wheeling cost and power trading frictions 

between regions, hurdle rates are considered and vary be-

tween 0 and 10 $/MWh. 

B.  Case study: data assumptions 

The purpose of this study is to explore and illustrate the 
benefits of co-optimization. Because the database for the orig-
inal EIPC study were developed by a collaborative stakeholder 
process [38] and the assumptions and results of that study 

                                                           
3 Several methods were used to specify the transfer limits based on stake-

holder preferences. In brief, the following methods were used: linear transfer 
analysis, first contingency incremental transfer capability (FCITC), operating 
limits (actual or augmented) to account for additions, and historical data. 

4 Phase 2 of the EIPC study [47] partially addressed this concern by simu-
lating the system in detail for one peak hour and one off-peak hour. 

5 Interface expansion costs vary between 1,261 and 11,836 $/MW-mile. 
6 Given the absence of information on the precise lines, substations or oth-

er constraints by interface, it is hard to determine the exact investment cost 
required to increase transfer limits. We assumed that relieving the constraint 
requires investment in transmission lines for the entire distance between the 
centers of the regions being connected. However, the investment required 
could be lower in case the congestion is concentrated at border bottlenecks 
between the two regions, or possibly higher in cases in which transmission is 
limiting for power transfers between buses that are far more distant than the 
centers.  We have tested the latter assumption, for example, and found that co-
optimization remains beneficial in that case, although the magnitude of bene-
fits is smaller. 

have been used or analyzed in follow-on studies [39], [35], 
[40], we retain the original EIPC assumptions, except where 
noted, in order to make our results as comparable as possible. 7  
For instance, we keep the same horizon (2011-2030) as the 
original study so stakeholders can better assess the benefits of 
co-optimization. 

Twelve types of generators G are considered for new in-
vestments.  These include combustion turbines, combined 
cycle (CC), hydro, pulverized coal, integrated gasification 
combined cycle (IGCC), IGCC with carbon capture and se-
questration (IGCC_CCS), onshore/offshore wind, nuclear 
(Nuc), biomass, landfill gas, and photovoltaics.  

All dollar values are in 2010$. A 5% real discount rate is 

used in present worth calculations in line with the original 

study and industry practice[41]. Since the purpose of this 

study is to explore and illustrate the benefits of co-

optimization rather than to replicate the full EIPC study or 

come up with an actual transmission plan, we focus on one of 

the EIPC planning scenarios, the EIPC CO2+ scenario (also 

known as “Future 8 Sensitivity 7”).  This scenario was chosen 

because of its relatively high investments in transmission and 

renewable generation in the original EIPC study.  A high as-

sumed CO2 price is the key driver of those investments (Table 

I).  

We omit three other policies modeled in the EIPC study in 

order to simplify the model: these include renewable incen-

tives, NOx and SO2 caps, and other EPA rules (such as once-

through cooling restrictions) that may require plant retrofits. 

 
Table I: Indicative CO2 prices (Source: EIPC [18]) 

Year 2015 2020 2025 2030 

Carbon tax (2010$/tn) 26.83 38.1 62.39 139.74 

 
In brief, some basic characteristics of the case study are: 

1) Energy demand falls by 4% from 2011 to 2030 due to 

growth in energy efficiency and distributed generation. 

2) A high amount of Demand Response (DR) (152 GW in 

2030) is installed.  That DR is given full credit in the 

planning reserve constraint and is dispatched as a pseudo-

generator with a variable cost of 750 $/MWh. 

3) Renewable portfolio standards are applied to eight aggre-

gated zones, and 6 zones are used specifically for solar. 

4) Generation capital costs are reduced annually to account 

for learning effects. They are also adjusted for regional 

differences and financing costs for various technologies. 

C.  Modeling of alternative planning approaches  

    1)  Proactive transmission planning/ Co-optimization 

This planning approach is implemented by solving the 
MILP presented in Section  IV, which allows transmission and 
generation investments to be jointly optimized.  

