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ABSTRACT 

This dissertation presents three new environmental system and decision analysis tools, 

each with an environmental application.  Together these studies incorporate techniques 

from environmental systems and decision analysis to provide decision makers with tools 

to aid in managing complex, real-world environmental problems. 

The first study develops two novel integer programming models for identifying irreplace-

able nature reserve sites.  Knowing which sites are irreplaceable allows decision makers 

to target reserves that must be selected in order to achieve a conservation objective.  The 

models efficiently determine irreplaceable sites, but find a general lack of trend between 

the number of irreplaceable sites and the number of sites available for selection.  Moreo-

ver, irreplaceability at one resource level may not be a predictor of irreplaceability at a 

higher or a lower resource level.  

The second study develops a model for estimating and correcting attribute-weighting bi-

ases that result from the use of value trees to elicit decision makers’ preferences.  Value 

trees have been used to aid decision makers selecting among alternative solutions to 

complex environmental problems.  The model is based on the conjecture that attribute 

weights are influenced by tree structure and a subject’s use of the “anchor-and-adjust” 

heuristic. Weights corresponding to environmental and economic attributes of electric 

system expansion alternatives are elicited from electric utility employees are used to test 

the model. The model results support the hypothesis that a bias exists that is consistent 

with the anchor-and-adjust heuristic and illustrate the value losses caused by using eli-

cited versus model-estimated debiased weight sets.  
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The third study presents a framework to identify the optimal set of information acquisi-

tion and abatement actions to address environmental management when there is uncer-

tainty in the environmental processes, the outcomes of those processes, and the effective-

ness of management.  The framework combines Bayesian inference with multiobjective 

programming to select research actions, which improve understanding of the natural sys-

tem, and management actions, which reduce environmental contamination.   The model is 

applied to the problem of reducing turbidity from nonpoint sediment sources in the Min-

nesota River basin.  The results indicate that the economic value placed on sediment re-

duction influences the choice of both monitoring and management options.  
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Chapter 1  

Introduction 

Economic development, human population growth, and government policy play major 

roles in impacting the natural environment (Forester and Machlis 1996).  Human interac-

tions with the natural environment can cause a variety of negative consequences.  For ex-

ample, biodiversity has been significantly impacted by humans.  Extinction rates of spe-

cies populations are currently estimated to be 100 – 1000 times greater than pre-human 

rates (Pimm et al. 1995).  Similarly, humans have had a profound impact on air quality.  

Electricity generation, while a necessity of modern society, can result in undesirable envi-

ronmental impacts, particularly air pollution.  Human activity has also degraded the 

quality of water bodies throughout the US.  According to the Environmental Protection 

Agency, as of the year 2000, “39% of assessed stream miles, 45% of assessed lake acres, 

and 51% of assessed estuary acres are impaired (U.S. Environmental Protection Agency 

2003),” meaning that they do not meet state or federal water quality standards.  Impair-

ments are due primarily to nonpoint source pollution, with nearly 48% of the impacts on 

impaired rivers and streams due to agricultural activities (U.S. Environmental Protection 

Agency 2003).   

There are a wide variety of human activities that impact the natural environment, and 

their consequences can be quite diverse.  However, the range of complex environmental 

problems presented above can each be addressed using the framework of environmental 

systems analysis, which assists decision makers in optimally designing and managing en-

vironmental systems. 
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1.1 Purpose 

To further expand the breadth and utility of the environment systems analysis framework, 

this dissertation presents three distinct research studies in which new systems tools are 

developed and applied to three different environmental management problems. 

The first study involves the development of two novel integer programming formulations 

for aiding the design of nature reserves for species preservation.  A key principle of re-

serve design is irreplaceability.  Irreplaceability of any site is defined as the site’s proba-

bility of appearing in alternate optimal solution sets to a reserve selection problem (Pres-

sey et al. 1994).  If a site appears in all alternate optimal sets, the site has an irreplaceabil-

ity value of 1.0 and is called irreplaceable.  Consequences of omitting irreplaceable sites 

in a nature reserve design include the inability to achieve objectives, such as full species 

representation, and required increases of resources, such as additional reserve sites, to 

meet objectives.  The particular research questions addressed in the first study are: 

1. Can an efficient mathematical program be developed to determine which reserve 

sites are irreplaceable when requiring full species representation? 

2. Can an efficient mathematical program be developed to determine which reserve 

sites are irreplaceable when protecting the maximum number of species with a li-

mited number of sites? 

3. What are the impacts on the number of species protected and the number of addi-

tional sites required if an irreplaceable site is omitted from the set of available 

sites? 
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While the first study identifies alternate optimal solutions to single objective problems, 

the second study addresses alternate solutions to problems with multiple objectives.  

Many decision analysis tools exist that can aid decision makers to express priorities and 

value judgments and ultimately select among alternative solutions to complex problems.  

These methods have been used extensively for environmental management problems.  

One common task in decision analysis is the elicitation of preference weights for multiple 

objective problems; however, certain techniques aimed at eliciting decision makers’ pre-

ferences are prone to well-established biases.  The second research study in this disserta-

tion answers the following questions:  

1. Can a model be developed to quantify and mitigate biases that appear when using 

value trees to aid in preference weight elicitation?   

2. How does the use of different sets of preference weights affect the preferred solu-

tion? 

These questions are considered in the context of selecting among electricity generation 

planning alternatives, each having various economic and environmental attributes.  

The third research study addresses water quality impairments in the Minnesota River ba-

sin using a multiobjective, stochastic approach.  Many streams and rivers within the basin 

are in violation of standards for turbidity due to sediment loading; however, the relative 

contributions of the range of possible sources to the sediment loadings are uncertain.  To 

reduce sediment loadings to the waterways, a variety of management actions are under 

consideration.  Researchers are also developing and implementing methods for improving 
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the understanding of the contribution of each sediment source.  In this research study, I 

answer the questions:  

1. Can a stochastic mathematical model be developed to determine the optimal set of 

management actions and research actions to minimize both the expected cost and 

expected sediment loadings to the waterways?   

2. What is the value of information that can be provided by possible research actions 

that can be used to reduce uncertainty about sediment sources? 

The model combines Bayesian inference with linear programming to answer these ques-

tions.  The following section provides a description of the environmental systems analy-

sis framework used throughout this dissertation. 

1.2 Systems Analysis and Decision Analysis Defined 

The field of systems analysis, or operations research, combines economics, mathematics, 

statistics and other disciplines to develop mathematical models aimed at identifying op-

timal solutions to complex decision problems.  Environmental systems analysis applies 

the tools of systems analysis to environmental problems.   

A systems approach based upon mathematical programming (or optimization) consists of 

several elements.  First, a set of objectives and corresponding performance measures are 

identified.  The objectives describe the stakeholders’ and decision makers’ desired out-

comes.  Next, decision variables describe the management actions available.  Their costs 

and effects upon important problem components are incorporated into the objectives.  

Constraints are included to address strict requirements that the solution must adhere to, 
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such as describing how a physical system responds.  For example, mass balance con-

straints might be included to accurately reflect the physical system.  Constraints can also 

be used to enforce budget and resource limits and impose necessary social, legal, or envi-

ronmental requirements.  For example, if a particular water quality standard must be met, 

a constraint can be included in the methodology to enforce this.  The goal of the systems 

approach is to generate a solution(s) (set of values of the decision variables) that is effi-

cient with respect to the objectives, while meeting all the constraints.  “Efficiency” means 

that there are no other feasible alternatives that do better in one or more of the objectives, 

while not performing worse with respect to any other objective. 

Complementing optimization-based systems analysis, decision analysis promotes a clear-

er understanding of tradeoffs and uncertainties.  Decision analysis is a broad framework 

that helps model decision problems, including the uncertainty contained within them, as 

well as decision maker preferences regarding priorities among objectives and willingness 

to take risks.  First, decision analysis helps define objectives by assisting decision makers 

in addressing and organizing their values with a variety of techniques.  These objectives 

correspond to the objectives described above, meaning that decision analysis can be a 

useful starting point for an optimization-based systems approach.  Decision analysis also 

helps the decision maker consider uncertainty in the problem setting and identifies the 

decision maker’s preferences and attitudes towards risk.  These functions are performed 

by eliciting subjective probabilities regarding problem outcomes and developing utility 

functions for the decision maker that can be used to define preferred solutions (i.e., ex-

pected utility maximizing solutions).  Together, systems and decision analysis help deci-

sion makers frame and solve problems in a more methodical manner. 
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1.3 A Brief History of Environmental Systems Analysis 

The field of operations research (later also called systems analysis or systems engineer-

ing) arose during World War II when the British Air Ministry established the Bawdsey 

Manor Research Station to study how to intercept enemy aircraft with newly developed 

radar technology (see Gass and Assad 2005 for further details).  Around the same time, 

two scholars, Kantorovich and Koopmans, independently solved what is now the classic-

al transportation problem, which seeks to minimize the cost of distributing items.  The 

types of problems Kantrorovich and Koopmans studied involved optimizing a linear ob-

jective subject to linear equality and inequality constraints and were termed linear pro-

gramming problems.   

In 1947, while working on a US Air Force research project, Dantzig developed the Simp-

lex method for solving linear programs.  The method was nearly identical to the ones 

used by Kantorovich and Koopmans to solve the transportation problem.  A modified 

version of Dantzig’s Simplex method is still used today to solve linear programming 

problems. 

Another influential figure in operations research was Charnes.  Charnes and his col-

leagues were very active in applying linear programming (LP) to industrial applications 

and developed the gasoline-blending model, which was the first LP to be used in industry 

(Charnes et al. 1952).  In addition, Charnes and his colleagues were the first to address 

environmental problems with LP.  Charnes and his student Lynn addressed the design 

and operation of reservoirs, as well as water quality problems with LP.  At the same time, 

the Rockefeller Foundation funded the Harvard Water Program, which was a water re-
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sources seminar for graduate students and government personnel in the Graduate School 

of Public Administration.  The Program developed a systems based approach for select-

ing water projects (Maass et al. 1962) that greatly influenced the current operations of the 

US Army Corps of Engineers.   

Further developments in the field of operations research allowed a wider variety of prob-

lems to be addressed.  For example, integer programming was developed by Gomory 

(1958) to formulate problems in which some variables must be binary.  Kuhn and Tucker 

introduced nonlinear programming for problems with nonlinear objectives or constraints 

(Kuhn and Tucker 1951).  Stochastic programming (Dantzig and Infanger 1999) and 

chance-constrained programming (Charnes and Cooper 1959), as well as other methods, 

were developed to address problems in which uncertainty was important.   

Currently, the range of environmental systems analysis problems is vast.  A quick survey 

of the most recent literature includes topics ranging from using decision analysis tech-

niques to manage dairy effluent (Hajkowicz and Wheeler 2008) to the development of a 

chance-constrained program for managing water pollution (Liu et al. 2008).  The research 

presented in this dissertation further expands the environmental systems analysis litera-

ture by modeling three distinct environmental problems with the use of systems analysis 

and decision analysis tools. 

1.4 Problem Backgrounds 

1.4.1 Irreplaceability in Species Protection Models 

The first complex environmental problem addressed in this thesis is the preservation of 

species.  The protection of species from human threats is important because of the many 



 8

benefits that biological communities provide, including direct use, indirect use, existence, 

and option values.  Direct use values include consumptive and productive uses. Con-

sumptive use values are assigned to goods consumed locally and not sold in national or 

international markets (Primack 2002), while productive use values are assigned to prod-

ucts that are harvested from the natural environment and sold in national and internation-

al commercial markets.  In 2001, 4.5% of the U.S. GDP depended on wild species in 

some way (Primack 2002).  The indirect economic values of species are perhaps more 

important than the direct economic values.  Species provide a wide range of benefits de-

rived from non-consumptive uses.  For example, the primary productivity of ecosystems 

is the building block for food webs.  Healthy ecosystems protect watersheds, guard 

against the impacts of flood and drought, maintain water quality, curtail erosion, and pre-

vent disruption of the hydrologic cycle (Primack 2002).   

Ecosystems also provide humans with recreational services such as hiking, sport fishing 

and swimming.  Lastly, ecosystems and the species within them provide existence and 

option values.  Existence value measures the willingness to pay to prevent the destruction 

of a habitat or species, without the intention of using the resource in the future.  The exis-

tence of many environmental advocacy groups, such as The Society for Conservation Bi-

ology, The Nature Conservancy, and the World Wildlife Fund, reflect society’s desire to 

protect the environment.  The option values of species indicate the willingness to pay to 

ensure the future existence of a species because they may be interested in using the re-

source in the future (Field 2001).   

Loss of biodiversity can be prevented through the use of nature reserves (Bruner et al. 

2001).  Nature reserves are defined as areas under in situ protection measures (Pressey et 
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al. 1993).  Examples of nature reserves include wildlife refuges, national parks, and land 

protected by conservation groups.  Since 1980, researchers have developed algorithms to 

protect species by selecting land to set aside as nature reserves (Pressey 2002).  ReVelle 

et al. (2002) provide a review of exact and heuristic methods for solving five classes of 

reserve selection problems that aim to protect as many species as possible subject to a 

variety of constraints including resource limitations and uncertainty in the distribution 

and survival rates of species. 

Three main principles have guided reserve selection (Pressey et al. 1993).  First, when 

limited resources are available to devote to nature reserves, sites should be selected to 

complement the features of the existing reserve sites.  This is called complementarity.  

Second, it is often true that there are many ways of combining sites to form networks of 

reserves that achieve the same objective.  It is important to consider many (if not all) 

possible reserve networks so the selection of a reserve network is flexible.  Flexibility 

allows for adaptation in the face of changes in site availability.  Lastly, reserve selection 

must consider irreplaceability.  Irreplaceability has been defined in several ways.  For this 

problem, the irreplaceability of any site is defined as the site’s probability of appearing in 

alternate optimal solution sets to a reserve selection problem (Pressey et al. 1994).  If a 

site appears in all alternate optimal sets, the site has an irreplaceability of 1.0 and is called 

irreplaceable.  If an irreplaceable site is not selected, one or more objectives will be una-

chievable or, in some cases, the number of sites needed to achieve the objectives will in-

crease 

The implications of identifying the irreplaceability levels of sites in a reserve design are 

important to decision makers.  When selecting sites for a nature reserve, the decision 
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maker can identify which sites are irreplaceable, and therefore absolutely required to 

achieve an objective.  At the same time, the decision maker can determine which sites 

may be traded with other sites while still meeting the reserve selection goals.  However, 

determining irreplaceability values for sites can be deceptively difficult.  Suppose the ob-

jective is to select the fewest reserve sites necessary to ensure that each species is present 

in at least one selected site.  It might be surmised that the irreplaceable sites could be 

found simply by identifying the reserve sites that contain unique species.  However, due 

to the demands of complementarity, some irreplaceable sites do not contain unique spe-

cies.  In order to determine the irreplaceable value for each site, all optimal and subop-

timal solutions must be examined.  This is an intractable problem when the number of 

potential reserve sites is large (Pressey et al. 1994).  However, identifying the sites with 

irreplaceability value of 1.0 (irreplaceable sites) can be accomplished.   

In Chapter 2, two integer programming models are developed to identify irreplaceable 

nature reserve sites in the context of the species set covering problem and the maximal 

covering species problem.  The improvement of these methods over previous methods for 

producing the set of irreplaceable sites can be measured in terms of the decreased compu-

tational burden, as well as the existence of an optimal technique that does not rely on 

enumeration of solutions. 

1.4.2 Quantifying and Mitigating the Splitting Bias and Other Value Tree-
Induced Weighting Biases 

The second environmental management problem addressed in this dissertation combines 

behavioral decision making research with decision analysis to develop a model to quanti-

fy and mitigate biases that occur with the use of particular techniques aimed at eliciting 
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decision makers’ preferences. Many problems facing environmental decision makers are 

complex, involving multiple conflicting objectives.  Multiattribute decision analysis pro-

vides a formal framework that helps decision makers tackle these complex problems.  An 

important recent trend in multicriteria decision making research is combining the streams 

of behavioral decision making and decision analysis to devise methods to adjust ex-

pressed value judgments for known, persistent and important biases (Anderson and 

Hobbs 2002; Bleichrodt et al. 2001; Clemen 2008).    

In general, if biases exist in elicited weights, it is desirable to address the biases and cor-

rect the weights to better represent the decision maker’s preferences.  When a large por-

tion of the variation in weights is attributable to the elicitation process used (i.e., the 

choice of method can bias the weights), one approach is to choose a simpler, less cogni-

tively demanding task for eliciting weights, such as deriving weights from holistic rank-

ings (Edwards and Barron 1994).  However, simple methods can result in loss of impor-

tant ratio scale information and even result in incorrect rankings of objectives, and subop-

timal decisions can be made (Jia et al. 1998).  Therefore, it is important to address these 

sources of variation in developing more informative weight elicitation procedures. 

In Chapter 3, a model is developed to quantify and mitigate biases that occur with the use 

of a value tree to assist decision makers in preference weight elicitation.  A model to mi-

tigate these biases has not been developed previously, and other methods to mitigate the 

biases have been unsuccessful.  Weights elicited from employees of the Centerior Energy 

Corporation regarding environmental and economic attributes of alternative electric sys-

tem expansion plans are used to illustrate the existence and correction of these biases.   
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1.4.3 A Bayesian Framework for Cost Effective Management of Sediment 
Reduction in the Minnesota River Basin 

The last essay of this dissertation addresses the problem of controlling nonpoint source 

pollution, particularly from agricultural lands.  Despite the passage of the Clean Water 

Act amendments to the Federal Water Pollution Control Act in 1977, many river basins 

are still impaired, meaning that they do not meet state or federal water quality standards.  

(U.S. Environmental Protection Agency 2003).   One major nonpoint pollutant impairing 

water bodies is sediment.  The loss of soil from erosion can lead to significant problems 

on the land itself, including depletion of nutrients and deterioration of soil structure, 

which decreases the productivity of the land.  When the sediment reaches surface waters, 

the suspended sediment particles increase turbidity, which limits light penetration and 

causes changes in primary production.  Conditions for primary producers can shift from 

nutrient-limited to light-limited, ultimately affecting dissolved oxygen and stream meta-

bolism.  Excess sediment can lead to habitat loss, changes in predation success, and alte-

ration of food web dynamics.  Finally, other nonpoint source pollutants such as nutrients, 

pesticides, and herbicides may also be associated with soil loss, leading to other impor-

tant pollution problems such as eutrophication. 

As a nonpoint source pollutant, the sources of sediment are diffuse, each contributing un-

certain amounts of sediment loadings; however; methods exist to improve understanding 

of sediment loadings, thus reducing their uncertainty.  In addition, a variety of manage-

ment actions have been developed to reduce the sediments loadings from a variety of 

sources.  Choosing among actions to improve the understanding of the system and actions 

to reduce sediment is challenging.   Chapter 4 presents a Bayesian decision analysis 
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framework that chooses the optimal set of actions that improve understanding of the sys-

tem and reduce sediment.  This framework is applied to the Minnesota River Basin.   

The Minnesota River frequently violates federal or state water quality standards for a va-

riety of pollutants including nutrients and turbidity (Mallawatantri 1999).  In 2001, the 

Minnesota Pollution Control Agency published the Minnesota River Basin Plan (2001) 

that described the state of the river basin and identified priorities for addressing water 

quality impairments.  The plan described a basin management approach that addressed 

water pollutants by aiming to achieve environmental objectives using an integrated man-

agement approach to address both point and non-point sources of pollution while encour-

aging the involvement of stakeholders. 

One focus of the Minnesota River Basin Plan is to reduce sediment loading from non-

point sources to the Minnesota River, its tributaries, and Lake Pepin.  Runoff from agri-

cultural lands is likely to be a major cause of sediment and water quality impairments.  

Additionally, stream bank and bed erosion may contribute significantly.   

Total maximum daily loads (TMDLs) are being developed to place an upper limit on the 

amount of sediment reaching the waterways.  Once the TMDLs have been established, it 

is necessary to identify an action plan to meet the standards.  Various actions have been 

suggested including agricultural best management practices (BMPs), stream restoration 

and riparian buffers.  The Minnesota River Basin Plan describes an action strategy for 

addressing sedimentation and turbidity in the Minnesota River.  The strategy is concerned 

with both identifying the sources of sediment and implementing actions to reduce the 

loading to waterways.  A broad list of objectives is identified; however, there is relatively 
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little discussion about what actions will be taken to achieve the objectives, and how ef-

fective the actions will be.  It appears that the plan’s recommendations consist of actions 

that are combined in a qualitative and judgmental manner, possibly resulting in an ineffi-

cient collection of actions that may or may not reach the desired sediment reduction goal.  

In addition, the plan does not quantify or even acknowledge uncertainty surrounding se-

diment loadings. 

A potentially useful way to address the sedimentation problems in the Minnesota River is 

to use a systems approach.  The uncertainty-based methodology developed in Chapter 4 

combines Bayesian inference with multiobjective linear programming.  A Bayesian 

framework is advantageous over a deterministic approach because it allows prior infor-

mation to be combined with observed data to improve understanding of the physical sys-

tem.   Application of the methodology identifies optimal strategies (i.e., a mix of research 

and source control actions) that account for what can be learned from research and how 

that information might alter optimal strategies.  The explicit consideration of research 

actions in environmental management can be viewed as a quantitative implementation of 

adaptive environmental management (Holling 1978; Walters 1986).  

1.5 Scope 

The remainder of this dissertation is organized as follows.  Chapter 2 presents the first 

essay, Irreplaceability in Species Protection Models.  The chapter begins with a detailed 

introduction and literature review of the problem.  Next, the methodology section intro-

duces the new integer programming model.  A dataset of habitat for terrestrial vertebrates 
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in Oregon is used to test the models.  The chapter concludes with a discussion and con-

cluding remarks.   

Chapter 3 presents the second research study: Quantifying and Mitigating Value Tree-

Induced Attribute Weighting Biases.  This chapter follows the format of Chapter 2.  First 

an introduction and literature review are presented.  The methodology section describes 

the development of the model.  The following section presents the results of using case 

study data to test the model.  The final section concludes the paper.   

The final study, A Bayesian Framework for Cost Effective Management of Sediment Re-

duction in the Minnesota River Basin, is presented in Chapter 4.  This chapter also begins 

with an introduction and literature review.  The next section develops the model.  Results 

are presented following the methodology section, and a conclusion completes the chapter.  

Chapter 5 discusses overall conclusions.  Plans for further research are also presented. 
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Chapter 2  

Irreplaceability in Species Protection Models 

This chapter introduces two new integer programming optimization models that efficient-

ly determine the set of irreplaceable nature reserve sites out of all sites under considera-

tion. Two existing reserve selection problems, the Species Set Covering Problem and the 

Maximal Covering Species Problem, are investigated with these new models to determine 

irreplaceable reserve sites.  

2.1 Introduction 

For over two decades, researchers have developed different methods to select land par-

cels as nature reserves to achieve adequate representation of species populations (Pressey 

2002).  For problems in which the spatial arrangement of parcels is not a concern, several 

fundamental problem statements have evolved and a number of exact and heuristic me-

thods have been applied to these combinatorial optimization problems (ReVelle et al. 

2002). 

An important question has been raised about the conservation value of the parcels chosen 

relative to the objective(s) being optimized.  The question, which is important from both 

a practical and research perspective, is whether or not there are sites (i.e., parcels of land) 

that are irreplaceable.  The irreplaceability of a site has typically been defined in the con-

text of the species set covering problem (SSCP) (Camm et al. 1996), which selects the 

minimum number of sites required to achieve representation targets for all species or oth-

er features in a data set.  The SSCP was first defined for conservation planning and 

solved heuristically by Kirkpatrick (1983), and later identified as an integer programming 
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optimization model (Cocks and Baird 1989; Possingham et al. 1993; Underhill 1994).   In 

the context of the SSCP, the irreplaceability of a site is defined as the likelihood, varying 

from zero to 1.0, that the site is required as part of a set of sites that achieves all proposed 

targets (Pressey et al. 1994).  Given that many alternative sets of sites can often be found 

for the SSCP, irreplaceability is measured as the proportion of these alternative sets in 

which each site occurs.  Occurrence in all alternative sets indicates an irreplaceability of 

1.0.  Sites with an irreplaceability of 1.0 are defined as irreplaceable sites and possess 

considerable importance for the achievement of conservation targets.  If these sites are 

not available for conservation, one or more targets will become unachievable or, in some 

cases, the number of sites needed to achieve targets must increase. 

Similarly, the irreplaceability of reserve sites can be determined in the context of the 

maximal species covering problem (MCSP) (Camm et al. 1996), which seeks the maxi-

mum number of species covered given a predetermined number of reserve sites.  This 

problem has also been approached heuristically (Vanewright et al. 1991), but was identi-

fied by Underhill (1994) as appropriate for integer programming optimization and later 

formulated in this way by Camm et al. (1996), Church et al. (1996), and others.  As with 

the SSCP, a reserve site has an irreplaceability of 1.0 in the context of the MCSP if that 

site appears in all alternate optimal solutions to the MCSP.  Sites with irreplaceability = 

1.0 are important because, if they are rendered unavailable for conservation action, fewer 

species will be protected with the same number of sites, or a increased number of sites 

will be needed to protect the same number of species.  

Irreplaceability has played a key role in conservation decisions.  In 1995, irreplaceability 

became the basis for a decision support system (C-Plan) and was extensively used in ne-
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gotiations over new forest reserves in New South Wales (Pressey 1998).  Since its incep-

tion, C-Plan has been used throughout the world in conservation planning (Cowling et al. 

2003) and presently has about 400 users.  Another widely used system, MARXAN, ap-

plies a different predictor of irreplaceability and is used by hundreds of decision makers 

worldwide (Stewart and Possingham 2005).  

Irreplaceability can be used for resolving choices between alternative sites or alternative 

sets of sites.  Cowling et al. (2003) for example, utilized irreplaceability to avoid threat-

ened sites and achieve compact groups of sites, where possible, while still achieving all 

targets.  Threat and irreplaceability have been combined to recommend scheduling of 

protection to minimize the extent to which targets are compromised by ongoing attrition 

of biodiversity (Primack 2002).  Cost has been used extensively to estimate irreplacea-

bility in MARXAN to find alternative sets of sites that achieve targets and minimize costs 

defined as area, money, or other surrogates.  

While irreplaceability has played a key role in conservation decision making, finding ir-

replaceability values for sites can be deceptively difficult.  It might be surmised, for ex-

ample, that with a target of a single occurrence of each species in a region, the irreplacea-

ble sites could be found simply by identifying those with unique species.  However, due 

to the demands of complementarity, some sites identified as irreplaceable do not have 

unique species and have lower irreplaceability values when the set of sites is increased 

above the optimal size (Pressey et al. 1994).  Identification of these sites requires com-

plete exploration of optimal and suboptimal solutions.  Moreover, for area-based targets, 

characteristics other than unique features can define irreplaceable sites (Ferrier et al. 

2000): occurrences of features that are scattered but have very large targets relative to 
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their total size; and unusually large occurrences of non-unique features that would com-

promise target achievement if not protected.  

To address the challenge of identifying irreplaceable sites, this chapter develops two in-

teger programming models to efficiently extract the set of irreplaceable reserve sites in 

the context of the SSCP and the Maximal Covering Species Problem (MCSP).   The re-

mainder of this chapter is organized as follows.  Section 2.2 provides a literature review.  

Section 2.3 presents the species set covering problem and maximal covering species 

problem formulations, and extends them to create two new integer programs used to de-

termine the number of irreplaceable sites.  Section 2.4 describes the data used to test the 

new formulations.  The results are presented in section 2.5, and section 2.6 presents a dis-

cussion and conclusions. 

2.2 Literature Review 

Several approaches have been taken to measure or estimate irreplaceability for the SSCP.  

Irreplaceability can be measured exactly for very small data sets by exhaustive analysis 

of all possible site combinations (Pressey et al. 1994) or enumeration of all alternative 

representative combinations by stepwise analysis (Tsuji and Tsubaki 2004).  For these 

and somewhat larger data sets, exact values can also be obtained by  operations research 

methods that find all alternative optimal solutions (Csuti et al. 1997).  For still larger 

and/or more complex representation problems, estimates of irreplaceability values have 

been derived from stepwise heuristic approximations (Pressey et al. 1994), statistical 

techniques (Ferrier et al. 2000), and sampling from the range of possible representative 

site combinations, either by modified heuristic selection methods (Tsuji and Tsubaki 
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2004; Rebelo and Siegfried 1992), randomly generated sets, (Ferrier et al. 2000) or simu-

lated annealing (Leslie et al. 2003).  

Research on conservation planning has also focused on the maximal covering species 

problem (Camm et al. 1996), which maximizes the number of species or other features 

that can be represented in a set of sites smaller than that required for the set covering 

problem.  Multiple optimal solutions are known for the maximal covering species prob-

lem (Csuti et al. 1997; Arthur et al. 1997), although only one study has used these to 

measure irreplaceability.  Kiester et al. (1996) used exhaustive combinatorial analysis for 

small sets of sites to identify two that were irreplaceable for solutions to the maximal 

covering species problem.   

Other work in this area has focused on finding all alternate optimal solutions to both the 

SSCP and the MCSP, and then determining irreplaceability values from the resulting so-

lutions. Csuti et al. (1997) identified many (and in some cases, all) alternate optima for 

both the SSCP and MCSP. The 144 optimal solutions found for the SSCP were examined 

to identify the sites that appeared in each solution.  Instead of manually examining all op-

timal solutions for common sites, an efficient integer program that determines the set of 

irreplaceable sites is developed in this chapter.  The methods presented here for the SSCP 

are faster and more tractable than an exhaustive enumeration of site combinations, espe-

cially for moderate to large data sets.  

In the context of the MCSP, two additional studies have found many (and in some cases, 

all) alternate optima.  Arthur et al. (1997) used an approach similar to the one developed 

in this chapter, called Explicit Exclusion, in which a constraint is added to the MCSP to 
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prevent previous optimal solutions from being found again.  As soon as all the alternate 

optima were found, the solutions were inspected and the sites common to all solutions 

were identified as the irreplaceable sites.  Kiester et al. (1996) also found irreplaceable 

sites by comparing all optimal solutions to the MCSP.  The methods presented in this 

chapter for the MCSP are a clear improvement on the techniques developed previously, 

since all irreplaceable sites are found using an efficient and optimal technique that does 

not rely on complete enumeration of solutions.   

2.3 Methodology 

In this section, integer programming formulations for the SSCP and MCSP are presented.  

These two formulations are then modified to determine the irreplaceable sites among a 

set of reserve sites.  For both the SSCP and the MCSP, many alternative optimal solu-

tions have been observed and are likely to exist in new species/population data sets.  The 

sites that appear in every one of the multiple optimal solutions for a given set of data and 

parameters are recognized as irreplaceable.  If only one solution exists (no alternative op-

tima present), all sites selected in that solution are irreplaceable.  If, on the other hand, 

several solutions exist, only the sites that appear in every one of the optimal solutions are 

irreplaceable – that is, they cannot be excluded without degrading the objective.  For the 

SSCP, degrading the objective means that the representation target (e.g., at least one oc-

currence of each species) can no longer be achieved for one or more species, or that a 

larger number of sites is needed to meet the target.  For the MCSP, degrading the objec-

tive means a reduction in the number of species that can be represented in a given number 

of sites. 
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2.3.1 Irreplaceability and the Species Set Covering Problem 

A modification of the SSCP is developed for finding the set of irreplaceable sites that 

must be included in a reserve system.  The irreplaceable sites are found by determining 

the set of sites that appear in all alternate optima to the SSCP.  Two formulations are used 

throughout this section – the SSCP and a modified version of the SSCP called the Irrep-

laceable Sites Species Set Covering Problem (IS-SSCP).  The two formulations are de-

scribed below. 

Notation 

m :=  total number of species 

n :=  total number of candidate reserve sites 

I :=  {i|i = 1,...,m} index set of the population (species) to be covered 

J :=  {j|j = 1,...,n} index set of candidate reserve sites  

Ni :=  subset of J, set of candidate reserve sites that contain species i  

Sk :=  subset of J, solution set for the SSCP when k = 1 and solution set for the kth 

instance of the IS-SSCP for k = 2, 3, 4,... 

xj :=  {1, if site j is chosen for preservation; 0, otherwise} 

p :=  |S1| number of sites required to cover all species.  Found as the solution to the 

SSCP 

Species Set Covering Problem 

 (SSCP) Min j
j J

z x
∈

=∑  (2.1) 

 subject to 1
i

j
j N

x i I
∈

≥ ∀ ∈∑  (2.2) 

 {0,1}jx j J∈ ∀ ∈  (2.3) 
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This problem determines the minimum number of parcels (2.1) subject to the constraint 

(2.2) that every species must be in at least one of the sites selected (written for each of the 

m species) and (2.3) that the variables must be binary (for n variables).  

kth Irreplaceable Sites Species Set Covering Problem 

 (IS-SSCP) Min
k

j
j S

z x
∈

= ∑  (2.4) 

 subject to 1
i

j
j N

x i I
∈

≥ ∀ ∈∑  (2.5) 

 j
j J

x p
∈

=∑  (2.6) 

 {0,1}jx j J∈ ∀ ∈  (2.7) 

The objective of this problem is to minimize the sum of the sites that appeared in the op-

timal objective function of the SSCP (when k = 1) or the previous IS-SSCP problem.  The 

sites that appeared in the optimal objective of the SSCP (or previous IS-SSCP) comprise 

the set of sites denoted by S1 (Sk).  By minimizing this sum, the model forces those sites 

out of the objective function if they can be excluded in a feasible solution (all species 

covered) to the species set covering problem.  Therefore, the sites that remain in the solu-

tion set comprise the objective function to the subsequent minimization problem.  The 

first constraint (2.5) is the same as in the SSCP – each species must be covered in at least 

one selected site.  The second constraint (2.6) requires that the same number of sites (p) 

must be selected as were selected in the SSCP.  Again, the decision variables must be bi-

nary (2.7). 

The set of irreplaceable sites for the SSCP is found using a successive minimization ap-

proach.  Figure 2-1 presents a flow chart for the method.  First, an optimal solution to the 

SSCP is found (box 1).  This result identifies the smallest set of sites that must be  
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Figure 2-1: Flowchart describing the process for determining the set of irreplaceable sites when re-
quiring full species representation 

 
selected to represent every species at least once.  These p sites form the set S1, which 

might be one of many alternative optima, and which is then used as an input in the next 

step of the solution method (box 2).  Given this set S1, the first IS-SSCP problem is 

solved, which minimizes the cardinality of S1, or equivalently finds the fewest members 

of S1 absolutely needed from among the original p sites.  The optimal objective of the IS-
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SSCP determines how many sites from the original set S1 cannot be replaced if it is re-

quired that only p sites are chosen that still cover all species.  The IS-SSCP simply finds 

an alternate optimal solution to the SSCP that contains the fewest sites in common with 

the original solution found. 

If the objective value is zero (diamond 3), then some other set of p sites, with no mem-

bers in common with the original set S1, can accomplish full species representation, and 

therefore, no sites are irreplaceable (circle 4).  If some irreplaceable sites are still needed 

in all of the alternative optimal solutions, the objective value of the IS-SSCP can not be 

driven to zero.  

 
Figure 2-2: Example of Irreplaceable Sites 

 
On the other hand, if the IS-SSCP has a nonzero optimal objective value, some of the 

original sites selected in the SSCP are required in order to preserve all species. However, 

a positive objective value of the IS-SSCP does not necessarily indicate which, or how 

many, sites are irreplaceable.  

976431Solution 3

865432Solution 2

986321Solution 1

976431Solution 3

865432Solution 2

986321Solution 1

Sites 3 and 6 appear
in all solutions
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Consider the example illustrated in Figure 2-2. Suppose three alternate optima to the 

SSCP exist.  Solution one consists of the sites 1, 2, 3, 6, 8, and 9.  Solution two contains 

the sites 2, 3, 4, 5, 6, and 8.  Solution three consists of the sites 1, 3, 4, 6, 7, and 9.  If so-

lution one is found, this set of six sites becomes the input to the IS-SSCP.  Suppose the 

IS-SSCP is solved resulting in an objective of four sites: 1, 3, 6, and 9. Recall that there is 

a constraint (2.6) in the IS-SSCP that says that p sites must be selected.  In order to cover 

all species with only p sites, one of the alternate optima must satisfy the constraint in the 

IS-SSCP.  If those p sites correspond to solution three above, the sites in common (1, 3, 

6, 9) are the four sites that end up in the objective of the IS-SSCP.  Similarly, the IS-

SSCP could have satisfied the constraint using solution two.  This solution also shares 

four sites with the solution to the SSCP, but the four sites are different (2, 3, 6 and 8).  

Therefore, if solution one of the SSCP is used as input to the IS-SSCP, the IS-SSCP will 

have an optimal objective of four but those four sites are not fixed.  Also notice that if 

solution two had been found as an optimal solution to the SSCP and was then used as in-

put to the IS-SSCP, the objective to the IS-SSCP would have been three since the mini-

mum number of sites that solution two shares with any alternate optima is three (solutions 

two and three share sites 3, 4, and 6).  Thus, the solution to the IS-SSCP does not indicate 

which or how many sites are irreplaceable and depends on the solution to the SSCP; 

however, the process described in Figure 2-1 does identify the set or irreplaceable sites.  

The process is further described below. 

If a nonzero objective value exists for the IS-SSCP, the following step(s) must be taken.  

The sites remaining in the objective function of the IS-SSCP are included in a new set 

called S2.  If S2 contains p sites, all p sites are irreplaceable (diamond 5 and circle 6).  
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However, if S2 contains fewer than p sites, the IS-SSCP (k = 2) is solved again (box 7).  

This time, the sum of the sites in S2 is minimized.  The constraint (2.6) requiring p sites to 

be selected is still included.  In this step, the IS-SSCP finds an alternate optimum to the 

SSCP that contains the fewest sites that are members of S2.  Note that in this step, mem-

bers of S1 that do not appear in S2 might return to the solution set.  If a nonzero solution 

exists to the IS-SSCP, members in the objective function form the set S3.  The cardinality 

of S3 represents the minimum number of sites that appear in S2 and all of the alternate op-

tima.  If one of the alternate optima contained fewer sites in common with S2, that solu-

tion would have been found. 

Again, consider the example above.  Suppose set S2 contains sites 2, 3, 6, and 8.  Solving 

the IS-SSCP will result in set S3 containing sites 3 and 6, because solution three only con-

tains sites 3 and 6 in common with the sites in S2.  It does not contain sites 2 and 8.  

If the objective of the IS-SSCP is reduced to zero, none of the sites are irreplaceable.  If 

S3 is not empty, the size of S3 is compared against the size of S2 (diamond 9).  If S3 con-

sists of fewer sites than S2, the IS-SSCP (k = 3) is again solved by minimizing the sum of 

the members of S3 (box 7).  This successive minimization process is continued until no 

member can be driven out of the set over which the IS-SSCP is minimizing (diamond 9).  

This final set represents the sites that must appear in all alternate optima.  These sites are 

identified as irreplaceable.  It is important to note that the number of times the IS-SSCP 

must be run is a direct result of the solution found to the SSCP.  Since many solutions 

may exist to the SSCP, the number of intermediate IS-SSCP steps needed depends on 

which solution is found to the SSCP.  The final result will be the same, nonetheless, as 

the set of irreplaceable sites is not dependent on the starting solution. 
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A second approach can be used to determine the irreplaceable sites and is very similar to 

the method outlined above.  This method adds successive “cuts” instead of using succes-

sive minimizations.  Given an optimal solution to the SSCP of p sites, the SSCP is solved 

again with an additional constraint that limits the set of sites that can be selected.  The 

constraint takes the form 
1

1jj S
x p

∈
≤ −∑ , where S1 is the set of sites that comprise a so-

lution to the SSCP.  This constraint says that, at most, only p - 1 of the p sites in the orig-

inal optimal solution of the SSCP can be selected.  The minimum number of sites re-

quired to cover all species that also satisfies the added constraint is then determined.  If 

this new objective value is the same as the objective of the original SSCP, a third optimi-

zation program is run.  This third program is identical to the second; however, the cut that 

is added allows only p - 2 of the original p sites to be selected (i.e., the right-hand side of 

the constraint changes to p - 2).  Again, if the new objective is the same as the original, 

the process is repeated with another cut (≤ p - 3).  The cut becomes increasingly restric-

tive until the objective function degrades, meaning that the number of sites required to 

cover all species increases above p.  

When the objective degrades, too many of the original p sites have been restricted from 

being selected.  Suppose this occurs when the constraint allows at most b - 1 of the origi-

nal p sites to be selected.  In order to preserve all species, at least b of the original p sites 

must be selected.  This set of b sites corresponds to S2 noted above.  Note that this set of b 

sites might not be unique (as in the successive minimization technique). 

The next step is to determine what number of sites in the set S2 appears in all solutions.  

This is done by again solving the SSCP with a cut.  However, the cut here restricts the 
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number of sites that are in the set S2.  The cut states that the sum of these sites must be 

less than b - 1.  The constraint takes the form 
2

1jj S
x b

∈
≤ −∑ .  If the objective does not 

degrade at this point, not all of the sites in S2 are essential and the cut can become more 

restrictive (b - 2).  Again, the cut is made more and more restrictive until the cut leads to 

a degraded objective function.  Suppose this degradation occurs when the constraint al-

lows c - 1 sites from S2 to be selected.  That is, the constraint becomes more and more 

restrictive until it takes the form 
3

1jj S
x c

∈
≤ −∑  at which point the objective function 

degrades.  Thus, c of the original b sites in S2 are still necessary to cover all species.  This 

set of c sites composes the set S3.  Again, a new cut is added which states says that the 

sum of the sites in S3 must be less than c - 1 and so on.  The process is repeated until the 

objective function degrades when only 1 of the sites is restricted from selection.  At this 

point, all of the sites common between successive steps must be included in the set of 

sites selected in order to prevent the objective function from degrading.  These are the 

irreplaceable sites. 

2.3.2 Irreplaceability and the Maximal Covering Species Problem 

Monetary (or other) restrictions can limit the number of selected sites, preventing full 

species representation.  In this case, the MCSP can be solved to determine the maximum 

number of species that can be covered with a limited number of reserve sites.    

To determine the set of irreplaceable sites in the context of the MCSP, a similar process 

to the one described above can be performed.  First, the MCSP is solved to determine the 

maximum number of species, A(q), that can be covered with q sites (the starting point for 

the value of q can be determined from the SSCP).  The solution to the MCSP is used to 
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solve successive occurrences of the Irreplaceable Sites Maximal Covering Species Prob-

lem (IS-MCSP).  The process eventually identifies the sites that are irreplaceable when 

representing the maximum number of species with a predetermined number of sites.  The 

formulations for the MCSP and IS-MCSP are presented below. 

Additional notation 

Zk := subset of J, solution set for the MCSP when k = 1, and solution set for kth in-

stance of IS-MCSP for k = 2, 3, 4,... 

ui := {1, if species i is represented in the reserve system; 0, otherwise} 

q := user-prescribed number of sites that can be selected 

A(q):= optimal solution (number of species) for a given value of q 

Maximal Covering Species Problem 

 (MCSP) Max i
i I

z u
∈

=∑  (2.8) 

 subject to
i

j i
j N

x u i I
∈

≥ ∀ ∈∑  (2.9) 

 j
j J

x q
∈

=∑  (2.10) 

 (0,1)iu i I= ∀ ∈  (2.11) 
 (0,1)jx j J= ∀ ∈  (2.12) 

The objective (2.8) determines the maximum number of species that can be preserved 

with a given number of sites in the reserve system (q).  The value of q is initially set 

equal to p-1, where p is the number of sites required for full species representation.  Sub-

sequently, q is decreased to determine the effect on the number of species protected when 

allowing fewer sites to be selected.  The first constraint (2.9) allows species i to be in-

cluded in the set of represented species if and only if at least one site containing species i 

is selected.  The second constraint (2.10) limits the possible number of sites chosen to be 
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q.  The last two constraints (2.11) and (2.12) require both decision variables to be binary.  

The set of sites that is selected in the optimal solution is defined as Z1. 

kth Irreplaceable Sites Maximal Covering Species Problem 

 (IS-MCSP) Min j
j Zk

z x
∈

= ∑  (2.13) 

 subject to
i

j i
j N

x u i I
∈

≥ ∀ ∈∑  (2.14) 

 j
j J

x q
∈

=∑  (2.15) 

 (0,1)iu i I= ∀ ∈  (2.16) 
 (0,1)jx j J= ∀ ∈  (2.17) 

By minimizing the sum of the sites (2.13) identified in the MCSP (or previous IS-MCSP), 

the IS-MCSP tries to force those sites out of the objective function.  The process is con-

tinued until no more sites can be excluded.  The sites remaining in the solution set are 

considered essential to represent the maximum number of species with only q parcels.  

Species i can only be counted as covered if a site containing species i is selected (2.14).  

The maximum number of sites selected in the MCSP (or previous IS-MCSP) must still be 

protected in this problem (2.15).  The decision variables must still be binary (2.16) and 

(2.17). 

Figure 2-3 presents a flowchart describing the process for determining irreplaceable sites 

in the context of the MCSP.  The process is repeated for decreasing integer values of q 

beginning from the number of sites needed to cover all species down to a single site. 
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Figure 2-3: Flowchart describing the process for determining the set of irreplaceable sites when se-
lecting the maximum number of species given a limited number of sites available for selection 

 

2.3.3 Extension of the Species Set Covering Problem 

If more resources are available, additional sites beyond the minimum number needed to 

protect all species could be selected.  Under this scenario, the set of irreplaceable sites 

might change.  To investigate the effects of increasing the number of sites beyond p, the 

following steps are taken.  First, the SSCP is run and the resulting set of sites selected, S1, 
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is used in the IS-SSCP.  However, instead of using the value of p determined by the 

SSCP, the right-hand side of equation (2.6) is set to p + 1.  The number of irreplaceable 

sites is found by running the IS-SSCP as many times as needed, following the process 

described above.  The problem is repeated for p + 2 and p + 3. 

2.3.4 Value of irreplaceability 

Two different measures of the value of an individual site are explored: species value, and 

economic or efficiency value.  First, the effect on the number of species covered is ad-

dressed for the case when an irreplaceable site is removed from the list of candidate sites.  

Next, the impact on the number of sites necessary to cover a given number of species is 

explored for the case in which a particular irreplaceable site is not permitted to be se-

lected. 

To explore the impact of the exclusion of an irreplaceable site on the SSCP, the following 

test is performed.  For each irreplaceable site found for the SSCP, the SSCP is run again 

with an additional constraint that excludes the irreplaceable site.  The resulting objective 

indicates how many sites must be selected in order to preserve all species, also indicating 

the number of sites required to make up for each irreplaceable site excluded.   

Two tests are conducted on the MCSP.  First, for each irreplaceable site associated with a 

given value of q, the MCSP is run with one additional constraint that prevents the site 

from being selected.  The resulting objective function value determines how many fewer 

species are covered as a result of excluding the irreplaceable site. 
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The second method used for assigning a value to the irreplaceable sites involves deter-

mining the number of sites needed to replace the irreplaceable site in the context of the 

MCSP.  To determine this value, the following integer program is run. 

 Min j
j J

z x
∈

=∑  (2.18) 

 subject to
i

j i
j N

x u i I
∈

≥ ∀ ∈∑  (2.19) 

 ( )i
i I

u A q
∈

=∑  (2.20) 

 * 0 where * is the irreplaceable sitejx j=  (2.21) 
 (0,1)iu i I= ∀ ∈  (2.22) 
 (0,1)jx j J= ∀ ∈  (2.23) 

The objective of this optimization model is to determine the minimum number of sites 

required to cover a certain number of species, A(q), if one of the irreplaceable sites, j*, 

cannot be selected.  Constraints (2.19), (2.20), (2.22), and (2.23) have been described 

previously.  Constraint (2.21) requires that irreplaceable site j* not be selected.  

2.4 Data used for Study 

The data used for the application of the IS-SSCP and IS-MCSP are distribution maps for 

426 species of terrestrial vertebrates in the State of Oregon, compiled by the Biodiversity 

Research Consortium at Oregon State University.  The grid-based maps record the occur-

rence of each species in each of 441 hexagonal cells (sites), 635km2 in area, wholly or 

partly within the political borders of Oregon.  Species are defined as occurring in the site 

if: (1) they have been verified by a sighting in that site within the past two decades; or (2) 

they fulfill a three-part condition, namely, (a) they have been verified by a sighting in 

nearby sites and (b) there exists suitable habitat in the site for the species to exist, and (c) 

in the opinion of a local expert, the species might occur in the site (Master et al. 1995). 
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2.5 Results 

The formulations described in section 2.3 were coded using Xpress-MP® and run using 

the Oregon data.  The code was run on a Hewlett-Packard® notebook computer running 

Windows® XP Professional with a 2.00- GHz Intel® Pentium® 4 processor.  Branching 

and bounding took between 1 and 4.8s for the MCSP with an average of 2.2s (Table 2-1).  

For the IS-MCSP, branching and bounding took between 1 and 9.7s, with an average of 

4s.  No branching and bounding was needed for the SSCP or the IS-SSCP. 

Table 2-1: Processing Times 

Problem Formulation Processing Time (s) 
SSCP 0.4 
IS-SSCP 0.3 
MCSP 0.5 – 5.3 
IS-SSCP 0.2 – 10.3 

 

2.5.1 SSCP and IS-SSCP Results 

The number of sites required for the SSCP on the Oregon data is 23. This was expected 

based on the results of Csuti et al. (1997).  The solution of the successive IS-SSCPs 

shows that of these 23 sites, 19 are irreplaceable.  The last column of Figure 2-4 indicates 

which sites are irreplaceable. 

2.5.2 MCSP and IS-MCSP Results 

Results of the Maximal Covering Species Problem are summarized in Figure 2-4 and 

Figure 2-5. The solution for the MCSP when q = 23 is the same as that of the SSCP, as 

expected, although the specific sites could have been different due to the existence of al-

ternate optima.  As q is decreased for the MCSP, the number of irreplaceable sites initial-

ly decreases slightly, then decreases sharply at q = 18, and then fluctuates for smaller 
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values of q.  Certain sites seem to be irreplaceable for many of the solutions (Figure 2-4).  

Sites 9, 428, and 440 appear in over half of the solutions.  Several sites appear in the so-

lutions only for large values of q, and then drop out.   

  Number of Sites (q) 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
  Number of Irreplaceable Sites  
  1 2 3 4 3 0 3 8 7 8 4 3 4 3 5 8 5 7 17 17 17 17 19

Si
te

 N
um

be
r 

9                        
24                                               
55                                               
75                                               
120                                               
121                                               
134                                               
135                                               
136                                               
147                                               
169                                               
175                                               
189                                               
268                                               
274                                               
289                                               
314                                               
319                                               
321                                               
324                                               
345                                               
357                                               
375                                               
395                                               
400                                               
428                                               
438                                               
440                                               

Figure 2-4: Irreplaceable sites in solutions to the IS-MCSP for values of q between 1 and 22, and ir-
replaceable sites in solution to the IS-SSCP (q = p = 23)  
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Maximal Covering Species Problem and Irreplaceability
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Figure 2-5: MCSP and Irreplaceable Sites 

Number of species covered for a given 
number of sites selected 
 
Total height of bar indicates the number 
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tion indicates number of total that are 
irreplaceable
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Sites such as sites 189 and 319, appear, drop out, and reappear as q varies.  Other sites 

appear only for smaller values of q, such as site 55 and site 135.  A few sites, such as 24 

and 121, appear only once.  When q is 4 or less, all sites are irreplaceable. 

2.5.3 Extensions of the SSCP Results 

For each value of p larger than 23, there are seven irreplaceable sites (Table 2-2).  Inves-

tigation of the data set reveals that each of these seven irreplaceable sites contains one of 

seven single species occurrences. 

Table 2-2: Irreplaceable Sites for Increasing p 

p 23 24 25 26 
Irreplaceable 19 7 7 7 
Site 9:         
Site 24:         
Site 75:         
Site 120:         
Site 134:         
Site 147:         
Site 169:         
Site 175:         
Site 189:         
Site 268:         
Site 289:         
Site 314:         
Site 321:         
Site 324:         
Site 345:         
Site 357:         
Site 375:         
Site 428:         
Site 440:         
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2.5.4 Value of Irreplaceable Sites 

When an irreplaceable site is excluded in the SSCP, either the problem becomes infeasi-

ble or the number of sites required to cover all species increases by 1, from 23 to 24.  

When sites 9, 24, 147, 169, 314, 324, or 375 are excluded, no combination of sites can be 

found that cover all species.  Therefore, each of these sites must contain a species that 

occurs only in that site, which corresponds with the results in section 0. 

In regards to the MCSP, for all values of q, the number of sites required to cover A(q) 

species when any irreplaceable site is removed is q + 1.  For all values of q where not all 

sites were irreplaceable, the objective function decreases by one species when an irrepla-

ceable site is excluded. In the case where all q sites are irreplaceable, the objective func-

tion degrades by at most two species.  Table 2-3 displays the results for q equal to eight 

sites. For most of the irreplaceable sites, the objective function only decreases by one 

species.  For sites 319 and 395, however, the objective decreases by two.  This indicates 

that these two sites perhaps have a larger worth than the other irreplaceable sites.  

Table 2-3: Value of Irreplaceable Sites for q = 8 and Objective = 400 species 

Removed 
Site 

New  
Objective 

Change in Number of 
Species Covered 

Replacement Sites  
Required to achieve  

Objective = 400 
9 399 -1 2 

121 399 -1 2 
189 399 -1 2 
274 399 -1 2 
319 398 -2 2 
345 399 -1 2 
395 398 -2 2 
438 399 -1 2 
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Although some instances were observed in which removing an irreplaceable site leads to 

two additional species not being covered, it is always true that in order to cover all A(q) 

species, the original set of sites needs only to be enlarged by one.  For example, in Table 

2-3 when site 319 is excluded, the number of species covered drops by two from 400 to 

398.  However, the new number of sites required to cover 400 species is 9. This is true 

for all the other irreplaceable sites as well. 

Overall, every irreplaceable site has the same economic or efficiency value and nearly 

every irreplaceable site has the same species value.  The only cases in which one irrepla-

ceable site appears more valuable in terms of species value are when all q sites are irrep-

laceable.  When q is eight, four, three, two, or one the exclusion of at least one irreplace-

able site leads to a loss of two species. 

2.6 Discussion and Conclusions 

The results described above indicate that a large number of sites (19 of 23) are irreplace-

able if full species representation is required with the fewest number of sites possible.  

However, if an additional site beyond that which is needed to cover all species is in-

cluded, the number of irreplaceable sites drops dramatically from 19 to 7.  If just a single 

site is added beyond the minimal number required to cover all species, the only sites that 

remain irreplaceable are the sites that contain unique species. 

It can be expected for many data sets that, as p is increased above the size of the optimal 

solution for the SSCP, the number of irreplaceable sites will decrease.  When p is equal to 

the size of the optimal solution, the need for complementarity between sites in the species 

they contain is extreme.  Some sites without unique species, due to their composition and 
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ability to complement other sites, will be essential members of the set.  As p is increased, 

it is possible for additional sites to contribute species to progressively larger sets, so the 

demands of complementarity are relaxed.  As this happens, sites that were initially irrep-

laceable but which lack unique species can be expected to become replaceable.  At some 

stage, only sites with unique species remain in the irreplaceable subset.  In the dataset 

used in this research, this change happened abruptly – as soon as p increased from 23 to 

24.  In other data sets and for other representation objectives, this change might be more 

gradual.  While the reduction in irreplaceable sites with p larger than 23 was predictable, 

the identities of the non-unique irreplaceable sites was not.  This is essentially a combina-

torial problem that was solved here with a new method.  