    2)  Iterative planning approach 

This planning approach is similar to the iterative planning 
approach used in [16], [27]. The model of Section IV is used 
iteratively, switching between generation-only and transmis-

                                                           
7 Current paper is a successor of the study completed in 2015, where inter-

ested reader can find more detailed analysis and comparisons [48]. 
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sion-only investment modes. In the former mode, the trans-
mission investment decisions are fixed at the levels decided at 
the previous iteration, and the only investments optimized are 
generation. Similarly, when the mode is transmission-
investment only, generation capacity in each zone is fixed at 
the levels decided at the previous iteration. The first iteration 
is the generation investment mode, given the present grid. We 
stop iterating between the two modes when convergence is 
achieved in that the objective function does not improve.   

    3)  Reactive planning approach 

This planning approach attempts to model traditional prac-

tice. In the introduction, we define reactive transmission plan-

ning as transmission planning under a pre-defined scenario of 

the generation fleet. The definition is quite broad and might 

correspond to different methods for identifying the assumed 

generation mix (e.g., the MISO and ERCOT cited in Section 

II, above) and/or different methods of transmission planning 

(e.g., assessment of lines individually or optimization of a 

portfolio of lines). In our application, we assume that the gen-

eration mix scenario has been identified through optimization 

of generation investments given the existing transmission 

network. Then, transmission planner designs conceptual 

transmission plans by solving an optimization problem for the 

whole system given that generation mix. In brief, the reactive 

planning approach is simulated by the first two iterations of 

the iterative approach. First, generation capacity is optimized 

to create a generation build-out scenario, and then transmis-

sion is optimized subject to the generation scenario. 

D.  Congestion metrics/Restricted proactive model 

Congestion metrics are frequently used by transmission 

planners to reduce the set of candidate transmission lines to a 

subset that appears particularly promising and so can be stud-

ied in more detail.  In particular, ISOs employ those metrics to 

identify or/and screen transmission projects that could im-

prove market efficiency. For example, PJM uses total conges-

tion cost and binding hours [42], SPP uses the total shadow 

price of each transmission interface [43], and MISO has pro-

posed a new metric called Estimated Potential Benefit (EPB) 

[44]. The authors of [44] assess the metrics based on their 

ability to reflect the rank order implied by the Actual Potential 

Benefit (APB) of interface expansions, and conclude that EPB 

outperforms the other metrics. APB is defined as the reduction 

in system cost estimated by a production costing model after 

expanding an interface.  We consider three metrics related to 

those ISO methods, defined as follows. 

ISOs usually calculate those metrics by extracting flows 

and shadow prices based on extensive production cost 

simulations they run under a specific generation siting 

scenario. In our case, we use the same definitions but obtain 

the flows and shadow prices from the planning model. In 

particular, we run the generation-only planning model (1st 

iteration of the iterative approach). Generation investments are 

represented through continuous variables and the transmission 

network is fixed. So the first iteration is a linear program and 

shadow prices for the transmission flow limit constraints (7) 

are provided by the solver. The flows are also recorded and 

used for calculation of metric (15). Moreover, instead of the 

year-by-year calculations ISOs use, we apply the metrics to all 

years at once by summing them over the entire planning 

horizon.  

1.   Total congestion cost (TCC): defined as the product of 
hourly shadow price and hourly flow on the interface, 
summed over all hours of the year (in $/yr): 




�,� = ∑ (|,�,�,�
& 8

� | + |,�,�,�
' |) ∗ (%�,�,�

& + %�,�,�
' ) (15) 

2.  Total shadow price (TSP): defined as the sum of hourly 
shadow prices for the interface (in $/MW/yr).  


	��,� = ∑ (� |,�.�.�
& | + |,�,�,�

' |) (16) 

3.   Estimated Potential Benefit (EPB): defined as the prod-
uct of the hourly shadow price of the original model and 
the maximum overflow (flow over the capacity) that is 
recorded in a second run of the model if the congested in-
terface is unconstrained (constraint (7) is relaxed). In its 
practical application by MISO, congested interfaces are 
sorted into groups and one simulation per group is con-
ducted in which (7) is deactivated and the unconstrained 

flow (%_�) is recorded for all interfaces of the group.  