Table 2-4: Species Uncovered in MCSP and IS-MCSP 

 Sites  Uncovered Species Number 
Species (Irreplaceable) Formulation 3 11 28 101 109 114 139 143 168 188 359 374 392

423 20 (17)  MCSP                           
   IS-MCSP1                            
                             

422 19 (17)  MCSP                           
   IS-MCSP2                            
                             

420 18 (3)  MCSP                           
   IS-MCSP1                            
   IS-MCSP2                            

   IS-MCSP3                            
   IS-MCSP4                            
 
Results of the MCSP and the IS-MCSP offer several interesting insights.  While the same 

number of species is preserved in the MCSP and successive IS-MCSPs, the actual species 

that are preserved may not be the same.  Table 2-4 shows an example of this phenomenon 

for q ranging from 18 to 20.  Since the number of species covered is very large, the table 

represents the species not covered.  As the number of selected sites decreases, the number 
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of species covered decreases, as expected.  When q is 20, the same species fail to be cov-

ered as when q is 19.  In other words, the solution for q = 19 is contained or “nested” in 

the solution for q = 20.  This does not always occur.  In some instances, only some of the 

previously covered species remain uncovered.  Another interesting point can be illu-

strated when q = 19.  Although not all of the sites are irreplaceable, the MCSP and the IS-

MCSP cover the exact same species.  This means that in addition to there being two al-

ternate solutions that cover 422 species; there are two alternate solutions that cover the 

exact same species by selecting different sites.  

Additionally, there is no clear pattern between the number of irreplaceable sites and the 

total number of sites selected.  For large values of q, many of the selected sites are irrep-

laceable.  When q is above 19, at least 17 of the sites are irreplaceable.  But, when the 

number of sites selected decreases by one to 18, only seven sites are irreplaceable.  For 

values of q between 5 and 18, the number of irreplaceable sites fluctuates dramatically.  

For example, when q = 8, all eight sites are irreplaceable, meaning no alternate solutions 

exists.  When q = 6, none of the six sites are irreplaceable, meaning that at least two solu-

tions exist that do not share any sites in common but cover the exact same number of 

species.  For values of q less than 5, all sites are irreplaceable.  That is, there is only one 

combination of sites that can cover the maximum number of species. 

One further observation can be offered and it is, perhaps, a perplexing one. Irreplaceabili-

ty for the MCSP appears to be case-specific as opposed to site specific.  A particular site 

may be irreplaceable in one setting, say q = 10, and replaceable in another, say q = 14.  It 

is not the site’s characteristics that are the sole determinant of irreplaceability, but a com-

bination of the site’s species composition and the number of sites that can be selected.  



 43

This observation is not as appealing as hoped in making the case for a site’s importance 

to the scheme of preservation.  A question that arises is whether a site that is irreplaceable 

at a higher resource level is also irreplaceable at a lower resource level.  The results in 

this chapter show that there are many cases where this is not so. 

However, the implications of identifying a set of irreplaceable sites in a reserve design 

can still be extremely important to decision makers.  Understanding which sites are re-

quired to protect a maximum number of species at a given resource level allows the deci-

sion maker flexibility in the reserve design.  Decision makers can begin by protecting the 

set of irreplaceable sites and go on to determine which combination of additional sites 

best complements the irreplaceable sites, possibly by considering a variety of criteria for 

these additional sites.  The knowledge gained from identifying which sites are irreplacea-

ble allows for improved decision making and environmental management aimed at pro-

tecting vulnerable species. 
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Chapter 3  

Quantifying and Mitigating the Splitting Bias and Oth-

er Value Tree-Induced Weighting Biases 

This chapter presents a model for estimating and correcting attribute-weighting biases 

(such as the splitting bias) that result from the use of value trees when structuring value 

function weight elicitation. The model is based on the conjecture that attribute weights 

are influenced by tree structure and a subject’s use of the “anchor-and-adjust” heuristic, 

meaning that the subject starts with an equal allocation of weight among attributes in 

each tree partition and then adjusts the weights to reflect his or her innate preferences. 

Adjustments tend to be insufficient, resulting in attribute weights that are closer in value 

to each other than if the anchor-and-adjust heuristic was not employed.  

3.1 Introduction 

Multiattribute decision analysis provides a framework for helping decision makers tackle 

complex decisions involving conflicting objectives. The decision process often involves 

organizing the users’ objectives into value trees or objectives hierarchies (Keeney and 

Raiffa 1976; von Winterfeldt and Edwards 1986). Attributes are used in value trees to 

quantify the extent to which an alternative achieves an objective. The relative importance 

of the attributes is described by attribute weights, which can be derived either non-

hierarchically by simultaneously evaluating all attributes, or hierarchically by assigning 

weights to subsets of attributes at each level of the tree. Lower-level attribute weights are 

found by multiplying down the tree. 
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The process of constructing value trees can help decision makers identify, organize, and 

prioritize their objectives. In this manner, value trees have assisted private- and public-

sector decision processes (Heins and Roling 1995; Marttunen and Hamalainen 1995; 

Keeney et al. 1996; Maniezzo et al. 1998; Kwak et al. 2002; Al-Kloub et al. 1997). How-

ever, the use of trees to structure weight elicitation in value function assessment is prone 

to several weighting biases, including the well-known “splitting bias.”  

When priorities are uncertain, theoretically irrelevant aspects of the weight elicitation 

process can shape expressed values (Fischhoff et al. 1980). For example, the principle of 

description invariance (Tversky and Kahneman 1986) states that a value tree’s structure 

should not influence weights. In practice, this principle is often violated and tree structure 

does shape expressed weights (Stillwell et al. 1987; Weber and Borcherding 1993; Weber 

et al. 1988; Borcherding and von Winterfeldt 1988; Pöyhönen and Hämäläinen 1998; 

Pöyhönen and Hämäläinen 2000; Pöyhönen et al. 2001).  

Three closely related biases can occur when value trees are used to derive attribute 

weights.  This collection of biases will be referred to as value tree-induced attribute-

weighting biases, or value tree-induced biases for short. This chapter develops a model-

based method for correcting these biases in additive value function weight assessments. 

The model is based upon research suggesting that subjects employ an anchor-and-adjust 

heuristic (Kahneman et al. 1982) when eliciting weights with the aid of value trees. Sec-

tion 3.2 presents a literature review of the experimental evidence and proposed causes of 

value tree-induced biases, as well as a discussion of methods for reducing biases. Section 

3.3 develops a model-based approach to debias value tree weights elicited from subjects. 

Section3.4 discusses a case study in which weights are elicited from employees of the 
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Centerior Energy Corporation regarding environmental and economic attributes of sever-

al electric system expansion alternatives.  The data are used to illustrate the existence and 

correction of the value tree-induced attribute weighting biases with the use of the pro-

posed model. Section 3.5 summarizes the results of the application of that model, includ-

ing the implications of using debiased weight sets from the model rather than the elicited 

weight sets. Changes in ranks and expected value losses from using “incorrect” weight 

sets (either the original biased weights or debiased weights from an incorrect model spe-

cification) are calculated. Section 3.6 concludes the paper. 

3.2 Literature Review 

3.2.1 Experimental Evidence of Value Tree-Induced Biases 

Several experiments have provided evidence of biases occurring with the use of the value 

tree. First, Stillwell et al. (1987) demonstrated that hierarchically assessed weights tend to 

have a larger variance (or standard deviation) than weights assessed non-hierarchically.  

Their experiment included 37 subjects who expressed both hierarchical and non-

hierarchical weights for a set of attributes. The variance of the hierarchical weights was 

higher than the variance of the non-hierarchical weights for 33 of 37 subjects, and was 

more than double the variance of the non-hierarchical weights for 30 subjects. 

The second value tree-induced bias has been labeled the splitting bias in the literature. It 

states that decomposing an objective into multiple attributes leads to a higher overall 

weight for that objective when compared to a direct assessment of the objective’s relative 

importance. Weber et al. (1988) performed an experiment in which decision makers pro-

vided weights for two different value trees. The first tree contained three objectives that 
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each had one corresponding attribute, whereas the second tree subdivided one or more of 

the objectives into two attributes each, resulting in eight value trees. The first and eighth 

trees were the same, each having all three objectives subdivided into two attributes. The 

remaining six trees divided one or two of the objectives into two attributes, whereas the 

remaining objectives were represented by a single attribute. For those objectives that 

were split, the average weight (across subjects) assigned directly to the objective in the 

first tree was significantly lower than the sum of the weights assigned to the two 

attributes describing the objective in the second. 

In another experiment, Borcherding and von Winterfeldt (1988) elicited weights from 

200 subjects, using various value trees and weighting methods. If an objective was 

represented by multiple attributes, the authors discovered that when using the swing 

weight or ratio methods, the objective received a higher weight than if it was represented 

by a single attribute. This result supported the findings by Weber et al. (1988). Both We-

ber et al. (1988) and Borcherding and von Winterfeldt (1988) considered averages of 

weights over all decision makers. Alaja (1998) demonstrated that the splitting bias also 

occurs for individuals. She elicited weights from 30 university students and 39 stakehold-

ers in a lake management context. All stakeholders and a majority of students displayed 

the bias. Pöyhönen et al. (2001) also demonstrated that the splitting bias exists on an in-

dividual level with their 180 subject experiment. 

The third value tree-induced bias states that weights for an objective tend to be higher 

when the objective is presented at a higher level in a value tree. Borcherding and von 

Winterfeldt (1988) conducted an experiment involving 200 subjects demonstrating the 
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statistical significance of the bias when eliciting weights with ratio, swing, and trade-off 

methods.  

3.2.2 Proposed Causes of Value Tree-Induced Biases 

Although the exact causes of value tree-induced weighting biases remains uncertain, re-

search suggests that both the tree structure and a subject’s use of the anchor-and-adjust 

heuristic can cause a subject’s weights within each group of attributes in a tree to be more 

similar to one another than if this cognitive strategy is not used. In addition to the expe-

rimental evidence discussed previously, several other authors (Langer, T. and Fox, C.R., 

unpublished manuscript, December 2003; Fox and Clemen 2005; Langer and Fox 2003; 

Clemen and Ulu 2008) suggest that the way in which a value tree is partitioned can influ-

ence elicited weights. Turning to behavioral influences, von Nitzsch and Weber (1993) 

first suggested that assessing attribute weights might be affected by the anchor-and-adjust 

heuristic: A subject begins with an intuitive importance of the attribute as the anchor and 

then adjusts the attribute weight, usually insufficiently (Tversky and Kahneman 1986). 

Although there is agreement that the anchor-and-adjust heuristic can lead to value tree-

induced biases, several authors (Langer and Fox 2003; von Nitzsch and Weber 1993; Fox 

et al. 2005) have conjectured that anchor weights result from equal allocation of weight 

among attributes within a partition in the value tree. As a result, the number of attributes 

representing an objective can influence that objective’s weight. For example, consider 

two representations of an objective in a value tree: (1) the objective is represented by 

multiple attributes; and (2) the objective is represented by a single attribute. When elicit-

ing non-hierarchical weights, the total weight for the objective in representation (1), as 
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determined by summing the attribute weights, tends to be higher than the weight elicited 

for the objective under representation (2). 

In addition to research supporting an initial equal allocation of attribute weights, there is 

also research supporting the adjustment stage of the anchor-and- adjust heuristic. Von 

Nitzsch and Weber (1993) demonstrated that subjects do not adjust their attribute weights 

sufficiently when attribute ranges are varied. They argue that this range effect can serve 

as an explanation for the splitting bias demonstrated by Weber et al. (Weber et al. 1988). 

Combining two subattributes into an overall attribute is similar, they argue, to increasing 

the range of an attribute. If the subject adjusts his or her weight insufficiently in response 

to the change in attribute range, an overweighting of the subattributes occurs, resulting in 

the splitting bias. 

Pöyhönen et al. (2001) performed an experiment in which they also observed insufficient 

adjustment of weights when attributes are divided in a value tree. They referred to this 

phenomenon as the unadjustment effect.  

3.2.3 Methods for Bias Correction 

In general, if a bias is strongly suspected to affect expressed weights, it is desirable to ad-

dress the bias and, if possible, correct the weights to better represent the decision maker’s 

preferences. Much behavioral decision research argues that, when asked to elicit weights, 

subjects often construct their preferences during the elicitation process, as opposed to re-

vealing preexisting preferences (e.g., Payne et al. 1999; Slovic 1995). Thus, the elicita-

tion of preferences should foresee several sources of variation: systematic variation due 

to characteristics of the elicitation process used, systematic variation due to the decision 
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maker’s underlying values, and variation due to random errors. When a large portion of 

the variation in weights is attributable to the elicitation process used, one approach is to 

choose a simpler, less cognitively demanding task for eliciting weights, such as deriving 

weights from holistic rankings (Edwards and Barron 1994). However, simpler methods 

can result in the loss of important ratio scale information, leading to utility losses when 

these weights are applied (Jia et al. 1998). Therefore, it is important to address these 

sources of variation in order to develop more informative weight elicitation procedures. 

At least three general approaches are possible for addressing sources of error and reduc-

ing biases in weight elicitation. First, subjects can be informed of the biases and encour-

aged to avoid them when expressing weights. Second, weights can be elicited by two or 

more methods that have different biases, and subjects can be asked to resolve the differ-

ences. Third, a model-based approach can be used to estimate and correct biases using 

two or more sets of elicitations.  

A review of the literature indicates that only the first approach has been applied to value 

tree-induced biases. Alaja (1998) tested the effects of informing decision analysis stu-

dents and community stakeholders of the splitting bias before eliciting weights. The stu-

dents attended a lecture and performed class exercises relating to the bias one month prior 

to the experiment. Both students and stakeholders were encouraged to avoid the bias. 

Nonetheless, the bias persisted for all stakeholders and a majority of the students. The 

experiment suggests that a decision maker must be very familiar with the bias and have 

had experience with it in order to avoid it. This is unlikely to be the case for most real-

world decisions.  
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Pöyhönen and Hamalainen (2000) investigated the impact of informing subjects of the 

splitting bias by repeating the experiment of Weber et al. (1988) with 42 student subjects. 

After an explanation of the bias was presented during a lecture, the students were asked 

to express two weight sets non-hierarchically. The first value tree divided the high-level 

objectives into attributes, whereas the second contained only the high-level objectives. 

The authors “interpreted that the student was able to avoid the splitting bias if the sum of 

weights given to individual attributes differed less than 20% from the weight given to the 

group of attributes [high-level objectives]” (Pöyhönen and Hämäläinen 2000). Only 12 of 

42 students completely avoided the bias, despite the effort to educate the students to be 

aware of it.  

The second approach to correcting biases can be applied to value tree-induced biases by 

assessing weights with more than one value tree and then conducting follow-up inter-

views with decision makers. If weight sets or rankings of alternatives differ, decision 

makers can be asked to resolve the conflicts.  Although this general approach has been 

used to address inconsistencies among different methods for eliciting weights (von Win-

terfeldt and Edwards 1986; Payne et al. 1999; Hobbs and Horn 1997), its use to correct 

value tree-induced biases has not been reported. 

Time or other limitations often prevent such followup interviews from being conducted. 

When this is the case, a model-based approach to correcting biases can be useful. This 

approach consists of correcting biases by statistically estimating the magnitudes of the 

components of the decision maker’s judgments, including biases, from two or more as-

sessments. A model-based approach is advocated by Fox and Clemen (2005) in the con-

text of eliciting subjective probabilities: “[a]n alternative approach is to debias the judg-
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ments rather than the judge.” In the same context, Fox et al. (2005) suggest that the “rele-

vant judgment or decision making process might be formally modeled so that the extent 

of the bias […] might be measured and thereby subtracted from the relevant assessment.” 

Such a model-based approach has been used to quantify biases in value quantification, to 

adjust elicited weights, and to debias subjective probabilities. In a single-attribute prob-

lem involving decision making under risk, Bleichrodt et al. (2001) applied a quantitative 

approach for correcting two violations of expected utility. In a multiattribute context, An-

derson and Hobbs (2002) proposed a Bayesian approach to quantify and correct scale 

compatibility bias, which tends to result in overweighting of “currency” attributes in 

trade-off weight assessments (Slovic et al. 1990).  

A model-based approach has also been applied to the partition-dependence bias that oc-

curs when eliciting subjective probabilities. The partition-dependence bias states that as-

sessed probability distributions depend on the partitioning of the state space. Several ex-

periments (Fox and Clemen 2005; Langer and Fox 2003; Fox and Rottenstreich 2003) 

demonstrate the existence of this bias. The results show that the assessed probability dis-

tributions are biased towards an ignorance prior distribution, which divides the probabili-

ties equally among the events within a partition. To debias the assessed probabilities, two 

quantitative models have been developed. Fox and Rottenstreich (2003) introduced a 

multiplicative model based on support theory (Tversky and Koehler 1994; Rottenstreich 

and Tversky 1997), whereas Clemen and Ulu (2008) developed a model for correcting 

the partition-dependence bias that instead defined elicited probabilities as a linear convex 

combination of the ignorance prior and “untainted” subjective probabilities. 
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3.3 Methodology 

The model developed here combines the influence of the value tree structure and the con-

jectured use of the anchor-and-adjust heuristic on weight elicitations. Application of the 

anchor-and-adjust heuristic can cause the attribute weights expressed by the subject to be 

affected: Subjects begin with an initial equal allocation of weights, followed by an insuf-

ficient adjustment of weights that aim to reflect the subject’s innate preferences. To cap-

ture these influences, the model defines, for each value tree, the weight expressed by the 

subject as a linear convex combination of the equal allocation weights and the estimated 

debiased weights, which reflect the subject’s innate preferences.  In addition, a random 

error term is included, reflecting random variations in expressed weights.  

Model-estimated weights can be considered debiased in the following sense: If the form 

of the model is correct, the debiased weights are the best estimate (in a least-squares 

sense) of the underlying weights that would be expressed if the subject suffered no value 

tree-induced bias. However, debiased weights may still suffer from other problems. For 

instance, if a subject’s weights are influenced by both the splitting bias and the range in-

sensitivity effect (von Nitzsch and Weber 1993), the model presented here will only re-

move the former bias. 

Several possible model formulations can reflect the notion that the expressed weights are 

influenced by tree structure, equal allocation weights, and innate preferences. For sim-

plicity, the convex combination model is proposed following the logic of Occam’s razor: 

Use the simplest model that represents anchor-and- adjust behavior for each partition of 

the tree. More complicated model formulations were explored, but the additive model 
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developed here had several advantages. These alternate model specifications either had 

restrictions on the type of data that could be input—such as the inability to include eli-

cited weights of zero—or produced estimated debiased weights whose values greatly dif-

fered from the weights expressed by the subject. For example, several models produced 

estimated debiased weights in which one attribute received nearly all of the weight and 

the remaining attributes received weights near zero, despite a much less extreme alloca-

tion of weights by the subject.  

 
Figure 3-1: a) Non-hierarchical and b) Hierarchical Attribute Weighting 

 
The notation used in the model is described with the aid of the two value trees in Figure 

3-1.  The attributes i∈I are structured into tree k∈ K containing partition n∈ Nk.  For ex-

ample, the three attributes are structured into the non-hierarchical tree (k = 1) containing 

one partition in Figure 3-1a.  The hierarchical tree (k = 2) in Figure 3-1b contains two 

partitions (Nk = {1,2}).  The first partition includes objectives 1 and 2, whereas the 

second partition includes attributes 2 and 3.  Each partition n in tree k contains at least 

two branches b∈ Bk,n.  The attributes belonging to branch b of partition n in tree k are 

represented by i ∈ Ik,n,b.  Similarly, the attributes belonging to partition n in tree k are 

represented by i ∈ Ik,n. 
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Mutual preference independence, an assumption of the additive value function (Keeney 

and Raiffa 1976), is not generally satisfied if expressed weights kiW ,
ˆ  are assumed to be a 

simple convex combination ( )iki WW ~)1(, λλ −+= of equal allocation weights =
kiW ,  and esti-

mated debiased weights reflecting innate preferences, iW~ .  Instead, fractional weights 

must be used.  For each branch in each partition, a fractional weight is defined as follows:  

The sum of attribute weights associated with the branch is divided by the sum of the 

attribute weights in the associated partition.  For example, the fractional weight for the 

branch containing attribute 2 in the hierarchical value tree in Figure 3-3b is defined as 

W2/(W2 + W3), where Wi represents the weight of attribute i. 

To illustrate the need for this modification, the property of mutual preference indepen-

dence can be described as follows.  Consider an assessment that adheres to a model for a 

value tree of M attributes.  Now imagine that this tree is embedded as a subtree in another 

value tree with N > M attributes (that is, N - M attributes are added such that the value 

tree structure among the original M is maintained).  The relative weights among the orig-

inal M attributes should not change (although their total weight will, in general, be less).  

This relationship does not hold for the simple convex combination model just described.  

This can be seen with a simple example. 

 
Figure 3-2: Example of Mutual Preference Independence 
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Figure 3-2 contains two values trees.  The tree on the left is a subtree of the tree on the 

right.  Suppose the unbiased underlying weights, W*, are those shown in the figure and 

that the parameter λ has a value of 0.4.  Using the simple convex combination model and 

assuming no random errors, the expressed weights equal 0.38 for attribute one and 0.62 

for attribute two in the first tree.  In the second tree, the values are 0.28 for attribute one, 

0.52 for attribute two, and 0.20 for attribute three.  Thus, the introduction of attribute 

three has resulted in a change in the relative weight between attributes one and two: The 

ratio of the expressed weights for tree one (0.38/0.62 = 0.61) differs from the ratio of the 

expressed weights for tree two (0.28/0.52 = 0.54).  The use of fractional weights in the 

following model preserves the property of mutual preference independence. 

When eliciting weights, a subject divides the total partition weight among the subset of 

attributes represented by the branches contained in the partition for each partition of the 

value tree.  In the degenerate case, a subset may consist of a single attribute.  Equation 

(3.1) models the use of the anchor-and-adjust heuristic beginning with equal allocation of 

weight locally in each partition of the tree.  The model defines each subject’s fractional 

expressed weight for a subset of attributes as a linear convex combination of the fraction-

al equal allocation weights and fractional estimated debiased weights, which are pre-

sumed to represent innate preferences.  The total fractional expressed weight for the sub-

set of attributes Ik,n,b is defined as  
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where ,
ˆ

i jW  represents the weight expressed by the subject for attribute i in value tree k, 

|Bk,n| defines the number of branches, and 1/|Bk,n| describes the fractional equal allocation 

weight for partition n and tree k.  Three variables are estimated by the model for each 

subject: λ, the bias parameter; iW% , the debiased weight of attribute i estimated by the mod-

el; and εk,n,b, the random error associated with branch b of partition n in tree k.  The ex-

pected value of εk,n,b is assumed to be zero.  The debiased weights do not contain a sub-

script k, indicating that a single set of debiased weights is estimated for each subject.  

Applying equation (3.1) to the hierarchical value tree (k = 2) in Figure 3-1b, for example, 

results in  
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Three constraints accompany equation (3.1):  first, the attribute weights estimated by the 

model must sum to one, Σi∈I iW% =1; second, 0 < λ < 1; and third iW% > 0, for all i ∈ I.  The 

constraint on λ reflects the prior expectation that the expressed weights are a convex 

combination of the equal allocation and estimated debiased weights.  This parameter de-

scribes the amount of influence the equal allocation weight has on the final expressed 

weight.  When λ is large, weight adjustments aimed at reflecting innate preferences tend 

to be much too small, leading to large value tree-induced biases.  On the other hand, λ = 

0 indicates that the subject’s expressed weights are not influenced by the equal allocation 

weights.  For simplicity, only a single value of λ is considered for each subject.  Howev-
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er, it is possible that the equal allocation weights might influence different attributes or 

sets of attributes in various ways; for instance, λ might be a function of the number of 

branches in a partition.  Future research could consider more complex models. 

The unknown model parameters are estimated by using nonlinear programming to mi-

nimize the sum of squared errors (3.2) subject to the constraints (3.3). Regression is not 

used because of the constraints. 
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Model (3.2)-(3.3) is solved using the nonlinear solver CONOPT in GAMS® with mul-

tiple starting points. 

Similarly structured models have been used to debias judgments for other tasks in deci-

sion analysis.  Clemen and Ulu (2008) developed a model based on support theory 

(Tversky and Koehler 1994; Rottenstreich and Tversky 1997) to reduce the partition-

dependence bias that occurs in subjective probability assessments.  The model defines the 

partition dependent probabilities as convex combinations of “ignorance priors” (derived 

from the uniform distribution over events) and “untainted” subjective probabilities.   

Attribute weights have also been modeled using convex combinations, but in a different 

context than the model proposed in this research.  Srinivasan and Park (1997) created a 

preference model that defined attribute weights as a convex combination of partworths 

from two different methods (conjoint and self-explicated) and then chose the value of the 
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parameter (equivalent to λ) that resulted in the best fit of the preference model to ex-

pressed preferences among pairs of alternatives.  

To collect data to test the model, a case study was conducted in which managers from an 

electric utility used multicriteria decision making methods to address environmental and 

economic objectives of electricity generation and conservation planning.  The next sec-

tion describes the case study.  One task in the case study involved the elicitation of two 

sets of additive value function weights for each subject – one using a non-hierarchical 

value tree and the other with the aid of a hierarchical value tree.  Those weights are used 

in Section 3.5 to implement the model (3.1). 

3.4  Case Study 

During a multicriteria planning exercise, managers from Centerior Energy of Ohio (an 

electric utility now part of First Energy Corporation) were introduced to multicriteria de-

cision making methods for quantifying environmental externalities and other objectives 

in long-run (multi-decade) electricity generation and conservation planning.  During a 

brainstorming session, the group of eleven subjects, who were either planners or mid-

level executives, identified fifteen possible planning alternatives.  The alternative reflect-

ing the status quo was defined as the reference alternative (Ref), while the other fourteen 

alternatives were labeled A through N.   

The planning alternatives (Table 3-1) consisted of various levels of demand-side man-

agement (DSM), generator life extension (LE), new generation types, reserve margin, and 

alternative operating methods for generators.  The operating method describes the order 
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in which electricity generators are selected to operate and could be based either on fuel 

cost or a combination of emissions and fuel cost, the latter yielding lower total emissions. 

Table 3-1: Alternatives for Centerior Energy Case Study   

Alt. Description 
DSM 

(MW) 
LEa

(# units) 
New Capacity

(Type)b 
Reserve  

(%)c 
Operating 

Methodd

Ref Reference (Ref) -360 11 All CT/CC 20 Economic

A 
Ref + emissions dispatch 
(ED) -360 11 CT/CC 20 Emissions

B Ref with 10% reserve -360 11 CT/CC 10 Economic
C Ref + wind -360 11 +200 MW Wind 20 Economic

D Ref + coal -360 11 
+600 MW  

Pulverized Coal 20 Economic

E Ref + Summit -360 11 
+200 MW  

Summit Plante  20 Economic

F 
Reduced life extension 
(LE) -360 7 CT/CC 20 Economic

G Reduced LE + ED  -360 7 CT/CC 20 Emissions

H 
Reduced LE w/ 500 MW 
purchase -360 7 

+500 MW 
supply contract  20 Economic

I 
Reduced LE w/ new nuc-
lear -360 7 600 MW Nuclear 20 Economic

J Increased DSM -720 11 CT/CC 20 Economic

K 
Increased DSM, reduced  
LE, ED -720 7 CT/CC 20 Emissions

L 
Increase DSM, reduced 
LE, wind + ED -720 7 200 MW Wind 20 Emissions

M Load building +360 11 CT/CC 20 Economic

N 
Load building + reduced 
LE +360 7 CT/CC 20 Economic

a LE = Lifetime extension for existing plants.  The alternatives with 7 generating units + LE have 720 MW less generat-
ing capacity that is subject to LE than alternatives with 11 units. 
b CT/CC = Combustion Turbine/Combined Cycle, which are types of generating units that burn natural gas.  In alterna-
tives with other types of new generation, CT/CC capacity is decreased to accommodate the other types in order to 
maintain the target reserve margin. 
c Reserve margin equals the amount of generation capacity (and perhaps contracts) in excess of the highest MW de-
mand. 
d In the emissions method, a cost penalty is added to CO2 emissions, resulting in lower emissions but higher fuel costs. 
e Compressed air storage facility. 

 
Several uncertainties complicated the planning process.  The attribute ranges considered 

during the weight elicitation (Table 3-2) were based on the extremes observed across all 

scenarios and alternatives, although the analysis of alternative ranks is based only on 

attribute values in a “reference” scenario.  Therefore, some of the best and worst attribute 

values are not associated with any alternative under the reference scenario.   
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Table 3-2: Attribute Definitions and Ranges Relative to the Reference Alternative   

Attribute Description Best Worst 
x1 Levelized annual revenue requirements, years 0-20 ($Millions/year) -41 339
x2 Average capital expenditures, years 0-20 ($Millions/year) -86 220
x3 Levelized rates, years 0-6 ($/megawatt hour) -3.3 10.8
x4 Levelized rates, years 0-20 ($/megawatt hour) -3.2 24.3
x5 Average SO2 emissions, years 0-20 (tons/year) -28,564 17,876
x6 Average CO2 emissions, years 0-20 (1000 tons/year) -4,437 3,047
x7 Average NOx emissions, years 0-20 (1000 tons/year) -10 7
x8 Number of new sites for coal ash disposal required 0 1
x9 Total land needed for new generation, years 0-20 (acres) -140 1,083
x10 Remotely sited new generation capacity (megawatts) -2,637 3,272
x11 Nuclear power (megawatts) 0 600
x12 Job losses, region -6,447 40,006
x13 Average emergency power, years 0-20 (gigawatt hours/year) -2 124

 
Table 3-3: Attribute Values for Each Alternative (Reference Scenario) 

Alt. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 
Ref 0 0 0 0 0 0 0 0 0 0 0 0 0 
A 2 0 0.1 0.1 -3,332 -104 0 0 0 0 0 277 0 
B -41 -56 -0.1 -1.3 0 29 0 0 -50 -1,068 0 -3,016 22 
C 52 8 0 1.5 -2,108 -326 -1 0 873 -235 0 6,814 0 
D 105 157 0.3 3.2 182 2 0 0 0 433 0 7,081 0 
E 9 -27 0.1 0.3 718 102 0 1 -43 -835 0 2,525 0 
F 57 6 0 1.7 -14,460 1,155 -2 0 34 400 0 7,601 11 
G 60 6 0 1.8 -17,515 -1,335 -2 0 34 400 0 8,016 11 
H 59 6 -0.4 1.7 -14,285 -642 -2 0 34 400 0 7,877 0 
I 99 98 0.1 3 -26,583 -3,468 -7 0 -10 266 600 9,048 17 
J 11 35 1.3 2.2 -4163 -672 -1 0 -43 -835 0 -6,447 -2 
K 30 48 0.8 2.7 -16,935 -1,615 -4 0 30 334 0 -4,435 8 
L 82 55 0.8 4.3 -21,449 -2,045 -4 0 913 433 0 2,426 8 
M 51 22 -0.1 0.2 687 544 1 0 0 -167 0 3,342 3 
N 110 28 -0.1 1.5 -11,765 -670 -1 0 34 300 0 11,220 15 

 
The electric utility planning software MIDAS (Farber et al. 1988) computed the values of 

thirteen attributes for each alternative.  For each alternative, the attribute values corres-

ponding to the reference scenario are summarized in Table 3-3. 
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Figure 3-3: (a) Non-hierarchical and (b) Hierarchical Value Trees 

 
The thirteen attributes were organized into two trees (Figure 3-3).  To derive attribute 

weights, each subject completed two questionnaires in one meeting, separated in time by 

other value assessment tasks not considered in this research.  In the first questionnaire, all 

attributes were evaluated non-hierarchically (Figure 3-3a), meaning that the subject con-

sidered all thirteen attributes simultaneously.  The direct weighting method of point allo-

cation was used.  Subjects directly assigned a point value between 0 and 100 to each 

attribute such that the sum of the attribute weights equaled 100.  The point values reflect-

ed the “importance” of each attribute to the subject.  The subjects were presented with all 

the attributes and their associated ranges were displayed explicitly under each attribute in 

the questionnaire (Table 3-2).  The subjects were told that “importance” should reflect the 

relative desirability of a change in the attribute value from its worst to its best value.  So 

that the values are between zero and one, the final weight for each attribute, wi, was de-

termined by dividing the point value by 100. 
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In the second questionnaire, a separate set of weights was elicited using a hierarchical 

approach (Figure 3-3b).  Each subject was presented with a diagram of the value tree re-

levant to the elicitation.  The subjects evaluated subsets of attributes/objectives for each 

partition of the value tree (e.g., x1-x4) using a bottom-up approach so that the sets of 

attributes corresponding to each objective were known to the subjects.  Again, the 

attributes and associated ranges were displayed clearly and the subjects were instructed to 

provide weights that reflected their willingness to tradeoff one attribute range for another.  

Point allocation was again used to divide 100 points among the subsets of attributes asso-

ciated with each partition of the tree.  These point values were then normalized so that the 

value for each attribute or subset of attributes was between zero and one.  The final 

weight for each of the lowest level attributes was obtained by multiplying the normalized 

point allocation values down through the tree.  The 22 weight sets elicited by the subjects 

(labeled S1 through S11) are presented in Table A.I- 1 in Appendix I.  

It is important to note that there are well known problems with direct weighting methods.  

In particular, point allocation suffers from the range effect (von Nitzsch and Weber 

1993).  However, the aim of this research is not to advocate the use of direct weighting 

methods such as point allocation, but instead to derive a method for correcting the value 

tree-induced attribute weighting biases described in Section 3.2.1 that occur with the use 

of direct methods. 

Attribute weights are combined with single-attribute value functions to translate each 

attribute into a measure of value.  Due to time limitations, and because the focus of this 

study is on weighting, single-attribute value functions for the case study are determined 
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by linearly rescaling each attribute on a 0-1 scale (Table 3-4).  The best attribute value is 

given a score of one and the worst a score of zero.  

Table 3-4: Rescaled Attribute Values for Each Alternative (Reference Scenario) 

Alt. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 
Ref 0.89 0.72 0.77 0.88 0.39 0.41 0.41 1 0.89 0.55 1 0.86 0.98
A 0.89 0.72 0.76 0.88 0.46 0.42 0.41 1 0.89 0.55 1 0.86 0.98
B 1.00 0.90 0.77 0.93 0.39 0.40 0.41 1 0.93 0.73 1 0.93 0.81
C 0.76 0.69 0.77 0.83 0.43 0.45 0.47 1 0.17 0.59 1 0.72 0.98
D 0.62 0.21 0.75 0.77 0.38 0.41 0.41 1 0.89 0.48 1 0.71 0.98
E 0.87 0.81 0.76 0.87 0.37 0.39 0.41 0 0.92 0.70 1 0.81 0.98
F 0.74 0.70 0.77 0.82 0.70 0.25 0.53 1 0.86 0.49 1 0.70 0.90
G 0.73 0.70 0.77 0.82 0.76 0.59 0.53 1 0.86 0.49 1 0.69 0.90
H 0.74 0.70 0.79 0.82 0.69 0.49 0.53 1 0.86 0.49 1 0.69 0.98
I 0.63 0.40 0.76 0.78 0.96 0.87 0.82 1 0.89 0.51 0 0.67 0.85
J 0.86 0.61 0.67 0.80 0.48 0.50 0.47 1 0.92 0.70 1 1.00 1.00
K 0.81 0.56 0.71 0.79 0.75 0.62 0.65 1 0.86 0.50 1 0.96 0.92
L 0.68 0.54 0.71 0.73 0.85 0.68 0.65 1 0.14 0.48 1 0.81 0.92
M 0.76 0.65 0.77 0.88 0.37 0.33 0.35 1 0.89 0.58 1 0.79 0.96
N 0.60 0.63 0.77 0.83 0.64 0.50 0.47 1 0.86 0.50 1 0.62 0.87

 
The single-attribute value functions were aggregated using an additive value function, the 

most widely applied method for amalgamating riskless preferences (von Winterfeldt and 

Edwards 1986) 
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The overall value for an alternative is defined as V(x1,…,xI), which depends on the levels 

of the I attributes.  The single-attribute value functions are represented by vi(xi), i= 1.., I.  

The weight, Wi, for each attribute xi is elicited from the subject as described above.  The 

weights sum to one and are non-negative. 



 65

3.5 Results 

Section 3.5.1 examines the differences between the elicited weight sets and investigates 

the existence of the value tree-induced bias in which the hierarchically derived weights 

have a higher standard deviation than the non-hierarchically derived weights.  The results 

of fitting the model (3.1) to the Centerior Energy case study data are then explored in sec-

tion 3.5.2.  The steps to implement the model are presented and the parameters estimated 

by the model are analyzed.  The changes in the rankings of alternatives are then examined 

in section 3.5.3 for each model and the expected value losses resulting from the use of 

“incorrect” weights (either original biased weights or estimated debiased weights from an 

assumed incorrect model specification) are investigated (section 3.5.4). 

3.5.1 Existence of Bias 

Of the eleven case study subjects, nine have a higher standard deviation for the hierarchi-

cally elicited weights than non-hierarchically derived weights – consistent with the hypo-

thesis that a value tree-induced bias exists.  The mean standard deviation for the non-

hierarchical weights was 0.07, while the mean for the hierarchical weights was 0.10.  A 

Wilcoxon signed-rank test was performed (Rice 1995).  The Wilcoxon test does not as-

sume any underlying distribution for the data.  The null hypothesis assumes the mean dif-

ference is zero, while the alternative hypothesis states that the mean difference is greater 

than zero, reflecting the belief that the hierarchical weights will have higher standard dev-

iation.  The test produces a p-value of less than 0.005, indicating that the larger standard 

deviations associated with the hierarchical weighs are statistically significant.   
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The larger standard deviations associated with the hierarchically elicited weights as com-

pared to the non-hierarchically derived weights are consistent with the discussion in sec-

tion 3.2.2 in which it was hypothesized that this value tree-induced bias may have been 

produced by an anchor-and-adjust heuristic in which subjects start with equal allocation 

weights as anchors and then adjust the weights insufficiently.   

Another way to examine the data for an attribute weighting bias is to compare the 

weights of attributes 12 and 13 from the two assessments.  Based on the anchor-and-

adjust heuristic, the sum of weights for attributes 12 and 13 should be higher in the hie-

rarchical tree when compared to the sum of these weights elicited using the non-

hierarchical tree, despite the fact that the attributes are at the same level in both trees.  

This was indeed the case; all eleven subjects expressed a higher sum of weights for 

attributes 12 and 13 when considering the hierarchical tree, which is consistent with the 

alternative hypothesis.  The model (3.2) - (3.3) will be used next to estimate debiased 

weights. 

3.5.2  Model Implementation 

To fit the model to the data, the anchors must first be determined for each value tree.  As 

described previously, it is assumed that the anchor weights in each elicitation result from 

equal allocation of weight among subsets of attributes associated with each partition of 

the tree.  For the non-hierarchical weight assessment (Figure 3-3a), the fractional equal 

allocation weight for each attribute is simply 1/13.  For the hierarchical weight assess-

ment, the fractional equal allocation weights are found by determining the number of 

branches at each tree partition.  For example, attributes 1 through 4 each receive a frac-
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tional equal allocation weight of ¼, because there are four branches in the partition con-

taining these attributes.  

These fractional equal allocation weights are then combined with the fractional expressed 

weights for each subject so that the debiased weights and the bias parameter λ can be es-

timated by solving (3.2)-(3.3).  Because directly assessed weights, such as point alloca-

tion weights, can be poor estimates of a subject’s willingness to trade off different 

attributes, the claim cannot be made that the estimated debiased weights correctly 

represent rates of substitution (Keeney and Raiffa 1976).  Rather, those estimates are as-

sumed to represent the weights that would be expressed in the absence of value tree-

induced biases.   
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Figure 3-4: Estimated Bias Parameter (λ) for Each Subject 

 
For each subject, the model is applied to the two weight sets elicited during the Centerior 

Energy case study, producing an estimate of λ and debiased weights for each subject.  For 
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nine of the eleven subjects, the model estimates a positive bias parameter (see Figure 

3-4), indicating that the equal allocation weights may have an influence on the expressed 

weights for these nine subjects.  The average value for the bias parameter is 0.195, with 

the largest value being 0.365.  Thus, on average for this group, the elicited weights are a 

convex combination of the equal allocation weights and the estimated debiased weights, 

where the influence of the equal allocation weights is about twenty percent, and the influ-

ence of the innate preferences is about eighty percent. Table 3-5 displays each subject’s 

estimated debiased weights. 

Table 3-5: Estimated Debiased Weights for Each Subject 

Attribute S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

x1 0.151 0.000 0.054 0.025 0.011 0.043 0.067 0.121 0.053 0.046 0.022 
x2 0.008 0.000 0.008 0.000 0.014 0.131 0.129 0.131 0.241 0.117 0.017 
x3 0.295 0.497 0.424 0.214 0.397 0.502 0.256 0.256 0.326 0.203 0.352 
x4 0.056 0.243 0.016 0.170 0.158 0.062 0.191 0.175 0.129 0.255 0.098 
x5 0.108 0.000 0.008 0.100 0.067 0.067 0.025 0.050 0.003 0.117 0.000 
x6 0.013 0.000 0.006 0.075 0.023 0.019 0.018 0.018 0.011 0.004 0.045 
x7 0.051 0.000 0.006 0.039 0.023 0.010 0.008 0.000 0.011 0.034 0.003 
x8 0.027 0.000 0.048 0.025 0.034 0.003 0.028 0.012 0.016 0.000 0.101 
x9 0.027 0.000 0.009 0.071 0.023 0.001 0.015 0.021 0.001 0.000 0.191 
x10 0.000 0.000 0.009 0.010 0.045 0.001 0.007 0.050 0.016 0.008 0.030 
x11 0.012 0.000 0.085 0.025 0.011 0.019 0.000 0.042 0.016 0.040 0.000 
x12 0.020 0.000 0.174 0.016 0.100 0.028 0.128 0.020 0.105 0.021 0.034 
x13 0.231 0.260 0.155 0.229 0.095 0.115 0.128 0.104 0.072 0.154 0.109 

 
A one-tailed binomial test (Conover 1999) with 11 trials is used to determine the statis-

tical significance of the results.  The null hypothesis, H0: q = 0.5, states that no value tree-

induced biases exist, meaning that the true value of λ is equal to zero.  Under the null hy-

pothesis, half of the estimated λs would be expected to be positive, and the other half ze-

ro.  The alternative hypothesis, Ha: q > 0.5, states that the true value of λ is greater than 

zero.  The result that 9 of 11 subjects have a positive bias parameter is significant with a 



 69

p-value of 0.03.  Thus, an influence of the equal allocation weights on the expressed 

weights is supported by the results. 
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Figure 3-5: R2 Values for Each Subject 

 
To determine how well the variability in the data can be explained by the model (3.2)-

(3.3), a coefficient of determination, R2, is calculated for each subject as  
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ˆ frac
bW represents the fractional expressed weight for a subset of attributes at a branch (b = 

1,…,30), as shown in (3.1).  The term ˆ̂ frac
bW  represents the fractional expressed weight 

predicted by the model, and ˆ frac
bW  is the mean fractional expressed weight, which is the 

same for each subject - i.e., number of partitions divided by number of branches = 1/5.  
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Figure 3-5 depicts the R2 values for each subject; the model performs well with an aver-

age R2 of 0.97. 

3.5.3 Rankings 

The ultimate purpose of eliciting weights from subjects is to rank alternatives by combin-

ing the weights with single attribute value functions.  Suppose two weights sets are eli-

cited from a subject and the values of the attribute weights differ between the sets.  It is 

then possible for the rankings produced by each weight set to be different as well.  This 

can occur if no single alternative dominates all the others.  Tables III-3 and III-4 show 

that all alternatives are non-dominated; therefore, changes in ranks are indeed possible.   

Table 3-6: Top Ranked Alternative for Each Subject and Each Weight Set 

Weight Set S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

NH B Ref B I B B B B B B B 
H H Ref Ref H B H B B B H Ref 

Debiased H Ref Ref I B B B B B B B 
 
Three weight sets were used to derive three sets of ranks for each subject – non-

hierarchical (NH) weights, hierarchical (H) weights and estimated debiased weights (De-

biased).  For six subjects, the top ranked alternative depended on the weight set used.  For 

the other five subjects, all weights sets produced the same top-ranked alternative – alter-

native B for four subjects and the reference alternative for the other subject.  Yet, for 

these subjects, there were inconsistencies in the ranks of the remaining 14 alternatives.  

That is, the ranks of the other alternatives were dependent on the weight set.  Among sub-

jects, there was some consensus.  Of the 15 alternatives, only four – B, H, I and Ref – 

were ever ranked first by any of the subjects.  The top ranked alternatives for each subject 
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and the corresponding weight set are presented in Table 3-6.  The complete set of ranks is 

available in Table A.I- 2 in Appendix I.   

Interestingly, of the five subjects that had consistent top-ranked alternatives (S2, S5, S7, 

S8, S9), four of the subjects always ranked alternative B highest.  Alternative B per-

formed best with regards to three of the four economic attributes (x1, x2, x4), and several 

“environmental-other” attributes (x8, x9, x10, x11).  However, alternative B performed ra-

ther poorly with respect to the “environmental-air” attributes (x5, x6 and x7).  Thus, the 

high ranking of alternative B reflects that many decision makers were more concerned 

with the economic impacts of the projects than the air pollution produced by the various 

alternatives. 

Table 3-7: Spearman's Correlations between Rankings from Different Weight Sets for Each Subject 

Weights S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Mean

NH-H 0.804 0.850 0.907 0.736 0.839 0.943 0.764 0.893 0.861 0.936 0.696 0.839
NH-Debiased 0.836 0.975 0.950 0.889 0.918 0.950 0.746 0.964 0.775 0.946 0.718 0.879
H-Debiased 0.925 0.907 0.939 0.918 0.971 0.993 0.996 0.886 0.925 0.893 0.939 0.936

 
While alternative B was always top ranked for five of the subjects, the ranks of the other 

alternatives were inconsistent and differed depending on the weight set used.  The corre-

lations between ranks derived from different weight sets are presented in Table 3-7.  The 

largest correlations tend to be between the hierarchical weights and the model-estimated 

debiased weights, iW% .  The smallest correlations tend to be between the two elicited 

weight sets; however, the two elicitation methods are nonetheless highly correlated, con-

sistent with results of other experiments in which subjects applied two or more direct 

weight assessment methods (e.g., von Winterfeldt and Edwards 1986).  Indeed, because 

of the possibility of a carryover bias, each subject’s expressed weight sets tend to be more 
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similar than they would be if the subject could forget, in the second assessment, what 

weights he or she chose in the first assessment.  This artificial similarity will tend to de-

crease the estimated degree of the value tree-induced attribute weighting bias.  Future re-

search should attempt to control for this potential downward bias in the estimate of λ. 

3.5.4 Value Losses 

One way to evaluate the impact of differences in weights is to consider the loss of value 

caused by using “incorrect” weights.  The loss of value incurred from using the “incor-

rect” weight set, w, instead of the correct weight set, c, is determined as 

 1 1
c,wValue Loss ( ) ( )c w c cV A V A= −  (3.6) 

where Vc(A) represents the result of the additive value function (equation III.4) for alter-

native A using weight set c.  Aw
1 represents the top ranked alternative using weight set w 

and Ac
1 is the top ranked alternative using weight set c.  Because, by definition, Ac

 1 max-

imizes Vc (·), (3.6) is non-positive.  By the definition of the attribute value functions and 

weights (all in the range 0-1), (3.6) also cannot exceed 1. 

Table 3-8: Value Losses Incurred Using Different Weight Sets 

Correct/ 
Used  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

NH/H -0.038 0 -0.007 -0.03 0 -0.013 0 0 0 -0.010 -0.001
NH/ 

Debiased -0.033 0 -0.003 -0.01 0 -0.003 0 0 0 -0.001 0 
H/NH -0.025 0 -0.042 -0.03 0 -0.030 0 0 0 -0.049 -0.041

H/Debiased 0 0 0 0 0 0 0 0 0 0 -0.009
Debiased/ 

NH -0.025 0 -0.042 -0.03 0 -0.030 0 0 0 -0.049 0 
Debiased/H 0 0 0 0 0 0 0 0 0 0 -0.001
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Table 3-8 displays the value loss from using a weight set other than the one that is as-

sumed to be correct.  Table 3-9 shows the value losses expressed, instead, in terms of a 

single attribute, x3, which describes levelized rates for years 0-6 (also called short-term 

rates) in dollars per megawatt-hour ($/MWh).  Converting the value losses into dollar 

terms allows for a more tangible interpretation of the losses.  This particular attribute is 

chosen because none of the subjects who incurred a value loss expressed a zero value 

weight for x3, and all but three subjects assigned the highest weight to x3 in both value 

trees.  Subjects preferred lower short-term rates, so a worse rate is one that has a higher 

value.  

Table 3-9: Value Losses Measured in Terms of Increase in Short-term Rates ($/MWh) 

Correct/Used S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

NH/H -$2.35 0 -$2.98 -$2.68 0 -$1.29 0 0 0 -$3.44 -$2.97 
NH/Debiased -$2.35 0 -$2.98 -$2.68 0 -$1.29 0 0 0 -$3.44 0 

H/NH -$1.77 0 -$0.26 -$1.77 0 -$0.28 0 0 0 -$0.95 -$0.04 
H/Debiased 0 0 0 0 0 0 0 0 0 0 -$0.04 

Debiased/NH -$1.56 0 -$0.09 -$0.34 0 -$0.07 0 0 0 -$0.06 0 
Debiased/H 0 0 0 0 0 0 0 0 0 0 -$0.35 

 
The value losses can be converted to short-term rates using the following general proce-

dure (Keeney and Raiffa 1976).  Suppose that there are two alternatives, A1 and A2, and 

that A1 is preferred to A2.  Each alternative is described by I attributes.  Suppose X(i*)
 is a 

vector of length I that contains all zeroes except for the ith element, which is xi*.  In order 

to calculate the value of xi*, the equation  

 ( *)
1 2( )  ( )i

j jV A V A X= +  (3.7) 

is solved for X(i*).  The term jV  (·) represents the results of the additive value function 

(equation III.4) using weight set j.  The term xi* is interpreted as the amount that alterna-
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tive A2 would need to improve in attribute i for the subject to be indifferent between the 

two alternatives.  Thus, x3* is the decrease in short-term rates needed for options 1 and 2 

to be equally desirable.  The value of xi* can be calculated by solving 

 ( ) ( )* *
,

best worst
loss i c i i iV W x x x= −  (3.8) 

where Vloss represents the value loss due to the use of the (assumed) incorrect weights.  

W*i,c indicates the subject’s (assumed) correct weight for short-term rates (i = 3).  The 

variables xi
best and xi

worst define the best and worst values of x3.  Table 3-2 shows that xi
best 

=  -3.3$/MWh and xworst = 10.8 $/MWh.  This range corresponds to the range used by 

subjects when performing weight elicitations. 

Converting value losses to short-term rates using the procedure described above is equiv-

alent to performing even swaps on all attributes until only short-term rates remain 

(Hammond et al. 1998).  Suppose that there are two alternatives – A1 and A2 – and that 

attribute x1 performs better under alternative A1 and x2 performs better under A2.  The 

even swap procedure begins by changing the value of x1 under A2 to the value of x1 under 

A1.  Then, the subject determines how much the value of x2 must change under A2 for the 

subject to be indifferent between the two alternatives in regards to attributes x1 and x2.  

Even swaps are made until only the attribute of interest remains.  

Overall, the value losses range from -$3.44/MWh to zero.  Of course, the value loss is 

zero when there is agreement on the top-ranked alternative determined by both the as-

sumed correct weights and the weights that are used.  The most extreme values losses oc-

cur for each subject when the hierarchical weights are used but the non-hierarchical 
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weights are assumed to better reflect the subject’s preferences.  It is interesting to note 

that, except for subject eleven, there are no value losses incurred when the debiased (or 

hierarchical) weights are used and the hierarchical (or debiased) weights are assumed to 

be correct.  The results in Table 3-9 indicate that the value tree-induced bias can have a 

large effect on both the rankings and the loss of value due to the use of incorrect weights.  

Thus, it is important to develop a method to reduce the influence of the bias to prevent 

these value losses from occurring. 

3.6  Conclusion 

This chapter developed a model for addressing biases that occur when using value trees 

to elicit weights.  Previous research suggests that the use of the anchor-and-adjust heuris-

tic during direct weight elicitations may be responsible for value-tree induced biases.  

The model-based approach developed in this study aims to debias attribute weights by 

assuming that expressed judgments of relative weights are a convex combination of the 

equal allocation weights and a set of weights reflecting the subject’s innate preferences.  

This model formulation incorporates the influence of the value tree structure, as well as 

both components of the anchor-and-adjust heuristic: the amount of influence that the anc-

hor (equal allocation weights) has on the elicited weights is reflected by the bias parame-

ter, which is simply the weight in the convex combination; and the adjustment step is 

modeled as the influence that the innate preferences have on the elicited weights.   

Summarizing the empirical results, nine of the eleven case study subjects displayed the 

hypothesized bias of flatter, less varied weights for a non-hierarchical assessment.  Addi-

tionally, the model fit the data well, with an average R2 of 0.97.  While the results of the 
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model-fitting support the conjecture regarding the anchor-and-adjust heuristic, the small 

sample size means that generalizations cannot be made about how the model will perform 

in other situations.  Additional experiments with larger samples are desirable; neverthe-

less, case studies in a realistic context, such as ours, can be valuable for empirically test-

ing models (Adelman 1991; Yin 2003).  A case study “allows investigators to retain the 

… meaningful characteristics of real-life events” (Yin 2003).  The use of real decision 

makers with realistic alternatives and objectives provides support for the existence of 

value tree-induced biases in practice, and for the feasibility of the proposed debiasing me-

thod.   

In addition to a larger dataset, future work should examine the effect of elicitation me-

thod (e.g., top-down vs. bottom-up) on the bias, and should consider and control for the 

presence of other biases as well.  In particular, a carryover bias may result in an increased 

similarity in the weights elicited using two different value trees.  Decision makers may 

bias the weights in a second assessment by “carrying over” the weights that were ex-

pressed with the first value tree.  Lastly, future work should characterize the statistical 

properties of the least-squares estimates.  Because the estimation is an inequality-

constrained optimization, numerical methods are promising for this purpose (Geweke 

1996), and they could be employed to quantify the uncertainty due to sample error in the 

estimates of splitting biases and debiased weights. 

Despite the above limitations, this study provides a theoretically-based framework for 

debiasing attribute weights that suffer from value tree-induced biases, such as the split-

ting bias.  When time or other limitations prevent follow-up interviews with subjects, the 
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proposed model-based approach provides a practical means of debiasing weights so that 

they better reflect decision maker’s innate preferences.   
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Chapter 4  

A Bayesian Framework for Cost Effective Management 

of Sediment Reduction in the Minnesota River Basin 

Water quality impairments remain a pressing concern in the United States.  Rural non-

point sources have been particularly difficult to control, with relatively little progress 

compared to point sources since the passage of the Federal Water Pollution Control Act 

Amendments of 1972.  Selecting appropriate management actions (i.e., best management 

practices) to control pollution is made difficult by large uncertainty in the location and 

magnitude of pollution sources as well as in the effectiveness of different management 

actions for reducing pollutant discharge from the watershed.  To address these concerns, 

this chapter presents a framework to select the optimal combination of research actions, 

which improve our understanding of the natural system, and management actions, which 

reduce pollutant loading.   The method uses a combination of Bayesian inference and 

multiobjective linear programming to explicitly consider uncertainty in both research and 

management actions.  The usefulness of the model is illustrated using the problem of re-

ducing turbidity from rural nonpoint sediment sources in the Minnesota River basin.   