 	����,� = ∑ (`,�,�,�
& | + |,�,�,�

' `) ∗ `%�,�,�
&,_� + %�,�,�

',_� − �
�`�     (17) 

All three metrics consider the benefit of additional capacity 
through shadow prices or overflows, but they ignore the in-
vestment cost of the line. This omission could lead to retention 
of high value but very costly candidate interfaces, but exclu-
sion of lower value interfaces that have a higher net benefit. 
As an attempt to counter this weakness, we apply a charge to 
any overflow. We assumed a charge that would be a lower 
bound to the fixed charge (in $/MWh) required to recover the 
investment cost. For that purpose, we calculated the discount-
ed sum of hours included in the model (174,112 hours). Then 
assuming that the interface will be used all 8760 hours at full 
capacity, we divided the investment cost per MW of the least 
expensive configuration for each interface by ~2*105 hours. 

VI.  RESULTS 

A.  Benefits of co-optimization/proactive planning compared 

to iteration and reactive planning 

By construction of the experiment, co-optimization of gen-

eration and transmission planning cannot have a higher cost 

than the iterative approach.  This is because the latter has the 

same objective function but a smaller feasible region since 

some of the decision variables are fixed at each iteration (e.g., 

generation investments are fixed for the 2nd iteration). Since 

reactive planning is equivalent to the iterative approach with 

the maximum number of iterations set at two, and since the 

cost cannot be worsen from iteration to iteration, reactive 

planning cannot have a lower cost than the iterative method. 

Here we quantify the extent to which co-optimization out-

performs the reactive and iterative methods.  Co-optimization 

results in cost savings of $4.5bn compared to the reactive ap-

                                                           
8Note that in all calculations we assume that there is one hourly shadow 

price per time block b and its relationship with the shadow price for constraint 

(7) is ,�.�.� = �� ∗ ℎ*aRSb	$ℎc"*-	+R# Q. 
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proach and $3.5bn (0.10% of the objective function) compared 

to the iterative approach (see Table II). The iterative method 

converged in only 4 iterations. In particular, it identified the 

same transmission investments as the reactive approach but as 

part of iteration 3, generation investment changed slightly 

responding to the transmission investments of iteration 2. So, 

in this case the two approaches have quite similar solutions. 

For that reason, we will only present and discuss the results of 

the iterative approach in the following tables.  This similarity 

of the iterative and the reactive approaches is not generally the 

case, however, as we demonstrate in one of the sensitivity runs 

in section VI-B. 

Contrasting the composition of costs of the two approach-

es, we see that co-optimization makes more investments in 

order to save operational costs. In particular, co-optimization 

decides to invest in transmission that connects regions with 

wind capacity factors high enough to compete with conven-

tional resources to high load regions that lack high quality 

wind resources. In that manner, co-optimization integrates 

approximately one-third more wind both in terms of capacity 

and energy (see Table III). This generation mix change is sig-

nificantly driven by the carbon tax cost savings (which make 

up $51.5bn out of the $907bn-$818bn = $89bn savings in ex-

tension period operational costs in Table II).  
 

Table II: Objective function components 

Metric  ($bn NPV in 2010$) Co-optimization 
Iterative (4th itera-

tion) 

Y
ea

rs
: 

  
2

0
1
1

-2
0

3
0
 

Generation Operation  1,583  1,592  

Generation Investment  692  633  

Transmission Operation 
(Hurdle Rates)  

9 8 

Y
ea

rs
: 

 
2

0
3
1

-2
0

7
0
 

Extension period           
  annualized capital costs  

500 473 

Extension period  
operational costs 

818 907 

T
o

ta
l Transmission Investment   9 1 

Objective function 3,610.9 3,614.4 

 
Table III: EI Capacity mix in 2030, GW/TWh 

Capacity Type Co-optimization Iterative 4th 

CC 220/770 233/921 

CT 49/7 45/7 

Nuc, Hydro, IGCC_CCS 219/1501 219/1505 

Wind 194/622 143/458 

DR 152/1 152/1 

Other 18/94 19/102 

 

The majority of the investments are concentrated in the late 

2020’s since a high carbon tax9 is necessary to make wind 

competitive with CC, even in regions with high quality wind. 