4.1 Introduction 

Nonpoint source pollution is the largest contributor to water quality impairments of sur-

face waters in the United States (U.S. Environmental Protection Agency 2003). Sediment 

is one of the major nonpoint source pollutants and results from erosion.  Agricultural 

lands are the most wide-spread source of sediment reaching rivers and lakes, while 

streambanks, construction sites, and runoff from urban, residential and forested areas also 
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contribute sediment (ibid.).  Soil loss can deplete nutrients in the soil and deteriorate soil 

structure, which decreases the productivity of the land.  Sediment can also have a detri-

mental effect on aquatic ecosystems.  When the sediment reaches a water body, it in-

creases turbidity, which limits the amount of sunlight reaching aquatic plants.  Sediment 

can cover fish spawning and nursery habitats, interfere with fish respiration by clogging 

gills, and inhibit growth of submerged aquatic vegetation.   The result can be decreased 

productivity of the water body receiving the sediment due to decreased primary and sec-

ondary production, leading to reduced fish abundance.   On the other hand, the nutrients 

associated with sediment loss may increase algal productivity, increasing eutrophication 

problems. 

Reductions in sediment loading are recommended for improving many impaired water 

bodies; however, as a nonpoint source pollutant, sediment reaches the water body from 

many diffuse sources and the contribution from each source is difficult to quantify with 

certainty.  Despite the difficulty of determining sediment contributions from various 

sources, a large number of management practices have been developed for reducing se-

diment.  For agricultural lands, managing sediment includes changes in cultivation me-

thods, such as different tillage practices, and structural actions, such as terracing.  For se-

diment produced from streambank or hillside erosion, management practices often aim to 

redirect streamflow, protect banks from erosion, or develop riparian buffers. Sediment 

produced from gullies and ravines is often addressed through bank protection or soil sta-

bilization and revegetation.  

Choosing among the wide range of available management options is further complicated 

by the many parties involved including farmers, various land owners, soil & water con-
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servation districts and regulators at the local, state, and federal levels.   Furthermore, the 

uncertainty surrounding the sediment contribution from each source means that measures 

taken to reduce sedimentation can be ineffective if the wrong sources are addressed.  Ap-

plied research can reduce the uncertainty in the estimates of sediment sources.  There is a 

tradeoff between research and management: further studies may improve estimates of 

sediment sources and support more accurate targeting of management measures, but can 

be time-consuming and costly, resulting in delays in clean up.  

A variety of research methods can be used to estimate sediment loadings.  Erosion rates 

for agricultural fields are often estimated by the Universal Soil Loss Equation (USLE) or 

the Revised Universal Soil Loss Equation (RUSLE) version 1 (Renard et al. 1997) and 2 

(RUSLE2) (Foster et al. 2003).  These estimates are most appropriate for edge-of-field 

sediment supply, and application to larger areas brings in additional sources of sediment, 

as well as the opportunity to deposit field-derived sediment.  The USLE tends to overpre-

dict soil losses in areas with low erosion rates and underpredict soil losses in areas with 

high erosion rates (Risse et al. 1993; Kinnell 2005).  Sediment yields can be measured 

using flow and sediment concentration observations from stream gages.  An emerging 

methodology is sediment fingerprinting ((Walling and Woodward 1992), which uses 

chemical or isotopic information to trace sediment sources and can typically provide an 

estimate of the proportion of sediment exposed at or near the ground surface, and is thus 

used to identify the proportion of sediment derived from agricultural fields.  Sediment 

loadings and yield can also be estimated in the context of a sediment budget analysis, 

which combines a range of field and remote sensing methods to identify sources, sinks, 

and fluxes of sediment (see Reid and Dunne 1996).  By invoking mass conservation of 
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sediment for a defined watershed and time period, a sediment budget allows the uncer-

tainty in estimates of sediment sources to be evaluated (Gran et al. 2009).  The sources of 

uncertainty are many, including error inherent in specific methods, extrapolation from 

monitored sites, unknown future weather and land use conditions, and the proportion of 

eroded sediment that is subsequently redeposited and remains in the watershed.   

In addition to the uncertainty surrounding sediment loadings, other sources of uncertainty 

further complicate the management of sediment.  Management actions subject to uncer-

tainties include the effectiveness of an action in reducing sediment loading, the extent of 

voluntary adoption rates, and the cost to implement and maintain the actions.  The 

framework developed in the next section directly addresses the problem of choosing 

among sediment reduction management actions in rural watersheds in the face of several 

of these sources of uncertainty, namely uncertainty in sediment loadings, predictive abili-

ties of research methods, and the cost and effectiveness of management action. 

Using Bayesian inference and multiobjective linear programming, the optimal set of in-

formation acquisition, or research actions, and management actions are chosen to minim-

ize expected cost and maximize expected sediment reduction.  By placing different 

weights on costs and sediment, alternative research and management plans can be derived 

and the resulting tradeoffs between those two objectives can be described.  The value of 

information of each research action is also quantified.   

To test the applicability of the framework, the problem of reducing sediment in the Min-

nesota River basin is addressed, with a focus on the Maple River subbasin.  The Minne-

sota River frequently violates federal or state water quality standards for a variety of pol-
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lutants including nutrients and turbidity (Mallawatantri 1999).  In 2001, the Minnesota 

Pollution Control Agency published the Minnesota River Basin Plan (2001), which de-

scribed the state of the river basin and identified priorities for addressing water quality 

impairments.  Regulations based upon the concept of “total maximum daily loads” 

(TMDLs) are being developed to place an upper limit on the amount of sediment reach-

ing the waterways (Minnesota Pollution Control Agency 2009).  However, for sedimenta-

tion, the relevant time scale is seasonal or yearly, since the concern is not so much with 

instantaneous concentration of sediment but with accumulated loadings over time upon 

sensitive ecosystems.  Nevertheless, the sediment reduction planning process is still gen-

erally referred to as a TMDL. How the TMDLs will be met has yet to be determined.  

The framework developed here will provide a tool to assist in developing a TMDL im-

plementation plan to meet sediment reduction goals.   

The remainder of this chapter is organized as follows.  Section 4.2 provides a literature 

review. Section 4.3 presents the framework for evaluating research and management ac-

tions for reducing sediment.  This framework has two main components – a Bayesian in-

ference model that determines the impact of each research, or information acquisition ac-

tion, and a multiobjective linear program for selecting among management actions.  Sec-

tion 4.4 presents the Minnesota River Basin case study.  The results are detailed in sec-

tion 4.5 and section 4.6 presents a discussion and conclusions. 

4.2 Literature Review 

Previous environmental systems approaches for sediment reduction began with determi-

nistic optimization approaches to nonpoint source pollution reduction dating back to the 
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1970s.  That research sought to determine the effects of different soil erosion control pol-

icies on the agricultural industry.  Wade and Heady (1977)evaluated five alternative poli-

cies to control sediment to rivers and streams in the United States.  The authors used a 

linear programming (LP) model that minimized agricultural production costs subject to 

constraints on crop and livestock production, commodity demands, sediment delivery, 

and soil losses per acre.  The decision variables described the crop rotation, tillage, and 

conservation practices needed to meet different policy requirements.  The problems were 

modeled as deterministic linear programs.  Sediment transport was described by fixed 

transport coefficients derived from the Universal Soil Loss Equation (USLE) with con-

stant sediment delivery ratios describing the amount of eroded sediment that ultimately 

reaches a downstream targeted area.  Uncertainties were not explicitly incorporated in the 

modeling.   

Seitz et al. (1979) extended the findings by Wade and Heady (1977) by summarizing 

several analyses that investigated the economic impacts of soil erosion control policies.  

The authors used a comparative static linear programming (LP) model of the production 

and marketing of several corn-belt crops to evaluate the effect of various taxes, subsidies 

and soil loss constraints.  The objective of the LP was to maximize consumer and pro-

ducer surpluses in the corn and soybean markets, less the variable cost of producing small 

grains, hay and pasture.  Different crop production activities were modeled using various 

crop rotation and conservation practices, such as terracing and straight-row planting.  

Various tillage methods, such as chisel plowing, were also included in the model.   

Again, uncertainties were not incorporated in the model and soil loss was estimated by 

fixed soil loss coefficients derived from the USLE.    
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Kramer et al. (1984) also developed a linear program (LP) to evaluate agricultural poli-

cies for reducing nonpoint pollution.  Their model, like the one I develop here, included 

BMPs not tied to specific agricultural activities, such as grassed waterways, as well as 

land cultivation practices.  Braden et al. (1989) improved on the models described by 

Seitz et al. (1979) by incorporating spatial sediment movement functions that allow vari-

able sediment delivery ratios and account for interim storage of sediment.  The problem 

was solved using a dynamic programming nonlinear model to generate a full abatement 

cost frontier, which identifies the least costly management regime for each possible se-

diment loading level.  Bouzaher et al. (1990) also developed a dynamic programming 

model.  Their model minimized the cost of achieving a sediment standard by identifying 

the best set of management alternatives for each sediment delivery path.   

Schleich and White (1997) developed an LP that minimizes total phosphorus reduction 

costs such that a target total phosphorus standard is met.  The model also considered total 

suspended solids (TSS) reduction; however, the cost of reducing TSS was not available, 

so TSS reductions were considered by recognizing that a reduction in total phosphorus 

will also reduced TSS.  The decision variables in the model were management actions 

associated with five source categories generating phosphorus and TSS in 41 watersheds.  

The sources examined were municipal treatment plants, industrial point sources, con-

struction runoff, urban storm runoff, and nonpoint agricultural sources. The authors found 

that it was most cost-effective to address agricultural sources.        

Veith et al. (2003) developed a deterministic integer-programming model for locating 

BMPs at the watershed level.  The authors represented the BMPs with integer variables to 

reflect that the BMP was either fully implemented or not.  They combined a genetic algo-
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rithm with a geographic information system to determine the most cost effective place-

ment of BMPs.  MILPs could not be used to find optimal solutions because the number of 

combinations of BMPs at the watershed scale was prohibitively large, resulting in an in-

tractable problem that was not guaranteed to solve to optimality in a finite amount of 

time. Gitau et al. (2004) built upon the work by Veith et al. (2003) by combining an up-

graded version of the genetic algorithm developed by Veith et al. (2003) with a watershed 

level nonpoint source model and a BMP tool that summarizes literature on BMP costs 

and effectiveness.  The authors used this framework to determine optimal BMP place-

ment for nonpoint source phosphorus reduction from agricultural lands. 

The deterministic models described above assume that loadings and control effectiveness 

are known with certainty.  However, the actual values are highly uncertain and even con-

troversial, as in the Minnesota basin (University of Minnesota Extension Service 1996; 

Steil 2004; Gupta et al. 2001). To address such uncertainties, several stochastic pro-

gramming models have been developed to address sediment reduction.  Chance-

constrained programming models (based on the Charnes-Cooper framework) were devel-

oped by several authors.  Milon (1987) and Zhu et al. (1994) maximized net economic 

returns to landowners subject to constraints requiring environmental standards be met 

with a user-specified reliability.  The loadings of pollutants (Milon 1987) or soil loss 

(Zhu et al. 1994) to receiving waters were assumed to be uncertain due to variability in 

precipitation.  However, average soil loss rates were assumed to be known with certainty.  

Kampas and White (2003) combined a geographical information system (GIS) to classify 

land classes based on soil properties with biophysical models to simulate the nitrogen 

cycle in agricultural systems, and a chance-constrained optimization model to analyze 
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different policy approaches to controlling nitrogen pollution from agriculture.  Lacroix et 

al. (2005) also combined chance-constrained programming models with simulation mod-

els to address nonpoint source nitrogen pollution.  The authors evaluated several nitrogen 

reduction scenarios using an approach similar to Kampas and White (2003) that coupled 

chance-constrained programming with biophysical nitrogen models; however Lacroix et 

al. (2005)used Monte Carlo simulation to evaluate the scenarios due to limitations that 

prevented analytical derivation of a deterministic equivalent constraint. 

Instead of chance constrained programming, Luo et al. (2006) developed an interval two-

stage stochastic program that minimized total system costs by choosing cropland to retire. 

The model they developed combined an interval two-stage stochastic program with a dis-

tributed water quality simulation model to quantify the randomness and spatial variation 

in agricultural nonpoint source pollution control through land retirement.  The first-stage 

decision was the quantity of agricultural land to retire, which was traded off with the 

second-stage or recourse decision of the amount of nonpoint source pollution to be dis-

charged from the non-retire lands.  

Rather than considering variability in streamflows and runoff, Yulianti et al.(1999), con-

sidered the effects of uncertainty in input parameters for a simulation/optimization model 

for selecting agricultural management actions to control sediment transported to surface 

waters.  The authors considered two uncertain inputs – uncertainty in soil and land cha-

racteristics due to insufficient data to represent the spatial variability, and uncertainty in 

meteorological data, cost of production, price of produce, and soil loss and crop yield pa-

rameters that fluctuate with time and are unknown in the future. Monte Carlo simulation, 
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generalized sensitivity analysis and regret analysis were used to determine management 

practices that were most and least sensitive to uncertainties considered.   

Nicklow and Muleta (2001) addressed sediment reduction using a discrete-time optimal 

control framework.  The research determined farm management decisions over a three-

year period.  Sediment yields over the time period were simulated with a process-based 

distributed routing model, Soil and Water Assessment Tool (SWAT), using spatially and 

temporally variable environmental factors like climate variables and topography.   A ge-

netic algorithm was used to determine the set of land cover and tillage practices that re-

sult in the minimum sediment yield from the watershed.   

To improve understanding regarding the contribution of various sediment sources, Kap-

lan and Howitt (2002) developed a sequential entropy filter to update sediment loading 

parameters from streamflow data.  This work is related to ours in that knowledge is re-

vised in response to acquired data, unlike the previously mentioned stochastic optimiza-

tion papers.  However, their research is descriptive, not prescriptive, in that it does not 

use the improved sediment loading information to influence management policies.   As a 

result, they could not quantify the value of better information in terms of improved out-

comes from management. 

More recently, the question of value of information in rural nonpoint pollution control 

has begun to be analyzed.  Kaplan et al. (2003), Farzin and Kaplin (2004), and Borisova 

et al. (2005) considered the value of information with regards to sediment loadings.   

Kaplan et al. (2003) developed a method to determine the optimal combination of data 

collection frequency and abatement efforts for reducing nonpoint source pollution subject 
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to a budget constraint.  The authors used a sequential entropy filter that provides im-

proved estimates of sediment loadings.  It was assumed that managers know the location 

and size of sediment sources, but there is uncertainty about the quantity of sediment gen-

erated from each sediment source.  To reduce this uncertainty, daily stream flow and am-

bient sediment load data is collected with the use of stream gages.  Two scenarios of data 

collection frequency were tested and the updated information from each scenario was 

then combined with a model to choose the optimal abatement level, defined in the paper 

as the miles of logging road to remove in Redwood National Park.   

Farzin and Kaplin (2004) also developed a framework to address sediment loading from 

forestland in northwestern California, but use a Bayesian approach.  During rain events, 

runoff can overflow stream channels at road crossings, causing sediment to enter tributa-

ries.  The authors develop a theoretical framework to determine the optimal combination 

of data collection frequency and abatement efforts for reducing sediment loadings subject 

to a budget constraint.  Data collection frequency was defined as the number of samples 

of stream flow and ambient sediment loads collected daily, and abatement was defined as 

removing haul roads.  The streamflow and sediment data was used to update the manag-

er’s prior probability of sediment loading from two hypothetical sources using a Bayesian 

approach.  The authors also considered the expected value of perfect information (EVPI).  

The value of perfect information is defined as the difference in environmental damages 

incurred if the manager knows the sediment loads from each source with certainty and 

accordingly makes optimal decisions about road removal.   

Similarly, Borisova et al. (2005) calculated the EVPI of various types of information for 

reducing nitrogen loads from agricultural land to the Chesapeake Bay.  The objective was 
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to maximize net benefits of pollution control subject to a variety of policy constraints.  A 

simulation model, composed of an economic agricultural production submodel and a 

physical submodel, considered three sources of uncertainty: 1) uncertainty about econom-

ic costs of changes in agricultural production to reduce nitrogen loads; 2) uncertainties in 

nitrogen loads due to changes in agricultural practices; and 3) uncertainty in economic 

benefits from nitrogen load reductions.  Both quantity controls and price control policies 

were examined.  Quantity control policies placed limits on nitrogen fertilizer applications 

and the total amount of land in nitrogen fertilizer intensive crops. Price control policies 

placed a per unit cost on land and fertilizer. The authors quantified the value of perfect 

information for these quantity and price controls; they did not consider the value of im-

perfect information provided from research efforts. 

Bayesian inference has also been used to reduce uncertainty in sediment source estimates 

in the context of sediment fingerprinting.  Sediment fingerprinting uses physico-chemical 

properties of sediment as tracers to identify sediment sources, but is subject to several 

sources of uncertainty including variability within each sediment source group (i.e. agri-

cultural lands, bluffs, ravines, etc.), variability due to limited sample size, and uncertainty 

about the tracer’s ability to distinguish between source groups.  Several studies have used 

Bayesian statistical models to update prior beliefs about proportions of sediment from 

various sources using observed sediment fingerprinting data (Small et al. 2002; Rowan et 

al. 2001; Rowan et al. 2001; Douglas et al. 2003; Caitcheon et al. 2006).  While these pa-

pers use Bayesian inference to reduce uncertainty about sediment sources, the informa-

tion is not used to inform management decisions. 



 90

The research proposed here is most closely related to the research by Farzin and Kaplin 

(2004) and Kaplan et al. (2003).  Like their work, the model developed in the next section 

determines the optimal combination of information acquisition and abatement.  The im-

pacts of uncertainty in sediment loads are explicitly considered and the benefits from 

considering this uncertainty are calculated.  However, the research here considers a range 

of sediment sources, not just a single source such as agricultural lands or logging roads.  

This work considers four possible sediment sources: agricultural lands, streambanks, ra-

vines and bluffs.  In addition to agricultural BMPs, the work here considers additional 

management actions including the stabilization of streambanks, ravines, and bluffs.  Last-

ly, the most significant difference between the work proposed here and previous work is 

the inclusion of various uncertainty reduction measures.  In particular, three types of 

learning actions are considered for reducing uncertainty regarding sediment loads: stream 

gauging, sediment fingerprinting and a modified sediment budget.  Previous studies have 

considered at most only one type of uncertainty reducing action.   The work here com-

bines information gathered through learning with an optimization program to choose 

among different types of management actions to reduce sediment loadings.  Bayesian in-

ference and Gibbs sampling is used to improve understanding of sediment loads from 

various sources and multiobjective linear programming is used to choose among man-

agement actions with explicit consideration of tradeoffs between cost minimization and 

sediment reduction.  This work contributes to the literature by synthesizing previous 

work through the development of a novel sediment reduction framework and by consider-

ing a more realistic representation of sediment reduction management incorporating un-

certainty.   
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4.3 Methodology  

The framework presented here combines expert elicitation, Bayesian inference, and mul-

tiobjective linear programming to determine the optimal combination of research actions 

and management actions to address sediment reduction.   

4.3.1 Expert Elicitation 

First, expert elicitation is used to obtain prior information regarding scientists’ current 

understanding of the natural system as well as the quality of information produced by re-

search actions used to improve this understanding.  Bayesian inference is then used to 

investigate the impact research can have on improving the understanding of the system, 

quantified as posterior probabilities.  Lastly, multiobjective linear programming (MOLP) 

is used to determine the optimal suite of management actions to employ based on the ex-

pected levels of loadings, as inferred from the research actions.  MOLP is also applied 

under the base case of no additional information.  Overall, the optimal portfolio of re-

search and management actions is selected based on the objectives laid forth in the linear 

program, balancing their cost and effectiveness in limiting sediment loss.  The three 

components of the methodology are detailed below. 

The first component of the framework involves eliciting expert judgment, which is useful 

when data is either unavailable in any other format, or too costly to obtain (Meyer and 

Booker 2001).  When managing sediment, it may be the case that scientifically derived 

values of sediment loadings are not yet readily available or are disagreed upon by differ-

ent researchers, as is the case in the Minnesota River Basin.  In addition to estimates of 

sediment loadings, information describing the accuracies of various methods aimed at 
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improving the understanding of the system may be lacking.  Eliciting expert judgment 

can help inform both the state of the system in terms of current sediment loadings, as well 

as describing the accuracy of research methods.  

There are a variety of techniques for eliciting probabilistic information from experts (see 

Meyer and Booker 2001 for review), as well as a large body of literature investigating 

biases that can occur during the elicitation process (see Clemen 2008 for a review). The 

choice of expert elicitation technique depends on a variety of factors including the type of 

information sought and the amount of resources available for the elicitation.  This work 

takes advantage of active research being conducted to identify sediment sources in sup-

port of a turbidity TMDL for the Minnesota River Basin (Minnesota Pollution Control 

Agency 2009).  One-on-one, in-person interviews with experts are used to collect infor-

mation about current estimates of sediment loadings from a variety of sediment sources 

(as joint prior distributions); to provide an inventory of research actions used to learn 

more about the sediment loadings; to describe how accurate the information from these 

actions are (in the form of likelihood distributions); and to provide an inventory of appli-

cable management actions to reduce sediment loadings.  The details of the elicitation and 

data collected as it relates to the case study are presented in the next section.     

The second component of the methodology is Bayesian inference.  Due to limited scien-

tific knowledge, sediment loadings are uncertain.  To manage sediment, decisions must 

be made in the face of this uncertainty.  Research actions allow decision makers to learn 

more about the system, and thus reduce uncertainty.  In order to select the best research 

and management actions to employ, Bayesian inference can be used to update prior dis-

tributions of sediment loadings using information obtained from the outcomes of the re-
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search actions, which result in posterior distributions that may lead to different manage-

ment decisions.   

A Bayesian approach to address uncertainty makes use of all available information.  In 

particular, new information is combined with previous information using Bayes’ theorem.  

Previous information regarding an uncertain quantity of interest θ, for example annual 

sediment loading (or a vector of loadings from different sources), is summarized with a 

prior probability distribution, fθ(θ).  Research actions, or data generating processes, result 

in observations, z, that tell us something about the uncertain quantity.  The probability or 

likelihood of observing a particular observation is summarized using a likelihood func-

tion, or conditional probability distribution, that describes the probability of an observa-

tion conditioned on the uncertain quantities of interest, fz|θ(z|θ).  Bayes’ theorem com-

bines the prior distribution with the likelihood function to produce a posterior distribution 

that summarizes the new information about θ based on the observation from the research 

action: 
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Information from the posterior distribution can then be used to inform management deci-

sions.  The prior distribution and likelihood functions are parameterized based on the in-

formation derived during the expert elicitation step described previously.  The next sec-

tion provides further details on how Bayesian inference combines expert judgment about 

the state of the natural system with the outcome of research actions to better inform man-

agement decisions aimed at reducing sediment loadings. 
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The last component of the methodology is multiobjective linear programming, which is 

used to select among the possible sediment reduction management actions.  Multiobjec-

tive programming is used because there are two competing objectives – minimizing ex-

pected cost and minimizing expected sediment remaining in the system.    

The problem of selecting management actions is a quite complex spatial problem.  Pre-

vious research has addressed sediment reduction under uncertainty with a variety of ap-

proaches, as discussed in the literature review, section 4.2.  The multiobjective linear 

program component of this framework is simpler than many of the more advanced tech-

niques discussed above.  This simplified approach for selecting management actions was 

selected to illustrate the framework in a more tractable way; however, the framework is 

flexible and it is possible to replace the multiobjective linear program with a more com-

plicated technique such as chance-constrained programming to select among manage-

ment actions.  

The multiobjective linear program (MOLP) seeks the optimal set of management actions 

that minimize a weighted sum of expected cost and expected sediment loss remaining 

after application of controls.  For each research action and observation, the expected 

loadings from the posterior distribution is input into the MOLP and a tradeoff curve of 

expected cost versus expected sediment remaining is found using the weighting method 

(Cohon 2004) by varying the weight placed on the sediment remaining objective.   Con-

straints are placed on the amounts of each management action that can be selected, as 

well as the amount of sediment addressed by each management action.  The details of the 

multiobjective linear program in the context of the case study are presented in the section 

4.4.4.   
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4.3.2 Integration of the methodology components   

In order to determine the optimal combination of research and management actions, a 

backwards induction procedure is used to integrate the expert judgment, Bayesian infe-

rence, and MOLP components of the model.  For a given sediment reduction objective 

weight in the MOLP, there is an optimal choice of research action, and for each research 

action observation, an optimal portfolio of management actions. First, for each observa-

tion that occurs for each research action, the optimal management actions are determined 

from the MOLP and the resulting optimal value of the weighted sum of expected cost and 

expected sediment remaining is calculated.  For each research action, the expectation of 

the optimal objective is calculated by weighting the optimal objective for each observa-

tion, by the probability of the observation occurring.  The optimal research action (if any) 

is chosen by minimizing the sum of this expectation and the cost of the research action.   

To evaluate the usefulness of the information produced from performing research, the 

expected value of imperfect information is computed for each action and each sediment 

objective weight as the improvement in the expected objective function relative to the no-

information solution.  First, the optimal objective function value from the MOLP is de-

termined for the case when no research action is performed.  In this case, the expected 

values from the prior distribution are used as sediment loading inputs into the MOLP.  

Then, for each research action and observation, the optimal objective function value is 

found based on the expected sediment loadings from the posterior distribution.  The ex-

pected value of imperfect, or sample, information is found by subtracting the optimal ob-

jective function value under the no research scenario from the probability weighted ob-
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jective function value under the research action.  The details of the value of information 

study as applied to the case study are presented in the next section. 

As discussed in the literature review section (4.2), previous work has focused on deter-

mining the optimal combination of management actions to reduce sediment from agricul-

tural lands, and on evaluating the value of information from data collection in the context 

of sediment loading from logging roads.  The methodology presented here expands the 

literature in several ways.  First, this methodology considers sediment originating from 

four main sources, agricultural lands, streambanks, ravines and bluffs, and the manage-

ment actions to reduce this sediment.  To my knowledge, no previous work has consi-

dered sediment reduction management of streambank, ravine or bluff erosion in conjunc-

tion with soil losses from agricultural lands.  Secondly, this work considers a variety of 

research actions used to reduce uncertainty about sediment loadings.  Previous work has 

considered either the use of gauging data to reduce uncertainty, or sediment fingerprint-

ing, not both together.  In addition, the sediment fingerprinting research has not incorpo-

rated uncertainty reduction with management actions.  Third, this research combines 

Gibbs sampling with multiobjective linear programming, which to my knowledge has not 

been combined in the context of sediment reduction management.  Overall, this frame-

work better addresses the complexity of managing sediment by considering multiple se-

diment sources prone to uncertainty, multiple research actions, and a broader range of 

management actions to reduce sediment.  
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4.4 Case Study 

The methodology described in the previous section is used here to determine the optimal 

set of information acquisition and management actions for controlling sediment loadings 

in the Minnesota River Basin.  Because of the large number of possible combinations of 

information and management actions, the framework is applied to a simple three wa-

tershed model.  Input values for the model watershed were developed for the Maple River 

watershed, a subwatershed of the Le Sueur River watershed within the Minnesota River 

Basin (Figure 4-1).   

 
Figure 4-1: Maple River Watershed (gray) within Le Sueur River Watershed.  Source: Minnesota 
River Basin Data Center 

 
The watershed is divided into an upper watershed, shown in lighter gray, and a lower wa-

tershed, shown in darker gray (Figure 4-2). The upper watershed is divided into two dup-

licate watersheds, W1 and W2, which drain into watershed W3.  This division was done 
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to investigate the impact of actions applied to a portion of the full watershed when the 

location of sediment loadings is uncertain.  The upper two watersheds each have two 

possible sources of sediment: agricultural fields and streambanks, whereas the lower wa-

tershed has four sources: fields, streambanks, ravines and bluffs.   