For example, 2020 is the first year that wind has a lower lev-

elized cost in 4 regions. The number of such regions reaches 6 

in 2030 (Fig.1). Other reasons that could explain the concen-

                                                           
9 We have also run sensitivities with lower carbon tax prices.  A ~ 0.02% 

savings were observed for a carbon tax of 100 $/tn applied to 2015-2030, 
while a higher carbon price (140 $/tn) produced a higher co-optimization 
savings (0.12%).  

tration of investments in the late 2020's could be negative load 

growth in the near future in combination with abundant exist-

ing capacity that is not due to retire until the 2030's and the 

declining capital costs of renewables due to the learning rates 

assumed. As a result, much of the savings achieved by co-

optimization are observed towards the end of the model hori-

zon. In particular, converting the overnight capital payments 

to annualized costs, we observe that the majority of the sav-

ings achieved by co-optimization are concentrated in years 

2029, 2030 and the extension period.10 

 
Figure 1: EI transmission investments by 2030 (MW) 

 

Transmission investment is significantly lower in the itera-

tive approach compared to co-optimization (see Fig. 1). To 

explain this difference, we describe the iterative mechanism in 

more detail. In the first iteration, which invests in generation 

only, tight transmission constraints and the lack of a clear 

economic advantage for wind means that investment in gas-

fired plants occurs even in regions with high quality wind. 

Wind integration is modest and no curtailment is observed. 

Then the 2nd iteration identifies which transmission lines are 

justified by operational cost savings, given the generation 

build-out from the 1st iteration. The presence of gas generation 

and absence of wind curtailment leads the model to avoid new 

connections to regions with high quality wind. Thus, the itera-

tive approach fails to recognize that operating cost savings can 

arise from simultaneously investing in remote wind and the 

interregional transmission needed to access it. In economic 

terms, those two investments are complementary, in that the 

presence of one increases the economic value of the other.  

Co-optimization is needed to capture this interdependency. 

However, the iterative method does recognize operational 

savings due to regional fuel cost differences or/and differences 

in the marginal resource. Nevertheless, the former does not 

justify transmission investments here due to the wheeling 

charges exceeding fuel cost differences for the same type of 

resource. The latter, however, motivates the iterative method’s 

only transmission investment, which is also identified by co-

optimization.  Ontario has spare low cost capacity during most 

load periods. As a result, 3.6 GW of expansion is justified for 

one interface to facilitate export of its cheap capacity (Fig. 1). 

                                                           
10 Note that this concentration of investments and savings in the final years 

of the horizon would lead to negligible savings in terms of % of the objective 
function (~0.03%) if annualized investment costs were used to correct end 
effects. However, the benefits would still be considerable for the years 2029 
and 2030 (~0.2 to 0.5%, respectively).  
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Finally, the amount of trade in the EI increases significant-

ly under co-optimization compared to the iterative solution. 

This is expected since gas-fired plants can be developed in any 

region with fairly similar costs while high quality wind is 

found only at specific regions. To measure trade, we divide 

the EI into zones by combining regions that have zero hurdle 

rates between them, and then calculate flows among those 

zones. Co-optimization increases the sum of net trade between 

these zones by 150% (from 64 TWh to 152 TWh) in 2030. 

   B. Sensitivity analyses 

We also quantified co-optimization’s benefits for two sen-
sitivity cases. In the first, we replace the carbon tax with an 
EI-wide renewable portfolio standard. In the second, we ex-
tend through 2030 a production tax credit (PTC) of 22$/MWh 
of wind production for the first 10 years of a wind investment. 
Please note that the results of the first sensitivity analysis de-
pend on the flexibility allowed for trading renewable energy 
credits as shown in [45]. In our sensitivity, enforcement at the 
EI-level assumes full flexibility for credit trading within EI. 

For the first sensitivity, we enforced an EI-wide renewable 

energy target that we calculated to match the TWh of renewa-

bles generated by year in the base case co-optimization results, 

and then we removed the carbon tax. The iterative model now 

needs 10 iterations to converge. The result is that the iterative 

and co-optimization solutions have a more similar pattern of 

transmission development, with 7,506 GW-miles built under 

co-optimization vs. 5,598 GW-miles in the iterative case.  At 

that point, the co-optimization solution costs $1bn less.  Alt-

hough both methods procure the same amount of renewable 

energy, the co-optimization approach builds more wind at the 

expense of biomass and wood. High quality of wind in specif-

ic regions compensates for the additional transmission invest-

ment needed to access them, and makes those remote wind 

resources competitive compared to local renewables. 