Watershed W1:
Area: 410 km2

Stream Length: 80 km

Sediment Sources:
Agricultural Fields (387 km2)
Streambanks (40 km)

Watershed W3:
Area: 67 km2

Stream Length: 40 km

Sediment Sources:
Agricultural Fields (67 km2)
Streambanks (20 km)
Ravines (30, each 2.5 km)
Bluffs (12 km)

W1 W2

W3

Watershed W2:
Area: 410 km2

Stream Length: 80 km

Sediment Sources:
Agricultural Fields (387 km2)

Streambanks (40 km)

Watershed W1:
Area: 410 km2

Stream Length: 80 km

Sediment Sources:
Agricultural Fields (387 km2)
Streambanks (40 km)

Watershed W3:
Area: 67 km2

Stream Length: 40 km

Sediment Sources:
Agricultural Fields (67 km2)
Streambanks (20 km)
Ravines (30, each 2.5 km)
Bluffs (12 km)

W1 W2

W3

Watershed W2:
Area: 410 km2

Stream Length: 80 km

Sediment Sources:
Agricultural Fields (387 km2)

Streambanks (40 km)  

Figure 4-2: Stylized three watershed model.  Watersheds W1 & W2 are upstream of watershed W3 

 
There are two categories of actions that decision makers must choose among – research 

actions that provide information about the physical system, and management actions that 

reduce sediment loading.  The framework for selecting actions is summarized in the deci-

sion tree in Figure 4-3.  The squares in the diagram indicate decision nodes and the cir-

cles indicate chance nodes, in which the outcome is uncertain.  The branches originating 

from the squares correspond to choices available to the decision maker and the branches 

from the circles show outcomes of uncertain events.   Time proceeds from left to right, 

with the information acquisition decisions being made first, followed by the uncertain 

outcomes of the actions.  The outcomes of the information acquisition actions are then 

used to inform decision about which management actions to choose.  While not displayed 
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explicitly in the figure, the outcome of the management actions are uncertain, due to un-

certainty in the sediment loadings, upon which management decisions are made.    

 
Figure 4-3: Sample of Decision Tree Illustrating Decision Framework   

 
The methods described in the methodology section (4.3) – expert elicitation, Bayesian 

inference, and multiobjective linear programming – are used to produce an optimal re-

search and management strategy.  In order to implement this methodology, the following 

information is needed: parameters for the prior distribution describing the sediment load-

ings, the costs and likelihood function parameters for each research action, the discretized 

distributions of the observations resulting from the research actions, and the cost and ef-

fectiveness of each management action.   
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4.4.1 Prior Information 

The first step in applying the framework presented in section 4.3 is to interview experts to 

identify the current state of knowledge about the system.  A one-on-one in-person inter-

view was conducted with Dr. Patrick Belmont (personal communication, July, 2, 2008), a 

postdoctoral research associate with the National Center for Earth Surface Dynamics 

(NCED), whose work includes developing a sediment budget for the Le Sueur River wa-

tershed.   During the interview, the expert was asked to provide a value for the long-term 

annual average sediment load for each of the eight sediment sources shown in Figure 4-2.  

In addition to the average loading for each source, the expert was also asked to provide a 

range describing the 95% confidence interval around the average.  The expert’s response 

was then read back, and the expert had a chance to modify the response.  It was assumed 

that the sediment loadings provided by the expert represent sediment exiting the wa-

tershed.  Since a portion of the sediment exiting watersheds W1 and W2  may be stored 

in W3 before exiting the system, the expert also provided an estimate of the sediment de-

livery ratio (SDR), which is the proportion of sediment entering the top of W3 that exits 

W3.   

For each source, the correlation of the loading from that source compared with each other 

source was also elicited.  This was done by asking Dr. Belmont if the correlation in load-

ings was zero, low, medium or high.  The qualitative correlations were converted into the 

following numbers: low was set to 0.2, medium to 0.6, and high to 0.85.  The responses 

from the expert elicitation are presented Table 4-1 and Table 4-2.  The expert (P. Bel-

mont, personal communication, May 6, 2009) felt that field contributions in watersheds 

W1 and W2 were strongly correlated due to the fact that field erosion in both watersheds  
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Table 4-1: Sediment Loadings and Sediment Delivery Ratio from Expert Elicitation 

Watershed Source 

Average Annual 
Sediment Loading 

or SDR  95% CI 

W1 
Field 9000 (tons/yr) 7000-9900 (tons/yr)

Streambanks 1000 (tons/yr)  100-3000 (tons/yr)

W2 
Field 9000 (tons/yr) 7000-9900 (tons/yr)

Streambanks 1000 (tons/yr) 100-3000 (tons/yr)

W3 

Field 7000 (tons/yr) 3500-10500 (tons/yr)
Streambank 7000 (tons/yr) 0-14000 (tons/yr)

Ravines 28000 (tons/yr) 14000-42000 (tons/yr)
Bluffs 28000 (tons/yr) 14000-42000 (tons/yr)
SDR 75% 65-95%

Total Expected Annual Loading 90,000 (tons/yr)
 
is driven by similar processes such as hydrology and woody debris presence.  The corre-

lations of field contributions in each upper watershed with field contributions in the lower 

watershed are only moderately correlated, reflecting that the upper and lower watersheds 

are different in their connectivity to the river system and topographic gradient.  In gener-

al, contributions that are correlated tend to have similar hydrologic, soil, and land-use 

controls of sediment production.  Contributions with no correlation typically generate se-

diment based on different processes.  For example, field erosion in the upper watersheds 

is driven by precipitation and surface runoff, whereas streambank erosion in the lower 

watershed driven by a mix of factors that control the configuration and hydraulics of the 

stream channel. 

Table 4-2: Correlations from Expert Elicitation    

  Field W1 Stream W1 Field W2 Stream W2 Field W3 Stream W3 Ravine W3
Stream W1 Low       
Field W2 High Low      
Stream W2 Low Low Low     
Field W3 Med Low Med Low    
Stream W3 Zero Med Zero Med Zero   
Ravine W3 Med Zero Med Zero Med Low  
Bluff W3 Med Low Med Low Med Low Med 
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The information gathered from the expert interview was then used to construct a joint 

prior probability distribution of sediment loadings.  The loadings from each sediment 

source were assumed to follow a log-normal distribution.  This distribution was chosen 

because it assigns a probability of zero to non-positive loadings and allowed for easier 

computations of posterior distributions.  Using the annual average sediment loadings and 

confidence interval ranges provided by the experts, the parameters of the marginal log-

normal distributions were calculated for each source and watershed by solving the fol-

lowing system of equations for μi,j and σi,j 
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The joint distribution of sediment loadings was found based on the marginal distribution 

parameters, the correlations elicited from the experts, and by recognizing that taking the 

natural logarithm of a log-normally distributed random variable results in a normally dis-

tributed random variable.  Thus, the joint distribution of sediment loading was found to 

be joint normal in terms of the natural log of the original sediment loading random va-

riables.    
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The values of μ and Σ are calculated as  

1 1 2 2 3 3 3 3[ , , , , , , , ]
  [9.10, 6.56, 9.10, 6.56, 8.82, 8.73, 10.21, 10.21] and

FW SW FW SW FW SW RW BWμ μ μ μ μ μ μ μ=
=

μ
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0.004 0.010 0.003 0.010 0.009 0.000 0.009 0.009
0.010 0.687 0.010 0.137 0.043 0.247 0.000 0.043
0.003 0.010 0.004 0.010 0.013 0.000 0.009 0.009
0.010 0.137 0.010 0.687 0.043 0.247 0.000 0.043
0.009 0.043 0.013 0.043 0.067 0.000 0.040 0.0

=∑
40

0.000 0.247 0.000 0.247 0.000 0.246 0.026 0.026
0.009 0.000 0.009 0.000 0.040 0.026 0.067 0.040
0.009 0.043 0.009 0.043 0.040 0.026 0.040 0.067

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The expert also provided the percentage of sediment exiting W3.  Since this random vari-

able is constrained to be between zero and one, a beta distribution was chosen and the 

SDR in W3 was assumed to be independent from the sediment loading variables. The full 

joint prior distribution, ( )fθ θ%
% , is found by combining the beta distribution for the sedi-

ment delivery ratio and the joint normal distribution for the sediment loadings 
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 (4.4) 

where d% is the random variable representing the SDR in W3 and theta is the vector de-

scribing the parameters of interest, { , }dy %% .  

4.4.2 Information Acquisition and Likelihood Functions 

The next step in the framework is to determine the information acquisition actions and 

their associated likelihood functions.  For each watershed, three information acquisition 

actions are considered: gauging, sediment fingerprinting or a sediment source analysis 

(SSA).  This suite of actions and their associated expected cost was selected to reflect the 

current research conducted in the Minnesota River Basin and was acquired during inter-
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views on January 9, January 20, February 6, February 9, and May 6 of 2009 with Dr. Pe-

ter Wilcock, who is an NCED principal investigator and professor at Johns Hopkins Uni-

versity specializing in erosion and sedimentation research.   

For a particular watershed, gauging is defined as the placement of a single gauge at the 

watershed outlet and is estimated to cost $15,000/yr.  Over the course of the year, stream-

flow and sediment samples are collected 20-25 times over the seven month gauging sea-

son (April – November) and used to compute an annual average sediment loading for the 

watershed (Guy 1969).  Sediment fingerprinting involves using atmospherically depo-

sited radionuclides as tracers for sediment sources (Walling and Woodward 1992) . Over 

the year, twelve samples are collected and analyzed for cesium-137 and lead-210 to esti-

mate the proportion of field derived sediment.  The cost to collect the samples is esti-

mated as $2000, and the cost of analyzing the samples to determine the relative field con-

tribution is $1500/sample.  Thus, a year long sediment fingerprinting study costs an esti-

mated $20,000/yr.    

The last research action under consideration is a sediment source analysis action, which 

produces estimates of the loadings from each source in each watershed.  Similar to a se-

diment budget (Reid and Dunne 1996), the SSA is defined as a year long study, typically 

performed by a master’s level graduate student, in which field work, aerial photograph 

analysis and literature review are combined to estimate the sediment contribution from 

each sediment source in the watershed.  The cost of an SSA is estimated to be $40,000/yr.  

In addition to performing each action separately in each watershed, combinations of two 

concurrent actions are also considered, resulting in a total of 46 actions, including a “no 

learning” action.   Combining actions allows for interesting possibilities because the dif-
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ferent actions provide very different information.  Stream gauging quantifies the total se-

diment passing the gauge, with no distinction regarding sources.  Fingerprinting provides 

an estimate of the proportion of field sediment from the watershed, with no information 

on the magnitude of the load.  A SSA produces estimates of the sediment loading from 

each sediment source.  The complete list of actions considered is presented in the Table 

4-10. This limit of at most two concurrent actions was chosen to allow for a manageable 

number of information acquisition actions to illustrate the framework.  Figure 4-3 shows 

a sampling of only five of the 46 possible actions, in order to keep the figure readable. 

The probability of observing a particular observation is defined using a log-normal like-

lihood function, again because the observations from the research actions must be non-

negative, and to facilitate computation of the posterior distributions.  Each research action 

produces a different type of observation.  Research actions that combine two individual 

research actions produce composite observations.  For example, if both gauging and fin-

gerprinting were performed in watershed W1 concurrently, the action would produce an 

estimate of the total sediment loading in W1 and the proportion of field sediment.  Thus, 

depending on the action, the observation produced is either a scalar or a vector.  The like-

lihood function for each scalar observation is written as 

 
2

|
ln( )1 1( | ) exp

22a

lik
a a

z a liklik
aa a

zf z
z

μ
σσ π

⎡ ⎤⎛ ⎞−⎢ ⎥= − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

θ θ%

%%%
%

, (4.5) 

where  
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{ }: | 1, 2,..., 45  is the index set of research actions (see Table 4-10 for a 

description of each action and its corresponding index value)

: observed value from research action 

: mean of natur

a

lik
a

A a a

z a

μ

= =

=

=

%

al log-transformed observation for research action 

: standard deviation of natural log-transformed observations for research action lik
a

a

aσ =

 

For observations with more than one element, the likelihood function is determined by 

recognizing that taking the natural logarithm of a log-normally distributed random varia-

ble results in a normally distributed random variable. The likelihood function for each 

vector observation is written as 
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where  

,
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' : vector of natural log-transformed observation for research action a, with 
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For each likelihood function, the expected value was found as a function of the parameter 

values, and was assumed to be unbiased.  Gauging produces an estimate of the total se-
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diment exiting the watershed above where the gauge is placed, thus the expected value of 

gauging was found as the sum of the expected value of the parameters representing sedi-

ment loadings from the upstream watershed.  For example, gauging in watershed W1 (a = 

16) would have an expected value of 16 1 1 1 1( ) ( )FW SW FW SWE z E x x x x= + = +% % % %% , where 

16z% represents the observation resulting from gauging in W1. Fingerprinting produces an 

estimate of the proportion of field sediment.  The expected value of fingerprinting in W1 

(a = 1) is then 1
1

1 1

( ) ( )F

F S

xE z E
x x

=
+
%

%
% %

, with 1z% represents the observation from the research 

action.  A second order Taylor series expansion was used to produce an estimate of 

( )aE z%  (Rice 1995).  For example, the expected value of fingerprinting in W1 is  
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where 
1 1

''
x xF F

f
% %

is the partial second derivative of 1

1 1

F

F S

x
x x+
%

% %
 with respect to 1Fx% , 

1 1

''
x xS S

f
% %

is the 

partial second derivative with respect to 1Sx% , and 
1 1

''
x xF S

f
% %

is the partial second derivative 

with respect to 1Fx% and 1Sx% . 

Finally, an SSA produces an estimate of each sediment source.  For example, the ex-

pected value of a sediment source analysis in W1 (a = 40) is a two dimensional vec-

tor: 40 1 1( ) [ , ]FW SWE z x x= % %% . 
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The standard deviation for each likelihood function was determined through interviews 

with Dr. Patrick Belmont (personal communication, July 2, 2008) about fingerprinting 

methods, and with Dr. Peter Wilcock (personal communication, January 9, 2009) regard-

ing gauging and sediment source analysis.  Each research action is subject to several 

sources of error.  For example, samples collected with each method are prone to both spa-

tial and temporal variability.  There are sample errors associated with sample collection,  

Table 4-3: Actions and Corresponding Errors 

Action 95% CI 
Gauging 70% - 140% of mean 
Fingerprinting 80% - 120% of mean 
Sediment Source Analysis  
      Fields 50% - 200% of mean 
      Streams 50% - 200% of mean 
      Ravines 50% - 200% of mean 
      Bluffs 50% - 200% of mean 
 
 
Table 4-4: Correlations between actions 

Research Actions Correlations 
Concurrent gauging in two watersheds High (0.85) 
Sediment Source Analysis in W3 (alone or with any other action)  
      Ravine and Bluff observations Low (0.3) 
Sediment Source Analysis in W1 and W2  
      Field observations  Med (0.5) 
      Stream observations Low (0.3) 
Sediment Source Analysis in W1 (or W2) and W3  
      Field observations  Med (0.5) 
      Stream observations Med (0.5) 
 
as well as measurement errors associated with the calculation of sediment loadings for 

each method.  For each research action, the expert was asked to provide a 95% confi-

dence interval reflecting these sources of error.  In addition to means and standard devia-

tions of observations from research actions, the expert was asked if the errors were corre-

lated.  Correlations were elicited for all combinations of actions, as well as correlations in 
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the accuracies of the individual components of a sediment source analysis. The parame-

ters of observational errors elicited from the experts are summarized in Table 4-3 and Ta-

ble 4-4. 

4.4.3 Discrete Observations and Posterior Generation 

Once the prior distribution and likelihood functions are parameterized, the next step in-

volves determining the set of observations for each research action.  The probability den-

sity for the outcomes az% of each research action is defined 

as |( ) ( | ) ( )f f f d= ∫ θ
θ

% %% %
%

% % %% %
θθ θ θ

a az a azz z .  The probability density function is continuous; how-

ever, because we use a decision tree methodology, we require a discrete set of observa-

tions.  Therefore, the continuous distribution was discretized using the following proce-

dure.  For each research action, the range of possible az%  values was divided into discrete 

intervals. For the research actions for which az%  are scalar, the range of possible values 

was divided into 9 mutually exclusive intervals.  For the remaining research actions, each 

of which have vector az%  outcome, the ranges of values for each dimension were divided 

into 3 intervals.  For the actions with scalar outcomes (gauging and fingerprinting), the 

probability of each interval was estimated using Monte Carlo integration with antithetic 

sampling to reduce variance (Fishman 1996).  For the research actions with two dimen-

sional observations (gauging and fingerprinting simultaneously, or sediment source anal-

ysis in W1 or W2), the probability of each of the 9 joint probability intervals was esti-

mated using the same Monte Carlo integration approach.  For the research actions whose 

az%  have more than two dimensions, a subset of discrete intervals was selected using Lat-



 111

in hypercube sampling (McKay et al. 1979).  The probability of each of these intervals 

was also estimated with Monte Carlo integration using antithetic sampling.   

These estimated probabilities are used to determine nine discrete values ζa,n, 

(n={1,2,…,9}),  of az%  and their associated discrete probabilities, p(ζa,n).  These discrete 

probabilities and observations are illustrated in Figure 4-3 as the outcomes of the chance 

nodes. We selected these discrete values in order to approximate the original distribution.  

To do this, a “moment matching” approach was taken.  This was implemented by running 

an optimization model that minimized the sum of squared deviations between the discrete 

probabilities and the Monte Carlo estimates of the probabilities for their associated inter-

vals, subject to the constraints that the means and covariances of the discrete distribution 

matched the means and covariances of the continuous distribution as estimated by the 

MC integration.  The model formulation used is presented in the Appendix to this chap-

ter.    

Based on the prior distribution and likelihood functions, WinBUGS (Lunn et al. 2000) 

was used to simulate the posterior distribution,
,| ,( | )

a n a nf ζ ζθ θ% , for each action and discrete 

observation.  WinBUGS is a Microsoft Windows based software program that performs 

Bayesian inference using Gibbs sampling (Geman and Geman 1984), which is a Markov 

chain Monte Carlo (MCMC) algorithm.  MCMC is essentially Monte Carlo integration 

using Markov chains.   Monte Carlo integration draws random samples from distributions 

of interest and then computes sample averages as approximations to expectations of the 

distribution.  MCMC draws samples with the use of a Markov chain, which is a sequence 

of random variables such that at each time t ≥ 0, the following state, Xt+1 is sampled from 
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the transition probability distribution P(Xt+1|Xt), which depends only on the current state, 

Xt, not the entire history of the chain of states prior to t.  The Gibbs sampler, on which 

WinBUGS relies, is a special case of the Metropolis-Hastings algorithm, which is the 

first algorithm developed to perform MCMC (see Gilks et al. 1996 for a thorough discus-

sion of MCMC, Metropolis-Hastings, and Gibbs Sampling). 

For each research action and observation, two Markov chains are used to check conver-

gence.  While it is difficult to say conclusively that a chain has converged, it is possible 

to investigate if it has not.  For each research action a and discrete observation ζa,n, the 

estimated potential scale reduction (EPSR) was one or nearly one, suggesting conver-

gence (Gelman and Rubin 1992).   

The Bayesian inference performed with WinBUGS resulted in estimates of the expecta-

tion of the posterior distribution, ,( | )a nE ζθ% , for each action a and observation n.  These 

expectations were then transformed back to the original parameters ,i jx% describing the 

long term annual average sediment loadings (in tons) from source i in watershed j, by tak-

ing the average of the exponential of the posterior samples.  The procedure used to de-

termine the discretized observations and their associated probabilities, was prone to er-

rors, due to the use of approximation techniques (Monte Carlo integration).  Therefore, it 

was necessary to adjust the results of the Bayesian inference to ensure that the following 

relationship was satisfied:  

 
9

, ,
1

( ) ( | ) ( )a n a n
n

p E Eζ ζ
=

=∑ x x% % , (4.8) 
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where x% is the vector of long term annual average sediment loadings.  For each action in 

which the relationship did not hold, the following adjustment was made for each observa-

tion n and action a:   
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, , , ,
1

'( | ) ( | ) ( ) ( | ) ( )a n a n a n a n
n

E E p E Eζ ζ ζ ζ
=

⎛ ⎞
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∑x x x x% % % % . (4.9) 

This adjustment was necessary to prevent negative values of information from being cal-

culated and to prevent the inappropriate selection of research actions based on incorrect 

values of ,( | )a nE ζx% .  

4.4.4 Multiobjective Linear Program 

For each action and observation, the corrected expected value of each posterior distribu-

tion, ,'( | )a nE ζx% , was then used as an input to the multiobjective linear program used to 

select the optimal suite of management actions.  The multiobjective linear program 

(MOLP) seeks to select the optimal amount of each BMP to install in order to minimize a 

weighted sum of expected annual cost and expected long term annual sediment loss in the 

three watershed model:   
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where 
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 : { | 1, 2, ,8} is the index set of BMP types.  

 : { | 1, 2, ,7} is the index set of segments of the cumulative percent soil 

loss versus cumulative percent area (or length) curve used to calculate 
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The objective function (4.10) minimizes the sum of the expected costs of the BMPs, and 

maximizes the weighted expected sediment reduced by the BMPs.  The sediment portion 

of the objective is equivalent to maximizing expected long term annual sediment reduc-

tion because the initial (unabated) loadings are inputs into the linear program and are 

considered constants, which cannot be optimized.     
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The sediment reduced (tons) by each BMP is calculated based on the assumption that 

each particular sediment source type has a distribution of loss within the areas making up 

that type, and that the areas with the highest relative contribution of sediment would be 

addressed first.  To accomplish this, a curve representing the distribution of soil loss must 

be constructed for each source and watershed that relates cumulative % soil loss and cu-

mulative % area (or % length for streambanks and bluffs).  The tons of sediment reduced 

per unit of each BMP installed are then calculated as , , , ,

,

* * '( | )m
i j i k i j a n

i j

S F E x
A

ζ%
.  The first 

set of constraints (4.11) limits the amount of each decision variable corresponding to each 

segment of the soil loss curve to be within the range of that segment.  For example, if the 

first segment of the soil loss curve addresses the worst 1% of the total area contributing 

soil loss from source i in watershed j, the constraint would limit the percent of area occu-

pied by this BMP k for this segment to be less than 1%.  The second set of constraints 

(4.12) limits the total amount of each type of BMP to be less than the upper bound on the 

available area (or length) for the BMP.  The last set of constraints (4.13) enforces non-

negativity of BMP amounts. 

To determine the tradeoff between cost and sediment reduced, the model is run with a 

range of values of W to show the decisions under different relative valuations of soil loss.  

The next section describes the management actions under consideration and the parame-

ter values used in the MOLP. 



 116

4.4.5 Management Practices and Parameter Values 

A portfolio of possible best management practices and their associated costs and effec-

tiveness was identified through literature review and interviews with experts involved in 

managing sediment in the Minnesota River Basin.  The data sources for each BMP are 

summarized in Table 4-5. The BMPs under consideration address all four sources of se-

diment and were chosen to illustrate a sampling of the different kinds of BMPs currently 

in place or under consideration.  The costs and effectiveness for each BMP is summa-

rized in Table 4-6.  As costs and reductions are subject to uncertainty and variation, the 

costs and reduction parameters used are assumed to represent expected costs and ex-

pected reductions.   

Table 4-5: Data sources for each BMP 

BMP Cost Data Effectiveness Data 
Critical Area Planting LARS and eLINK  RUSLE2  
Conservation Tillage EQUIP  RUSLE2  
Stream Stabilization Steve Becker and John Brach  Peter Wilcock  
Stream Restoration LARS and eLINK  Peter Wilcock  
Land Retirement MN Land Economics Database  Peter Wilcock  
Drainage Pipe Global Pipe Installation Cost Estimator Peter Wilcock  
Toe Protection Steve Becker and John Brach  Peter Wilcock  
Complete Stabilization John Brach John Brach  

 

Table 4-6: Expected Costs and Expected Fractional Reductions for each BMP type 

 Sediment 
Source (i) BMP Type 

Annualized 
Cost (Ci,k) 

Fractional 
Reduction 

(Fi,k) 
Fields  Critical Area Planting (k = 1) $20,510/km2 0.65
Fields  Conservation Tillage (k = 2) $7,414/km2 0.85
Streambanks  Streambank Stabilization (k = 3) $22,966/km 1.00
Streambanks  Streambank Restoration (k = 4) $36,417/km 1.00
Ravines Land Retirement (k = 5) $118,858/km2 0.70
Ravines Drainage Pipe (k = 6) $24,606/km 0.90
Bluffs  Toe Protection (k = 7) $22,966/km 0.61
Bluffs  Complete Stabilization (k = 8) $71,850/km 1.00
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The field BMPs under consideration are critical area planting (CAP) and conservation 

tillage (CT).  Critical area planting addresses areas of high erosion and involves establish-

ing permanent vegetation, such as perennial grasses, perennial legumes, trees, shrubs, 

vines or mixture on these sites as defined by the Natural Resource Conservation Service 

(NRCS), an agency under the United State Department of Agriculture (USDA) (USDA 

NRCS 2008).  Less drastic is conservation tillage, which allows continued production of 

row crops such as soybeans and corn, which dominate in this region.  Conservation til-

lage is an agricultural practice that manages the “the amount, orientation, and distribution 

of crop and other plant residue on the soil surface year round while limiting soil-

disturbing activities to only those necessary to place nutrients, condition residue, and 

plant crops” (USDA NRCS 2008).    

The cost of critical area planting was found from the Minnesota Government Annual Re-

porting System (LARS) (Mohring 2004) and eLINK (Minnesota Board of Water and Soil 

Resources 2009) datasets for the Le Sueur River watershed, which contain all existing 

BMPs in the watershed1.  The average cost of all critical area planting BMPs was calcu-

lated and annualized by assuming a 5% discount factor.  The cost of conservation tillage 

was determined from the 2008 MN Environmental Quality Incentives Program (EQIP) 

(Minnesota Natural Resource Conservation Service (MN NRCS) 2007).  For both field 

BMPs, the fractional sediment reduction was determined using the revised universal soil 

loss equation, RUSLE2 (Foster et al. 2003), which predicts soil loss from cropland as the 

product of factors representing climate, soil erodibility, slope length, slope steepness, 

cover management, and support practices.  Management practices cause changes in both 
                                                 
1 Pearl Zheng provided extensive information on costs and reductions by compiling data from expert inter-
views, literature review, and RUSLE2 computations. 
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cover management and support practices.  Letting C and P represent those two factors, 

respectively, the effect of the placement of a BMP can be determined by the ratio 

(C)/(CoPo), where C′ and P′ are the factor values with the BMP implemented while Co 

and Po are the values representing the cover management and support practices currently 

in place.  C and P depend on soil type.  The dominant soil type in highly erosive areas 

with more than 50 tons/acre/yr is Stroden Complex, while Beauford clay, Marna silty 

clay loam, and Canisteo-glenco complex are the dominant soil types basin-wide.  

The BMPs addressing streambank erosion include streambank stabilization (SS) and 

streambank restoration (SR).  Streambank stabilization includes stream barbs and rock 

riprap.  Stream barbs are used to redirect streamflow away from an eroding bank and are 

defined by NRCS as “low rock sills projecting out from a streambank and across the 

stream’s thalweg” (USDA NRCS 1996). Rock riprap involves installing a blanket of 

graded rocks on a streambank in order to protect the slope by reducing erosion (USDA 

NRCS 1996). Streambank restoration involves shoreline protection using treatments such 

as redirecting stream flows, reshaping slopes, and vegetation of streambanks (USDA 

NRCS 2008). The cost of the streambank stabilization action combines the cost of both 

stream barbs and rock riprap.  The costs for these practices were determined through ex-

pert elicitation with John Brach, former NRCS Area Engineer in Minnesota and current 

NRCS State Conservation Engineer in Montana (personal communication, March 26, 

2008), and Steve Becker, NRCS State Conservation Engineer in St. Paul, MN  (personal 

communication, March 27, 2008).  The costs provided by the experts were annualized 

using a discount factor of 5% over the project lifespan of 40 years.  For streambank resto-

ration, costs were determined from LARS and eLINK by calculating the average annual-
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ized costs based on existing streambank restoration projects in the Le Sueur River wa-

tershed.  The fractional sediment reduction for each management action was determined 

through interviews with Dr. Peter Wilcock, who has expertise in stream restoration (per-

sonal communication, February 7, 2009).   

To reduce erosion from ravines, two BMPs are under consideration: land retirement (LT) 

and tile drainage pipes (DP).  Land retired consists of fields near the edges of ravines that 

are planted with perennial vegetation, which filters out sediment and slows the velocity of 

runoff.   In contrast, tile drainage pipes are laid along the bottom of the ravine to direct 

the flow from the ravine to the stream channel, thus reducing erosion along the bottom of 

the ravine.  The cost of the first ravine BMP, land retirement, was found by consulting 

the Minnesota Land economics database (Flowtite Technology AS 2005).  The average 

2007 land purchase price for the Le Sueur River watershed was annualized using a 5% 

discount factor over a 10 year time period.  For tile drainage pipe, it was assumed that a 

12-inch PVC pipe would be used.  Based on current retail prices, the cost of the pipe was 

assumed to be $21/ft.  The Global Pipe Installation Cost Estimator software from Flow-

tite was used (Flowtite Technology AS 2005) to estimate installation costs, and the main-

tenance costs were assumed to be 3% of the material and installation cost.  The cost was 

annualized over a 10 year time period using a 5% discount factor.  The fractional reduc-

tions for each management practice were determined through expert elicitation (P. Wil-

cock, personal communication, February 7, 2009). 

Lastly, the two BMPs under consideration for addressing soil loss from bluffs are toe pro-

tection (TP) measures and complete stabilization (CS) of the bluff.  Toe protection in-

cludes the placement of stream barbs and rock riprap, as described above.  Complete sta-
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bilization of the bluff involves grading the slope and installing a retaining wall.  For 

complete stabilization of bluffs, the cost was determined from consulting with John 

Brach (personal communication, March 26, 2008).  The cost was then annualized using a 

5% discount factor over a 50 year lifespan. The fractional reduction for complete stabili-

zation of bluffs was determined though expert elicitation (P. Wilcock, personal commu-

nication, February 7, 2009).   

The cost of toe protection was assumed to be identical to the cost of streambank stabiliza-

tion, as the types of structures are implemented in both cases.  For the fractional sediment 

reduction associated with toe protection, a more complex calculation was necessary be-

cause the reduction is not constant over time.  It was assumed that toe protection results 

in a time profile of sediment loss over time that decreases according to a negative expo-

nential function *exp( )E kt− where E is the base rate of sediment loss over time, and k is 

the exponential decay rate.  Thus, toe protection does not immediately result in reduction 

in sedimentation, but the rate of soil loss decreases over time.  The rationale for this is 

that with no protection, the bluff with erode over time at the base rate E.  With toe protec-

tion, the bottom of the bluff stops eroding, but the top of the bluff continues to erode until 

a more stable slope is established.  The fractional reduction in Table 4-6 equals the leve-

lized value, R, over an infinite lifetime, which is the constant reduction rate whose 

present worth (at an annual discount rate of r/year) is the same as the present worth (PW) 

of the assumed actual time profile of reductions, based on the negative exponential rela-

tionship.  The present value of sediment loss with no abatement is defined 

as
0

exp( )
t

EE rt dt
r

∞

=

− =∫ , and the present value of sediment loss with toe protection is de-
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fined as
0

exp( ) exp( )
t

EE kt rt dt
r k

∞

=

− − =
+∫ .  The levelized fractional reduction, R, resulting 

from toe protection is then k(r+k).  If we assume an annual discount rate, say r = 5%, we 

can calculate R from the following calculation.  Based on expert judgment (P. Wilcock, 

personal communication, January 29, 2009), we assumed that over the first 20 years after 

BMP installation, the average soil loss from the bluff would be halved; which allows us 

to solve for k in 
20

0

1exp( ) *20*
2t

E kt E
=

− =∫ , by using the average reduction over the first 

20 years after the BMP installation.       

As described in section 4.4.4, the tons of sediment reduced per amount of BMP installed 

are based upon the fractional reductions (based on the values of Table 4-6) and the un-

controlled sediment loss x% .  We assume that each particular source type has a distribution 

of loss within the areas making up that type, and that the areas with the highest relative 

contribution of sediment would be addressed first.  To accomplish this, a curve 

representing the distribution was constructed for each source and watershed that related 

cumulative % soil loss and cumulative % area (or % length for streambanks and bluffs).  

For field soil loss, this curve was constructed using GIS data provided in June 2007 by 

Rick Moore, GIS specialist at the Water Resources Center (WRC) at Minnesota State 

University Mankato, which classified the Maple River Watershed by area into ten soil 

loss classes based on calculations from RUSLE2.  The resulting soil loss curves for the 

upper watersheds and lower watershed are piece-wise linear with seven segments each.  

Expert guidance indicated that sediment supply from streambank erosion would be even-

ly distribution along approximately one half of the stream length in both the upper and 
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lower watersheds (P. Belmont, personal communication, February 2, 2009; P. Wilcock, 

personal communication, February 3, 2009).  This model uses a linear relationship be-

tween stream length and soil loss, resulting in a curve with a single segment.   

Expert judgment also informed the cumulative soil loss curves for ravines and bluffs in 

watershed W3.  The ravine soil loss curve is made up of four segments, and the bluff soil 

loss curve contains three.  The soil loss curves are presented in Figure 4-4. The x axis is 

the proportion of the total area or total length, Ai,j and the y axis is the proportion of the 

total uncontrolled soil loss x% . The slopes and segment lengths for each soil loss curve are 

required parameters for the MOLP.  These parameter values are presented in Table 4-7.     
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Figure 4-4: Soil Loss Curves for each Sediment Source 

 
To calculate the sediment reduced by each BMP installed, a separate decision variable 

, ,
m
i j kb  was created for each segment m of the cumulative soil loss curve for each sediment 

source type i (field, streambank, ravine or bluff), watershed j, and BMP type k.   Certain 
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BMPs apply to only highly erosive areas represented by the steepest segments of the soil 

loss curve.  In particular, it is assumed that critical area planting is applied to only 2.5% 

of the total contributing area, which corresponds to the first three segments of the soil 

loss curves.  Conservation tillage only applies only to the remaining contributing area, or 

the remaining four segments of the soil loss curve.  Meanwhile, complete stabilization of 

bluffs is only considered for the worst 25% (first segment) of contributing bluff length, 

while toe protection addresses the remaining 75% of bluffs (two segments).  The remain-

ing BMPs can be applied to all contributing areas.   

Table 4-7: Soil Loss Curve Slopes and Segment Lengths 

Sediment 
Source (i) 

Watershed 
(j) BMP Type (k) 

Segment 
(m) 

Segment 
Slope 

( )m
i, jS  

Segment 
Length 

( )m
i, jUP  

Fields  W1 or W2 Critical Area Planting (1) 1 90.4286 0.0002
Fields  W1 or W2 Critical Area Planting (1)  2 18.0857 0.0068
Fields  W1 or W2 Critical Area Planting (1) 3 6.4581 0.0189
Fields  W1 or W2 Conservation Tillage (2) 4 5.4257 0.0074
Fields  W1 or W2 Conservation Tillage (2) 5 3.6171 0.0843
Fields  W1 or W2 Conservation Tillage (2) 6 1.8086 0.1518
Fields  W1 or W2 Conservation Tillage (2) 7 0.1809 0.6753
Fields  W3 Critical Area Planting (1) 1 40.2599 0.0092
Fields  W3 Critical Area Planting (1) 2 8.0520 0.0091
Fields  W3 Critical Area Planting (1) 3 4.0260 0.0357
Fields  W3 Conservation Tillage (2) 4 2.4156 0.0127
Fields  W3 Conservation Tillage (2) 5 1.6104 0.0902
Fields  W3 Conservation Tillage (2) 6 0.8052 0.2380
Fields  W3 Conservation Tillage (2) 7 0.0805 0.5519

Streambanks W1 or W2 Streambank Stabilization (3) 1 2.0000 0.5000
Streambanks W1 or W2 Streambank Restoration (4) 1 2.0000 0.5000
Streambanks W3 Streambank Stabilization (3) 1 2.0000 0.5000
Streambanks W3 Streambank Restoration (4) 1 2.0000 0.5000

Ravines W3 Land Retirement (5) and Drain Pipe (6) 1 2.2500 0.1333
Ravines W3 Land Retirement (5) and Drain Pipe (6) 2 1.2500 0.2000
Ravines W3 Land Retirement (5) and Drain Pipe (6) 3 0.7500 0.4000
Ravines W3 Land Retirement (5) and Drain Pipe (6) 4 0.5625 0.2667
Bluffs W3 Toe Protection  (7) and Stabilization (8) 1 1.6000 0.2500
Bluffs W3 Toe Protection (7) and Stabilization (8) 2 0.2000 0.2500
Bluffs W3 Toe Protection (7)  and Stabilization (8) 3 2.0000 0.5000
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The remaining information required for the MOLP are the total contributing area or 

length of each source in each watershed, and the upper bound on each BMP.  This infor-

mation is summarized in Table 4-8 and Table 4-9.  The total field areas and total stream 

length for each watershed were determined through GIS analysis of the Maple River wa-

tershed using data provided by in June 2007 by Rick Moore at the Water Resources Cen-

ter (WRC).  The proportion of the total field area and stream length that contribute sedi-

ment in each watershed was found from the soil loss curves.  Two values exist for ra-

vines. This is because land retirement targets land areas surrounding the ravines, while 

drainage pipes are use along the length of ravines.  Patrick Belmont (personal communi-

cation, January, 23, 2009) informed us that there are about thirty ravines in the lower 

Maple River watershed, with an average length of 2.5 km.  Thus, a total of 75 km of ra-

vine length contribute sediment.  For each ravine, we assumed that land retirement could 

be applied to 50 meter wide areas along the full length of the ravine.  Thus, the area con-

tributing sediment was calculated as 3.75 km2.  The contributing length of bluffs was 

found though expert elicitation.  Dr. Patrick Belmont (personal communication, January 

23, 2009) stated that about 30% of the total 40 km of streams in watershed W3 were ad-

jacent to bluffs and that all of these bluffs contribute sediment.  Thus, the contributing 

length of bluffs is 12 km.   

Lastly, the upper bounds for each BMP were determined.  It was assumed that critical 

area planting would be done in 50 meter wide strips along in agricultural fields along wa-

terways.  From discussions with Drs. Patrick Belmont and Peter Wilcock on January 23, 

2009, the total length of waterways, including drainage ditches and small streams that are 

along agricultural fields was assumed to be 250 km for each upper watershed, and 40 km 
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for the lower watershed.  It was further assumed that critical area planting would apply to 

only 20% of these areas.   Conservation tillage was estimated similarly, with the assump-

tion that the width of conservation tillage would be 500 m on each side of the waterway.  

Conservation tillage was considered appropriate on lands along all 250 km of waterways 

in the upper watershed and 40 km in the lower.  The upper bounds for the remaining 

measure were found by assuming that each BMP could be used to treat all contributing 

areas or lengths.  

Table 4-8: Area (or Length) Contributing Sediment (Ai,j) 

 Watershed 
Sediment Source (i) j = W1  j = W2  j = W3  

Fields 387 km2 387 km2 64 km2

Streambanks 80 km 80 km 40 km
Ravines NA NA 3.75 km2/75 km
Bluffs  NA NA 12 km

 

Table 4-9: BMP Upper Bounds 

Sediment Source 
(i) Watershed (j) BMP Type 

BMP Upper 
Bound (UBi,j,k) 

Fields W1 or W2 Critical Area Planting (k = 1) 5 (km2)
Fields W1 or W2  Conservation Tillage (k = 2) 250 (km2)
Fields W3 Critical Area Planting (k = 1) 0.8 (km2)
Fields W3 Conservation Tillage (k = 2) 8 (km2)
Streambanks  W1 or W2 Streambank Stabilization (k = 3) 40 (km)
Streambanks W1 or W2 Streambank Restoration (k = 4) 40 (km)
Ravines W3 Streambank Stabilization (k = 3) 20 (km)
Ravines W3 Streambank Restoration (k = 4) 20 (km)
Bluffs  W3 Land Retirement (k = 5) 3.75 (km2)
Bluffs  W3 Drainage Pipe (k = 6) 75 (km)
Bluffs  W3 Toe Protection (k = 7) 9 (km)
Bluffs  W3 Complete Stabilization (k = 8) 3 (km)
 
The parameters presented here were then used in the MOLP to determine the optimal set 

of BMPs for each observation from each research action.  Tradeoffs between costs and 

sediment reduction were determined by solving the MOLP for each of 12 values of W, 
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the weight on the sediment reduction objective.  The results of the MOLP were then used 

to compute the expected value of imperfect information for each research action, which is 

explained in the next subsection. 

4.4.6 Expected Value of Imperfect Information 

The results of the linear program were used to compute the expected value of imperfect, 

or sample, information for each sediment objective weight for each of the 45 research 

actions.  This was done using the following formula 

 ( )
9

, ,
1

( , ) ( )* ( , ) ( , )a n a n o
n

EVII a W p Obj W Obj a Wζ ζ
=

= −∑ , (4.14) 

where Obj(ζa,n,W) is the sum of cost and weighted sediment loss based on the optimal 

management actions determined from the multiobjective LP with sediment objective 

weight W and expected sediment loadings, ,'( | )a nE ζx% , resulting from observation n of 

research action a.  Each optimal objective is weighted by the probability, p(ζa,n,) of the 

corresponding observation.  The optimal sum of cost and weighted sediment loss for the 

no research action, Obj(ao,W), is then computed based on the optimal management ac-

tions determined from the multiobjective LP based on the expected sediment loadings 

from the prior distribution.  The expected value of imperfect information is found by sub-

tracting the optimal objective based on no learning from the optimal expected objective 

based on implementing a learning, or research action.  The next section presents the re-

sults of applying the methodology to this case study, including the calculated values of 

EVII for each research action.  
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4.5 Results 

This section describes the results of the framework’s application to the case study of the 

Maple River Basin.  First, the discrete observations and probabilities are presented.  Next, 

the posterior distributions for each observation are discussed, followed by the results of 

the multiobjective linear program and the value of information analysis.  

4.5.1 Discrete Observations and Probabilities 

Research actions produce information on a continuous scale.  In order to use a decision 

tree framework to investigate the impacts of performing research, a discrete set of obser-

vations was developed to represent the observed outcomes of research.  The process for 

selecting this discrete set, and the associated probability of each observation occurring, 

was presented in section 4.4.3.  The probabilities, p(ζa,n,), for each action, along with the 

action’s description, are presented for each observation (Obs.) in Table 4-10.  Examples 

of the resulting observations, ζa,n, are presented in Table 4-11. The research actions are 

identified by their ID, which is described Table 4-10.  For actions involving observations 

of more than one type, the column labeled “observation element” indicates to which ele-

ment the observation applies.  The full list of observations is presented in Appendix II.  

For each observation, posterior distributions are generated according to the procedure 

presented in section 4.4.3.  The probabilities are used to evaluate the value of information 

contained in each action. 
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Table 4-10: Probabilities, p(ζa,n,), for each Research Action Observation 

Action 
ID (a) 

 
Description Obs 1 Obs 2 Obs 3 Obs 4 Obs 5 Obs 6 Obs 7 Obs 8 Obs 9

1 Fingerprinting in W1 0.065 0.149 0.139 0.240 0.144 0.061 0.150 0.044 0.008
2 Fingerprinting & SSA in W1 0.021 0.160 0.073 0.344 0.008 0.086 0.012 0.093 0.203

3 
Fingerprinting in W1 & SSA 
in W2 0.021 0.160 0.073 0.344 0.008 0.086 0.012 0.093 0.203

4 
Fingerprinting in W1 & SSA 
in W3 0.013 0.086 0.060 0.017 0.113 0.140 0.001 0.094 0.476

5 Fingerprinting in W1 & W2 0.016 0.090 0.049 0.038 0.241 0.166 0.024 0.195 0.181
6 Fingerprinting in W1 & W3 0.097 0.224 0.303 0.109 0.108 0.131 0.017 0.005 0.006
7 Fingerprinting in W2 0.065 0.149 0.139 0.240 0.144 0.061 0.150 0.044 0.008

8 
Fingerprinting in W2 & SSA 
in W1 0.021 0.160 0.073 0.344 0.008 0.086 0.012 0.093 0.203

9 Fingerprinting & SSA in W2 0.021 0.160 0.073 0.344 0.008 0.086 0.012 0.093 0.203

10 
Fingerprinting in W2 & SSA 
in W3 0.013 0.086 0.060 0.017 0.113 0.140 0.001 0.094 0.476

11 Fingerprinting in W2 & W3 0.097 0.224 0.303 0.109 0.108 0.131 0.017 0.005 0.006
12 Fingerprinting in W3 0.115 0.202 0.273 0.123 0.099 0.072 0.079 0.028 0.010

13 
Fingerprinting in W3& SSA 
in W1 0.093 0.035 0.038 0.500 0.025 0.028 0.038 0.145 0.099

14 
Fingerprinting in W3 & SSA 
in W2 0.093 0.035 0.038 0.500 0.025 0.028 0.038 0.145 0.099

15 
Fingerprinting and SSA in 
W3 0.012 0.001 0.022 0.013 0.742 0.031 0.041 0.100 0.038

16 Gauging in W1 0.099 0.123 0.106 0.171 0.204 0.141 0.080 0.040 0.035

17 
Gauging & Fingerprinting in 
W1 0.009 0.031 0.064 0.167 0.183 0.142 0.189 0.150 0.065

18 
Gauging in W1 & Finger-
printing in W2 0.009 0.031 0.064 0.167 0.183 0.142 0.189 0.150 0.065

19 
Gauging in W1 & Finger-
printing in W3 0.031 0.085 0.204 0.097 0.123 0.205 0.141 0.084 0.030

20 Gauging & SSA in W1 0.480 0.017 0.289 0.040 0.008 0.060 0.026 0.016 0.065
21 Gauging in W1 & SSA in W2 0.480 0.017 0.289 0.040 0.008 0.060 0.026 0.016 0.065
22 Gauging in W1 & SSA in W3 0.208 0.500 0.108 0.043 0.000 0.056 0.018 0.023 0.043
23 Gauging in W1 & W2 0.289 0.076 0.002 0.107 0.174 0.041 0.002 0.115 0.196
24 Gauging in W1 & W3 0.347 0.245 0.051 0.013 0.080 0.083 0.012 0.067 0.101
25 Gauging in W2 0.099 0.123 0.106 0.171 0.204 0.141 0.080 0.040 0.035

26 
Gauging in W2 & Finger-
printing in W1 0.009 0.031 0.064 0.167 0.183 0.142 0.189 0.150 0.065

27 
Gauging & Fingerprinting in 
W2 0.009 0.031 0.064 0.167 0.183 0.142 0.189 0.150 0.065

28 
Gauging in W2 & Finger-
printing in W3 0.031 0.085 0.204 0.097 0.123 0.205 0.141 0.084 0.030

29 Gauging in W2 & SSA in W1 0.480 0.017 0.289 0.040 0.008 0.060 0.026 0.016 0.065
30 Gauging & SSA in W2 0.480 0.017 0.289 0.040 0.008 0.060 0.026 0.016 0.065
31 Gauging in W2 & SSA in W3 0.208 0.500 0.108 0.043 0.000 0.056 0.018 0.023 0.043
32 Gauging in W2 & W3 0.347 0.245 0.051 0.013 0.080 0.083 0.012 0.067 0.101
33 Gauging in W3 0.072 0.207 0.287 0.127 0.102 0.109 0.058 0.025 0.013

34 
Gauging in W3 & Finger-
printing in W1 0.037 0.035 0.097 0.178 0.117 0.137 0.158 0.119 0.122
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Action 
ID (a) 

 
Description Obs 1 Obs 2 Obs 3 Obs 4 Obs 5 Obs 6 Obs 7 Obs 8 Obs 9

35 
Gauging in W3 & Finger-
printing in W2 0.037 0.035 0.097 0.178 0.117 0.137 0.158 0.119 0.122

36 
Gauging & Fingerprinting in 
W3 0.082 0.055 0.341 0.130 0.045 0.221 0.098 0.015 0.012

37 Gauging in W3 & SSA in W1 0.493 0.002 0.011 0.234 0.015 0.013 0.023 0.000 0.208
38 Gauging in W3 & SSA in W2 0.493 0.002 0.011 0.234 0.015 0.013 0.023 0.000 0.208
39 Gauging in W3 & SSA in W3 0.610 0.001 0.001 0.023 0.116 0.076 0.086 0.001 0.087
40 SSA in W1 0.208 0.160 0.089 0.039 0.042 0.030 0.148 0.163 0.120
41 SSA in W1 & W2 0.550 0.012 0.002 0.143 0.006 0.001 0.013 0.258 0.016
42 SSA in W1 & W3 0.593 0.006 0.044 0.049 0.058 0.038 0.193 0.001 0.017
43 SSA in W2 0.208 0.160 0.089 0.039 0.042 0.030 0.148 0.163 0.120
44 SSA in W2 & W3 0.593 0.006 0.044 0.049 0.058 0.038 0.193 0.001 0.017
45 SSA in W3 0.461 0.038 0.174 0.068 0.026 0.023 0.027 0.076 0.108

 

Table 4-11: Example Observations for Several Research Actions  

Action 
ID (a) 

Observation 
Element 

Observations (ζa,n) 
n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 

10 Fingerprinting W2 0.740 0.869 1.129 1.129 0.740 0.869 0.740 0.869 1.129
10 Fields  W3 1660 7233 8400 1660 8400 7233 1660 8400 7233
10 Streams W3 2146 6534 12230 6534 12230 2146 12230 6534 2146
10 Ravines W3 14895 27738 36117 36117 14895 27738 14895 36117 27738
10 Bluffs W3 18695 29296 53572 29296 18695 53572 53572 18695 29296
11 Fingerprinting W2 0.629 0.925 0.989 0.629 0.925 0.989 0.629 0.925 0.989
11 Fingerprinting W3 0.197 0.197 0.197 0.233 0.233 0.233 0.368 0.368 0.368
21 Gauging W1 7385 9908 14259 14259 7385 9908 7385 14259 9908
21 Fields W2 5629 10612 14030 10612 14030 5629 10612 5629 14030
21 Streams W2 146 1200 3429 146 1200 3429 3429 1200 146
29 Gauging W2 7385 9908 14259 14259 7385 9908 7385 14259 9908
29 Fields W1 5629 10612 14030 10612 14030 5629 10612 5629 14030
29 Streams W1 146 1200 3429 146 1200 3429 3429 1200 146
30 GaugingW2 7385 9908 14259 14259 7385 9908 7385 14259 9908
30 Fields W2 5629 10612 14030 10612 14030 5629 10612 5629 14030
32 Gauging W2 7689 9715 12813 7689 9715 12813 7689 9715 12813
32 Gauging W3 61601 61601 61601 93750 93750 93750 120257 120257 120257
36 Gauging W3 58888 80739 120729 58888 80739 120729 58888 80739 120729
36 FingerprintingW3 0.197 0.197 0.197 0.242 0.242 0.242 0.303 0.303 0.303
43 Fields W2 5702 9671 13276 5702 9671 13276 5702 9671 13276
43 Streams W2 289 289 289 881 881 881 2174 2174 2174
45 Fields W3 3846 7144 17429 3846 17429 7144 17429 7144 3846
45 Streams W3 3860 5950 13243 3860 5950 13243 5950 3860 13243
45 Ravines W3 15014 23799 46822 33601 15014 46822 15014 46822 23799
45 Bluffs W3 17150 23799 49523 49523 23799 17150 49523 17150 23799
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4.5.2 Posterior Distributions 

To illustrate the results of the Bayesian inference, the marginal posterior distributions for 

a single observation from two research actions are presented in Figure 4-5 and Figure 4-6 

as examples.  Figure 4-5 displays the marginal posterior distributions for observation 

ζ21,1.  Action 21 involves gauging in watershed W1 and an SSA in W2.  Figure 4-6 shows 

the posterior marginal distributions for observation ζ11,7.  Action 11 is defined as finger-

printing in watersheds W2 and W3 concurrently.  The dashed curves represent the mar-

ginal prior distributions, and the solid curves represent the marginal posteriors distribu-

tions. The x-axis is the value of the log of the parameter of interest, ,ln( ),i jx%  and the y-

axis is the value of the marginal posterior probability density function, f, defined in terms 

of ,ln( )i jx% .  

The posterior distributions shown in Figure 4-5 result from observation 1 of action 21, as 

indicated in Table 4-11, observation 1 has a low value for the gauging observation in W1, 

and a low value for both the field and streambank observations in W2.  Based on the prior 

information, the expected W1 gauging observation is 1 1( )FW SWE x x+% %  = 10,000 tons/yr, 

but the actual observation is instead 7385 tons/yr.  For the SSA inW2, the expected val-

ues from the prior distribution are 9000 tons/yr for field sediment, and 1000 tons/yr for 

streambank sediment; however, the observation produces an estimate of 5629 tons/yr 

from fields and 147 tons/yr from streambanks.  As a result of the low gauging observa-

tion in W1, the posterior distributions describing loadings from fields and streambanks in 

W1 have shifted left.  In addition, the loadings from fields and streambanks in W2 have 

also shifted left, with a large shift in streambank loading. This large shift is due to the 
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very low observation of streambanks loadings.  Note that while no information is being 

directly revealed about the loadings in watershed W3, there are also shifts in the posterior 

distributions for these loadings.  These shifts are due to the fact that the loadings in W3 

are correlated with the loadings in W1 and W2.  So, for example, if streambank loadings 

are low in W1 and W2, then it would be expected that the streambanks loadings would 

also be lower in W3 since the streambank loadings between the upper and lower water-

sheds are moderately correlated.  
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Figure 4-5: Marginal Prior Distributions (dashed lines) and Marginal Posterior Distributions (solid 
lines) of ( ),ln i jx% resulting from observation ζ21,1 of Gauging in W1 and a Sediment Source Analysis in 
W2 

 
Figure 4-6 shows the prior and posterior marginal distributions resulting from performing 

fingerprinting in both W2 and W3 concurrently (a = 11), and obtaining observation ζ11,7.  

In this case, little change is observed in the loadings in W1.  There is a large shift to the  
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Figure 4-6: Marginal Prior Distributions (dashed lines) and Marginal Posterior Distributions (solid 
lines) of ( ),ln i jx%  resulting from observation ζ11,7 of Fingerprinting in W2 and W3 Concurrently. 

right in the streambank loadings in W2, reflecting the fact that observation 7 has a low 

fingerprinting result in W2.  Since fingerprinting is determined as the ratio of field con-

tributions to the total loading, the low observation caused an increase in the denominator, 

which translated to an increase in streambank loadings.  Observation 7 resulted in a high 

fingerprinting observation in W3 (i.e., a high proportion of field contributions in W3), 

which corresponds with a decrease in the non-field sediment loadings.  In general, the 

posterior distributions have lower variance than the prior distribution, indicating the im-

proved understanding of the system resulting from undertaking a learning action.  The 

full set of expected posterior loadings for each research action and observation are pre-

sented in the appendix. While the shifts in the distributions from priors to posteriors are 

interesting, the impacts that these shifts have on the choice of management actions is 
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what determines whether the research action yields valuable information.  The next sec-

tion discusses these impacts and the results of the multiobjective linear programs. 

4.5.3 Multiobjective Linear Program Solutions 

For each action and each observation, the multiobjective linear program detailed in sec-

tion 4.4.4 was run using 12 values for the weight on the sediment objective, as shown in 

Table 4-12.  The value of the sediment objective weight is equivalent to the marginal cost 

of sediment reduction in $/ton.  Marginal costs for sediment reduction have been reported 

in the literature from $10/ton up to $126/ton (Yuan et al. 2002; Khanna et al. 2003; 

Moore et al. 1992; Yang et al. 2003).  A much larger range ($1/ton up to $5000/ton) is 

used here in order to generate a tradeoff curve to investigate the tradeoffs between ex-

pected cost and expected sediment reduction for each research action and observation. 

Large marginal costs for sediment reduction represent decision maker preferences in 

which sediment reduction is paramount.   

Figure 4-7 shows an example tradeoff curve for the no research action, a = 0, and action 

a =21 consisting of gauging in W1 and a sediment source analysis in W2.  For the re-

search action, the outcomes displayed in the figure are found by weighting the optimal 

expected cost and expected sediment remaining from each observation by the probability 

of that observation, ( )
9

, ,
1

( )* ( , )a n a n
n

p Obj Wζ ζ
=
∑ , and do not include the cost of implement-

ing the research action. The 12 sediment objective weights are also shown in the figure.  