In the second sensitivity case, the PTC yields more wind 

investment in both approaches. However, the cost saved by 

co-optimization resembles that in the base case (section VI-

A). Co-optimization costs $4.3bn less than the iterative solu-

tion, corresponding to 0.12% of the total objective. However, 

the number of iterations required for convergence increases 

from 4 to 24. As a result, we now observe a more pronounced 

cost improvement resulting from using iterative rather than 

reactive planning (Table IV).  

 
Table IV: 2nd Sensitivity solution comparison of three planning approaches 

Transmission planning 
approach: 

Reactive  
(2nd itera-

tion) 

Iterative  
(24th itera-

tion) 

Co-
optimization 

 System cost after PTC 
receipt ($2010bn) 

3,581.2 3,558.8 3,554.5 

By 2030: Transmission 
Investment (GW-mile) 

1,554 19,161 33,896 

C. Co-optimization performance when candidate transmis-

sion investments are pre-screened 

Computational time is a disadvantage of the full co-
optimization. Here, co-optimization took 5-9 times as long to 
solve as the iterative approach, even though the latter involved 
multiple model solutions. So we evaluate whether pre-

screening of investments in order to reduce model size could 
improve solution times, and whether restricting the options 
considered decreases the benefits of co-optimization. 

 We identified the 10 most congested interfaces in the EI 
using the three metrics defined in Section V-C. Thus, the set 
of candidate interfaces is greatly reduced from the original 47 
interfaces.  Using the three sets of interfaces identified by the 
metrics as the reduced sets of transmission candidates (noted 

	7), we then co-optimized the EI system three times, once for 
each metric. Even though all metrics use the same shadow 
prices in their definition, the sets of interfaces they identify are 
very different because of the different roles of existing flows 
(in the case of metric TCC) and overflows (for EPB), as 
shown in Table V.  Only three interfaces appear in all three 
sets of 10 interfaces and one of them is the interface that ex-
pands under the iterative approach (Fig. 1). 

 
Table V: Intersections of reduced sets of candidate interfaces 

Set Size  Set Size  

	d@@ ∩ 	dZ3  5 	dZ3 ∩ 	f3g 4 

	d@@ ∩ 	f3g 5 	dZ3 ∩ 	f3g ∩ 	d@@  3 

 
Pre-screening lines results in a smaller number of integer 

variables for new lines, and reduces solution time by two-
thirds for the co-optimization model, when using the same gap 
tolerance (10-6). Unfortunately, however, by restricting which 
lines can be chosen by co-optimization, the cost savings ob-
tained from co-optimization are reduced (see Table VI).  

 
Table VI: Performance of different screening metrics 

Co-optimization with  	7	based on: 
TCC 

Metric 
TSP 

Metric 
EPB 

Metric 
Full set 
of lines 

Cost increase vs. full set of lines ($bn) 1.8 1.6 0.6 0 

Cost savings vs. iterative ($bn) 1.7 1.9 2.9 3.5 

Time to solve (sec) 411 608 490 2081 

No. of integer variables 480  384 480 1968 

Note: The number of continuous variables is the same in each model 
(218,164). The LP Barrier method is used at each node of the Branch-and-
Bound algorithm. The priority feature of integer variables for branching and 
full probing are adopted. These solution times are achieved on a desktop with 
Intel core processor i7-5930K at 3.50GHz and 32 GB Ram. 

 
Cost savings achieved vary (Table VI) depending on the 

metric used. EPB outperforms the other two metrics: it cap-
tures the highest portion (82%) of co-optimization’s cost sav-
ings without taking more time. Given that the interface ex-
panded by the iterative approach is part of all three reduced 
sets, the iterative approach is the same across all metrics. So, 
EPB also incurs the least cost increase (+$0.6bn) compared to 
co-optimization with the full set of lines, while TCC and TSP 
incur an increase approximately three times as high. 

Digging further into the metrics’ performance, we examine 
the number of interfaces at the intersection of two sets: 1) set 

�h , defined as the set of interfaces expanding under co-

optimization with the full set of lines and 2) set 	7. Then, the 

number of false positives is defined as the size of 	7 ∩
(	7 ∩ �h)@ and the number of false negatives is equal to the 

size of the set �h ∩ (	7 ∩ �h)@ . Given that in our application, 

the sizes of 	7 and �h  are identical, the numbers of false posi-
tives and negatives are equal (Table VII). We see that EPB 
also performs best (fewest false positives/negatives). 
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Table VII: Comparison of sets ij and	kl 

Reduction metric Size of 	7 ∩ �h  False positives/negatives 

TCC 4 6 

TSP 4 6 

EPB 7 3 

 
 There are two reasons for the success of the EPB metric. 

First, the overflow analysis indicates which interfaces might 
experience the greatest increase in use if all interfaces are ex-
panded simultaneously. In that manner, it identifies economi-
cally attractive multi-interface paths. Second, the overflow 
charge guides the flow and prevents some false positives. For 
example, in the case of two parallel paths with same shadow 
prices, EPB will favor the one with the lowest cost.  

However, the success of EPB in our case does not result 
from its ability to better approximate actual potential benefits 
(APB, defined above), contrary to the claim in [44]. Even if 
we identify the most promising interfaces using APB and co-
optimize with this reduced set, we only get 77% of the full co-
optimization savings because APB focuses on benefits from 
individual expansions, ignoring interactions among interfaces.  

Examining the false positives of each 	7, we now consider 
the reasons for their inclusion. First, all three metrics employ 
shadow price information. Those prices are useful but they do 
not quantify the extent (in GW) of expansion that would be 
beneficial, nor do they provide information on how those ben-
efits would be affected by expanding other interfaces. In par-
ticular, the false positive line that all three screening methods 
share seems to be beneficial for a much lower number of MW 
than the size of a new line for that interface. Also, the TCC 
and TSP metrics may include all the interfaces connecting two 
adjacent regions with large price differences while in practice 
it may be optimal to expand just the least costly interface.  
Finally, although the adjusted EPB does account for interface 
interactions, it could yield false positives because allowance 
of an overflow in one interface may cause overflows on other 
interfaces in series, not all of which may be optimal to expand.    

Reviewing the false negatives, we see that all metrics tend 
to miss interfaces that consist of the next-most limiting ele-
ment on a multi-interface serial path. EPB seems to suffer the 
least because the simultaneous release of the flow limits might 
lead to significant overflow in the multi-interface path, priori-
tizing even lines with low shadow prices. However, in case of 
zero shadow prices, EPB would expect no improvement and 
might miss an optimal series of lines to expand.  To correct 
this, grouping techniques might be adopted [46].  

VII.  CONCLUSIONS   

We apply co-optimization, or “proactive transmission 

planning”, to a 24-bus representation of the Eastern Intercon-

nection, using a dataset for the entire EI developed in a stake-

holder process. Savings from co-optimization are ~0.1% of 

system cost, compared either to reactive (generation-first) 

planning or a model that iterates between generation and 

transmission expansion. Given the high total system cost (sev-

eral trillion dollars in present worth for the EI), this magnitude 

of savings is considerable. Those savings are on the same or-

der of magnitude as incremental transmission investment 

costs. Transmission investments increase access to remote 

high quality wind resources and achieve savings through in-

creasing trade between EI regions and recognition of the com-

plementarity of transmission and remote generation invest-

ment. 

However, model size and solution times are a challenge for 
practical implementation of co-optimization.  We apply and 
evaluate congestion metrics as screening criteria in order to 
reduce the number of transmission options considered.  How-
ever, we observe that two widely used congestion metrics 
have a high rate of failure, in terms of overlooking lines that 
would actually be expanded in a co-optimization with the full 
set.  These metrics fail to achieve more than half of the cost 
savings of co-optimization with the full set.  In contrast, a ver-
sion of the estimated potential benefit (EPB) metric proposed 
by MISO performs better, capturing ~82% of the savings 
while reducing solution times by more than 75%. 

Future work could test the benefits of co-optimization and 
the success of EPB as a screening criterion based upon more 
detailed representations of the EI network that include Kirch-
hoff’s Voltage Laws. Also, co-optimization benefits could 
also be quantified assuming strategic players rather than per-
fect competition. This would require use of large-scale multi-
level optimization models. 
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