The expected total sediment loading without abatement is 90,000 tons/yr.  Thus, the man-

agement actions selected by each research action will reduce this amount of sediment re-

maining in the watershed.  Information does not necessarily increase or decrease the  
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Table 4-12: Optimal Research Actions, BMPs and Resulting Expected Sediment Reductions (Averaged over Observation Outcomes)     

Weight 

Optimal 
Research Action 

(a) 

Tons Reduced 
Actions in Watershed W1 Actions in Watershed W2 Actions in Watershed W3 
CAP CT SS CAP CT SS CAP CT SS LT DP TP CS 

1 0  (No Action) 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 1687 0 0 0 0 0 0
20 0 85 0 0 85 0 0 1687 0 0 10780 0 6832 14000

                             
50 21 or 29 85 0 0 85 0 0 1808 644 4634 19600 0 6832 14000
50 0 85 0 0 85 0 0 1808 1047 0 19600 0 6832 14000

                             
100 0 799 307 0 799 307 0 1808 1153 7000 19600 0 8540 14000

                             
200 36 799 2640 0 799 3150 0 1808 1153 7000 10508 11690 8540 14000
200 0 799 2640 0 799 2640 0 1808 1153 7000 8820 13860 8540 14000

                             
400 6 or 11 1026 4739 0 1026 4739 754 1808 1153 7000 3038 21293 8540 14000
400 0 1026 4739 0 1026 4739 0 1808 1153 7000 2940 21420 8540 14000

                             
500 6 or 11 1026 4739 0 1026 4739 754 1808 1153 7000 422 24657 8540 14000
500 0 1026 4739 0 1026 4739 0 1808 1153 7000 0 25200 8540 14000

                             
600 21 or 29 1026 4740 653 1026 4740 943 1808 1153 7000 0 25200 8540 14000
600 0 1026 4739 0 1026 4739 0 1808 1153 7000 0 25200 8540 14000

                             
1000 21 or 29 1026 4740 711 1026 4740 992 1808 1153 7000 0 25200 8540 14000
1000 0 1026 4739 1000 1026 4739 1000 1808 1153 7000 0 25200 8540 14000

                             
5000 20 or 30 1026 5296 1000 1026 5296 993 1808 1153 7000 0 25200 8540 14000
5000 0 1026 5296 1000 1026 5296 1000 1808 1153 7000 0 25200 8540 14000

Max Expected Reduction 1026 5296 1000 1026 5296 1000 1808 1153 7000 19600 25200 8540 14000
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Figure 4-7: Tradeoff Curves for No Research Action and Gauging in W1 and Sediment Source Analysis in W2 (excludes cost of action χa) 
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individual cost or sediment reduction objectives; however, the probability weighted sum 

of the MOLP objective will not be higher with the action, as compared to the no research 

action because EVII is necessarily nonnegative.  The optimal objective function for each 

research action is presented in the Appendix.  The optimal decision variable values are 

available on CD from the author on request. 

Table 4-12 summarizes the optimal research actions for each sediment objective weight 

found by determining the research action that minimizes 

 
9 4 3 8 7

, , , ,
, , , ,{ } 1 1 1 1 1 ,
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min * ( )
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∑ ∑∑∑∑
%

, (4.15) 

where χa is the expected cost ($/yr) of the research action, as described in section 4.4.2.  

The cost of the no research action, χ0, is zero.  Therefore, a research action will only be 

optimal if the cost of the research action and probability weighted optimal objective func-

tion value is less than the optimal objective function value under the no research action.  

When it is optimal to perform a research action, the no research action is displayed for 

comparison. The values in Table 4-12 are the probability weighted tons of sediment re-

duced by each of the optimal management actions, which are found by weighting the tons 

reduced for each observation by the probability of that observation.  The values obtained 

following individual observation outcomes will vary, of course, because observations af-

fect the posterior distribution of loadings.  For each BMP in each watershed j, the proba-

bility weighted tons reduced is defined as follows 

Critical Area Planting (CAP) = 9 3
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Conservation Tillage (CT) = 9 7
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Streambank Stabilization (SS) = 1 19
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Streambank Restoration (SR) =  1 19
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Land Retirement (LT) = 9 4
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Drainage Pipe (DP) = 9 4
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Toe Protection (TP) = 9 2
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Complete Stabilization (CS) = 1 19
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Figure 4-8: Optimal BMPs in Watershed W1 (Expected Unabated Sediment Loss = 90,000 tons)  
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Figure 4-9: Optimal BMPs in Watershed W2 (Expected Unabated Sediment Loss = 90,000 tons)  
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Figure 4-10: Optimal BMPs in Watershed W3 (Expected Unabated Sediment Loss = 90,000 tons) 
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The last line of Table 4-12 displays the maximum expected tons reduced to illustrate how 

much of the total achievable reduction is accomplished with each BMP. 

Figure 4-8, Figure 4-9, and Figure 4-10 graphically compare the probability weighted 

tons reduced for each BMP under each of the optimal research actions and compares 

these values to the tons reduced for each BMP under the no research action for each se-

diment objective weight.   

Table 4-13: Implied cost effectiveness assuming expected prior loadings 

Cost  
Effectiveness 

($/ton) 

Actions in Watershed W1 Actions in Watershed W2 Actions in Watershed W3 

CAP CT SS CAP CT SS CAP CT SS LT DP TP CS
Low 15 69  15 69  7 33  10 33 10  
High 210 2074  210 2074  72 990  40 130 81  

Average 100 1071 919 100 1071 919 38 293 66 25 80 45 15
 
Table 4-13 shows the implied cost effectiveness for each action based on the expected 

prior loadings.  Since reductions are a function of the soil loss curve, the low, high and 

average reductions are listed.  For streambank stabilization and complete stabilization, 

there is only one segment of the soil loss curve, and therefore only an average effective-

ness value.  (The posterior cost effectiveness numbers for particular observation values 

will in general differ from these values because posterior expected total loadings from 

various sources can be higher or lower than the prior expectations.) 

This table shows that many actions will not be taken unless the penalty for sediment loss 

is above $100, but that some are worth doing even for penalties of $10/ton or less.  Thus, 

it is not surprising that for sediment weights of $1/ton and $5/ton, the optimal manage-

ment action is to do nothing.  None of the management actions is cost effective at these 

sediment weights. When the weight is increased to $10/ton, it is optimal to employ criti-
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cal area planting in W3 and to not perform any research action. According Table 4-13, 

the effectiveness of critical area planting in W3 is $7/ton when applied to the areas in the 

watershed contributing the most sediment.  As the sediment objective weight is further 

increased to $50/ton, critical area planting in both W1 and W2 enter the solution along 

with land retirement, toe protection and complete stabilization, which goes immediately 

to its upper bound.  At this sediment reduction weight, it is optimal to perform research in 

the form of either gauging in W1 and a sediment source analysis in W2 (a = 21), or gaug-

ing in W2 and a sediment source analysis in W1 (a = 29).  Since watershed W1 and W2 

are symmetric, these two actions produce nearly identical objective function values, with 

minor differences resulting from sampling error in the generation of the posterior distri-

butions.  

The optimal management actions resulting from these research actions differ from the 

optimal management actions under the no research action in one fundamental way: 

streambank stabilization is optimal under some outcomes when the research action is per-

formed.  In particular, there are four research action observations of gauging in W1 and 

SSA in W2 that lead to streambank stabilization in W3 – observations 3, 6, 7, and 8, as 

shown in Table 4-11.  These four observations all lead to large expected posterior load-

ings for streambanks in W3 (see appendix for details) compared to the expected prior 

loadings for streambanks in W3 (7000 tons/yr).   Observations 3, 6, and 7 each have large 

observed values for streambanks loadings in W2 resulting from the SSA component of 

the action.  Since streambank loadings between W2 and W3 are moderately correlated, 

these large observations of streambank loadings in W2 result in large posterior loadings 

of streambanks in W3.  Observation 8 also results in large streambank loadings in W3.  
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Gauging in W1 and Sediment Source Analysis in W2. 
Sediment Objective Weight = $50/ton
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Figure 4-11: Optimal BMPs for Each Observation of Gauging in W1 and a Sediment Source Analysis 
in W2 

Observation 8 has a large observed value for gauging in W1, a moderate observed value 

for streambanks in W2, and a low observed value for fields in W2.  Since fields in W1 

and W2 are strongly correlated, the low observed field loadings in W2 pushes down the 

field loading in W1; however, the large gauging observation counteracts the low field ob-

servation, resulting in a moderate expected posterior field loading.  The large gauging 

observation in conjunction with the moderate observed streambank loading in W2 leads 

to a moderately large streambank loading in W3, again due to correlations between 

streambank loadings in the upper and lower watersheds.  Figure 4-11 illustrates the dif-

ferent management actions selected for each outcome, as well as the management action 

selected under the no research action. 
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Table 4-14: Expected Value of Imperfect Information for Research Actions   

  Cost 
($/yr) 

EVII ($1000/yr) for each weight 
Action 1 5 10 20 50 100 200 400 500 600 1000 5000 
1 or 7 10 0 0 0.53 0 5.50 0.35 1.42 13.46 31.86 72.44 211.55 0
2 or 9 50 0 0 1.15 0 2.60 0.23 3.01 1.71 13.04 39.98 122.96 0
3 or 8 50 0 0 1.32 0 7.97 0.08 2.61 10.51 47.19 95.49 259.17 0

6 or 11 50 0 0 4.25 1.38 27.18 2.07 7.66 13.46 46.66 105.20 291.15 0
5 20 0 0 0.47 0.00 4.98 0.09 1.49 12.87 29.90 62.30 184.52 0

6 or 11 20 0 0 4.47 2.62 17.96 4.22 12.79 100.73 178.49 248.32 495.27 10.12
12 10 0 0 4.11 1.47 0.49 2.56 10.69 2.92 3.41 0.84 39.16 0

13 or 14 50 0 0 7.63 0.23 7.69 5.01 17.69 9.53 0 5.23 128.28 0
15 50 0 0 1.89 1.81 5.40 8.56 5.74 3.50 2.73 3.71 57.54 0
16 15 0 0 1.66 0.00 6.44 0.26 5.58 34.79 52.59 71.93 120.67 0

17 or 27 25 0 0 2.45 0.03 13.85 0.21 5.28 47.00 80.80 116.00 228.87 0
18 or 26 25 0 0 2.67 0.00 18.84 0.21 4.59 62.40 106.46 170.41 352.83 0
19 or 34 25 0 0 7.14 4.31 7.16 11.84 16.07 12.32 10.96 14.99 236.56 0
20 or 30 55 0 0 5.45 0.00 38.24 19.79 12.33 34.83 127.17 221.47 624.68 497.34
21 or 29 55 0 0 6.71 0.00 55.43 54.44 17.12 32.47 174.07 333.67 843.77 487.34
22 or 31 55 0 0.12 9.23 13.22 33.61 42.12 28.48 74.37 122.27 168.68 316.77 0

23 30 0 0 2.66 0.00 1.74 0.27 6.62 26.85 71.15 121.45 318.80 0
24 or 32 30 0 0.001 11.06 4.28 5.23 12.45 28.39 47.65 46.59 52.85 177.94 0

33 15 0 0.02 5.11 0.88 3.63 3.33 12.83 4.71 3.44 7.40 22.59 0
34 or 35 25 0 0 7.94 3.17 22.93 5.79 19.01 86.55 144.27 191.92 396.55 4.93

36 25 0 0 11.26 10.25 6.97 18.50 26.31 31.28 21.75 4.14 158.95 0
37 or 38 55 0 0 7.18 1.56 9.72 7.00 18.94 39.72 47.05 63.30 71.74 0

39 55 0 0 6.14 0.01 10.38 6.68 16.85 8.33 0 10.54 105.62 0
40 or 43 40 0 0 1.80 0 3.18 0.31 3.35 0 11.00 92.30 377.53 0

41 80 0 0 1.74 0 12.78 0.13 8.37 43.69 95.39 146.74 221.48 0
42 or 44 80 0 0.08 11.34 2.45 32.41 15.29 35.16 30.91 96.19 177.63 400.71 0

45 40 0 0.17 13.21 5.94 40.19 19.13 39.02 41.62 43.66 90.76 368.98 0
 
While it is optimal to perform a research action when the sediment reduction weight is 

$50/ton, when the weight is further increased to $100/ton, it turns out that it is optimal to 

do no research.  However, as the weight on the sediment objective is increased even fur-

ther, it is always optimal to perform a research action.  This is due to the fact that at a 

weight of $100/ton, each research action that produces a different set of optimal man-

agement actions as compared to the no research action would cost more to implement 

than the value of the information it would yield (i.e., the improvement in the weighted 

value of cost and sediment).  For example, consider action 21, gauging in W1 and SSA in 

W2.  As described above, when the sediment objective weight is $50/ton, there are four 
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observations that lead to streambank stabilization in W3.  Under the no research action, 

streambank stabilization in W3 is not part of the optimal solution.  When the weight is 

increased to $100/ton, streambank stabilization is performed under research action 21 for 

all but three observations, 1, 4, and 9; these three observations have very low posterior 

streambank loadings in W3.  Under the optimal solution of the no research action, 

streambank stabilization in W3 is implemented.  The value of performing research action 

21 lies in dictating under what conditions to perform streambank stabilization in W3; 

however, the value of this information is slightly less than the cost of performing the re-

search action, and therefore is it optimal to not perform any learning and implement 

streambank stabilization in W3.   

As the weight on sediment is further increased, the value produced from research out-

weighs the cost for at least one research action, making it worthwhile to invest in re-

search.  Table 4-14 shows which research actions (highlighted in black) have a value of 

information that exceeds the cost of the action for each value of the sediment objective.  

To further investigate the differences between the “no research” action and the optimal 

research action Figure 4-12, Figure 4-13, and Figure 4-14 show, for each watershed, the 

optimal BMPs for three actions: no research action; gauging in W1 and a sediment source 

analysis in W2; and fingerprinting in W2 and W3 concurrently.  Each line represents 

each BMP in the optimal solution.  The y-axis shows the rescaled value of the BMP as 

compared to its maximum possible value.  For example, a value of 0.5 indicates that the 

BMP is in the solution at 50% of its maximum possible value.  When a research action is 

undertaken, the expected level of BMP implementation is shown, weighted by the proba-

bility of each outcome.  The x-axis shows the sediment objective weight. 
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Figure 4-12: Expected Level of BMP Implementation in Watershed W1, Averaged over Research 
Outcomes 

Critical Area Planting in W1 
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Bank Stabilization in W1 
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Figure 4-13: Expected Level of BMP Implementation in Watershed W2, Averaged over Research 
Outcomes 

Critical Area Planting in W2 
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Bank Stabilization in W2 
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Figure 4-14: Expected Level of BMP Implementation in Watershed W3, Averaged over Research 
Outcomes 
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In watershed W1, the difference between the no research action and the other two re-

search actions indicates the value of streambank stabilization.  For the no research action, 

once streambank stabilization enters the solution, it goes immediately to its upper bound, 

while the transition is more gradual for the other two actions.  This is due to the fact that 

for sediment reduction weights less than $5000/ton, streambank stabilization is only cho-

sen for a subset of the observed research action outcomes.  For example, for fingerprint-

ing in W2 and W3 (a = 11), streambank stabilization in W1 only enters the solution for 

observations 1 – 4 at a sediment weight of $1000/ton (because those observations indi-

cate relatively high levels of streambank sediment), and then enters the solution for all 

observations at a weight of $5000/ton.    

Similarly, differences exist in the value of streambank stabilization in W2.  For the no 

research action, streambank stabilization again transitions immediately to its upper 

bound, while for gauging in W1 and sediment source analysis in W2, streambank stabili-

zation never exceeds 50% of its upper bound.  This is again due to the differences be-

tween the outcomes of the research action.  Note too that the management actions se-

lected in W2 differ from W1.  This is due to the fact that the research actions have differ-

ent impacts in each watershed.  For action 21, gauging in W1 produces estimates of the 

total loadings in W1, while SSA in W2 produces estimates of streambank and field load-

ings.  Thus, the different observations translate to different posterior loadings and there-

fore different management actions between the two watersheds.   

Differences can also be seen in watershed W3 between the research actions and no ac-

tion.  The differences are particularly evident for streambank stabilization and toe protec-

tion. This is again due to the different outcomes resulting from each research action, as 
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discussed above. In general, there are two management actions most affected by observa-

tion outcomes. First, when posterior streambank loadings are high and the weight on the 

sediment objective is also adequately large, streambank stabilization enters the solution.  

As mentioned above, four observations from actions 21 and 29 produce large expected 

posterior streambank loadings in W3; however, streambank stabilization only enters the 

solution when the weight on the sediment reduction objective reaches $50/ton.  Similarly, 

there are two observations that produce large expected posterior streambank loadings in 

W1; however, streambank stabilization in W1 only enters the solution when the sediment 

reduction weight is $400/ton or greater. 

The other management actions most influenced by observations are land retirement and 

drainage pipe.  For low sediment weights, the preferred action is land retirement because 

it is cheaper to implement, but it is also less efficient, with a fractional reduction of 0.7.  

As the weight on sediment reduction is increased, it becomes cost effective to install pipe, 

since it has a fractional reduction of 0.9.   As Table 4-12  indicates, the transition from 

land retirement to drainage pipe begins to happen at a sediment reduction weight of 

$200/ton.  Consider the optimal action for this sediment weight, gauging and fingerprint-

ing in W3 (a = 36).  When the expected posterior ravine loadings are high, as in observa-

tions 3 and 6, the tons reduced by drainage pipe exceed the tons reduced by land retire-

ment.  When the expected posterior ravine loading is low, as is the case in observation 7, 

the total ravine tons reduced goes down, with a particularly large decrease in tons re-

duced by land retirement.   The impact of the individual observations on the management 

actions selected is illustrated in Figure 4-15. 
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Figure 4-15: Optimal BMPs for Each Observation of Gauging and Fingerprinting in W3 Concur-
rently 

 
Note that streambank restoration is never chosen under any research action or sediment 

reduction weight.  This is due to the fact that streambank stabilization can be applied to 

the same streambanks as restoration, but is cheaper and just as effective.  Therefore, 

streambank restoration will never be selected if the only objectives are to minimize cost 

and minimize sediment remaining; however, streambank restoration has other benefits, 

such as aesthetics.  These additional benefits can be incorporated into the objective func-

tion of the multiobjective linear program, which could result in a different set of optimal 

research and management actions.   
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4.5.4 Value of Imperfect Information 

Lastly, the expected value of imperfect information (EVII) for each research action and 

each weight is investigated. Table 4-14 shows the results of this analysis.  The black box-

es indicate that the EVII exceeds the cost of the action.  Since watershed W1 and W2 are 

symmetric, several actions produce nearly identical EVII, with minor differences result-

ing from sampling error in the generation of the posterior distributions.  To simplify the 

results, the actions that produce nearly equal EVII are represented by one set of values in 

Table 4-14.   

For low values of the sediment objective weight ($1/ton and $5/ton), very few research 

actions have non-zero values for EVII because no sediment control actions have costs of 

less than $5/ton of sediment removed (see Table 4-13).  As the sediment objective weight 

increases to $10/ton, all actions have increased values of EVII; however, when the weight 

is further increased to $20/ton, the value of information drops for all but two actions.  

This initial increase and decrease is due to fact that at first, learning provides value be-

cause certain observations result in the selection of different types of management actions 

compared to the “no research” action.  For example, research action 24, gauging in W1 

and W3, has an EVII of about $11,000/yr for a sediment weight of $10/ton.  Under the no 

research action, it is optimal to only employ critical area planting in W3 (see Table 4-12), 

whereas for research action 24, it is optimal to employ critical area planting for all obser-

vations, as well as land retirement for observations 4,5, 7,8 and 9, toe protection for ob-

servations 4-9, and complete stabilization in W3 for observation 7.  These observations 

(4,5,7,8 and 9) correspond to large expected posterior ravine loadings, and observations 

4-9 correspond to large expected posterior bluff loadings, with observation 7 having the 
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largest.  Thus, at a weight of $10/ton, there are different types of BMPs that are optimal 

under research action 24 compared with the no research action.  When the sediment 

weight is increased to $20/ton, the EVII for action 24 drops to $4280/yr.  At this sediment 

weight, critical area planting in all three watersheds, along with land retirement and toe 

protection are optimal management actions under the no research action.  Under research 

action 24, these same management actions are optimal, yet the amount of each action dif-

fers across observations.  In general, the value of information of a research action is larg-

er when the research action selects different types of management actions instead of dif-

ferent amounts of the same management actions as compared with the no research action.   

Table 4-14 shows an important trend.  For composite actions performed in the same wa-

tershed, such as gauging and fingerprinting in W1 (a = 17), the EVII tends to be lower 

than if the same actions were performed in different watersheds, such as gauging in W1 

and fingerprinting in W2 (a = 18). This trend is due to the fact that performing actions in 

two different watersheds provides more information than performing two actions in the 

same watershed.  For example, gauging and fingerprinting in W1 provides improved un-

derstanding of only watershed W1, whereas gauging in watershed W1 and fingerprinting 

in W2 provides improved understanding of both watersheds.   

There are several actions that have large EVIIs for many sediment weights.  For example, 

there are 15 actions whose EVIIs exceed the cost of the action for sediment reduction 

weights between and including $400/ton to $1000/ton (e.g., action 1, fingerprinting in 

W1).  In general, the EVII rises and falls as sediment weights increase due to two main 

factors.  The first is the result described above – research actions that cause different 

types of management actions to be selected have larger EVII compared to research ac-



 152

tions that cause different amounts of the same management actions to be selected as 

compared with the no research action.  The second factor is the existence of management 

actions that, under certain sediment weights, are adopted under some observations but not 

under others.  As the weight increases, the actions are chosen under all observations, re-

sulting in a drop in the EVII.   

For example, at a sediment weight of $10/ton, action 13, fingerprinting in W3 and SSA in 

W1, has an EVII of $7600/yr.  At this weight, all observations except 3, 4, and 8 result in 

the selection of land retirement and toe protection in the optimal solution.  When the 

weight increases to $20/ton, land retirement and toe protection are selected under all ob-

servations and the EVII drops to under $1000/yr.  When the sediment weight is larger, 

the observations do not provide enough additional information to cause significant 

changes in the management actions.   

While there are different optimal actions for different sediment objective weights, several 

research actions are robust in that the value of information for the action is high for a 

range of sediment weights.  In particular, actions 45 (SSA in W3), 21 (gauging in W1 and 

SSA in W2), and 29 (gauging in W2 and SSA in W1) each have an EVII that exceeds the 

cost of the action for 5 sediment weights, and actions 21 and 29 are optimal for sediment 

weights of $50/ton, $600/ton, and $1000/ton.  It is not clear why these actions tend to 

perform well compared to other actions; however, the observed streambank loadings do 

seem to play a role.  For example, when action 21 is optimal, the difference between the 

optimal management actions selected under this action as compared to the optimal man-

agement actions selected under the no research action tend to be due to differences in 

streambank stabilization.  For example, at a sediment weight of $600/ton, action 21 se-
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lects streambank stabilization in watershed W1 and W2 for certain observations, while 

under the no research action, streambank stabilization is not selected in watersheds W1 

and W2.  Interestingly, the observations for action 21 do not produce posterior stream-

bank loadings with higher variability as compared to other actions.  For example, the 

posterior streambank loadings in W3 are more variable under action 11, fingerprinting in 

W1 and W3.  Similarly, posterior streambanks loadings in W1 and W2 are more variable 

under research action 23, gauging in W1 and W2, as compared with action 21.   

In general, the results indicate that a complex combination of factors determines which 

actions do well for each sediment weight.  For example, there is no clear indication of 

where it is best to perform gauging.  For certain sediment weights, such as $10/ton, it is 

more valuable to gauge in W3, as compared to W1 or W2; however, at a weight of 

$50/ton, the opposite is true.  The lack of clean stories in the data indicates the complexi-

ty of factors influencing the outcomes.  In particular, the observations and their asso-

ciated probabilities impact both the posterior distributions as well as the expected sedi-

ment reduction of each set of management actions.  As mentioned above, at one sediment 

weight, the observations can lead to a large EVII; however, at another sediment weight, 

the observations have less of an impact.  Similarly, it is not clear how the magnitudes and 

variability of individual observations impact the outcome of management actions.  This 

result supports the need for a systems approach to uncover the best combination of re-

search and management actions.   

While the results indicate that a complex combination of factors influence the optimal 

research and management actions, the framework and results are still useful for managing 

sediment reduction.  First, if a manager can identify his or her preference for sediment 
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reduction, the framework dictates which combination of research and management ac-

tions will optimally achieve the maximum sediment reduction at the least cost in an ex-

pected value sense.  For example, if the manager feels that sediment reduction is ten 

times as important as cost minimization, the results indicate that it is best to manage the 

system based on the prior understanding of the sediment loadings, and to forego research.  

At this sediment reduction weight, it is best to employ only critical area planting in wa-

tershed W3.  If the manager’s preference for sediment reduction is 50 times that of cost 

minimization, the framework reveals that it would be best to invest in research to learn 

more about the location and magnitude of sediment loadings before managing the system.  

This investment in learning will allow better targeting of management actions, resulting 

in a lower overall cost.  If the manager’s preferences are not well defined, the framework 

can be used to investigate the impact of different preference weights.     

4.6 Conclusions 

This chapter developed a framework to determine the optimal combination of research 

and management actions to efficiently reduce sediment and turbidity.  A complex case 

study representing the Maple River watershed was used to illustrate the framework.  The 

methodology combined Bayesian inference and multiobjective linear programming to 

determine when it is best to act based on our current understanding of the physical sys-

tem, and when it is cost effective to invest in research. 

In general, the results demonstrate that the value placed on the sediment reduction objec-

tive has a strong impact not only on the extent of BMP implementation, but also on 

whether or not research actions are worthwhile.  For low sediment objective weights, it is 
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best to act based on the current belief about sediment loadings and implement low cost 

BMPs.  As more value is placed on reducing sediment loading, research actions become 

worthwhile for determining which types of BMPs most effectively reduce sediment given 

the posterior loadings. However, when the value on sediment reduction reaches 

$5000/ton, the value produced by nearly all research actions does not exceed the cost of 

performing the research.  This reflects the fact that at very high sediment reduction prefe-

rence weights, it is optimal to implement the highest level of management, except when 

research reveals that the sediment loadings are significantly lower than expected under 

the prior information.   

Several of the research actions were robust in that they were cost effective for a range of 

sediment weights suggesting that these actions are good candidates when the value of se-

diment reduction is uncertain.  However, the complexity of the problem prevents clear 

trends from being readily identified, indicating that a variety of interacting factors influ-

ence the results.  Thus, in order to effectively reduce sediment, the manager must deter-

mine his or her values in terms of sediment reduction, or use the framework to investigate 

the impacts of different sediment reduction values.   

While the framework presented here explicitly addresses uncertainty in the understanding 

of the physical system and the accuracy of various research actions, other major sources 

of uncertainty are disregarded or only addressed implicitly.  In particular, the cost and 

percentage effectiveness of the sediment reduction management actions were assumed to 

be known.  Further work should investigate the impact of the uncertainty on these para-

meters on the choices of management actions; for instance, if managers are risk averse, 

they may prefer BMPs that have less uncertainty, even if their expected cost per ton of 
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removal is greater.  Or there may exist management or research actions that could pro-

vide valuable information on the relative costs and effectiveness of different BMPs.  In 

addition, sensitivity analysis can investigate the impacts of choosing different forms for 

the prior distributions or likelihood functions, as well as the consequences of disagreeing 

expert opinions.  For example, the impact of different expected prior loadings can be in-

vestigated by rerunning the framework with new prior distributions and examining the 

research or management actions identified as optimal. 

In general, the framework can help managers systematically sort through the potentially 

large combination of research and management actions.  By investigating the potential 

outcomes of research using Bayesian inference, the framework allows managers to eva-

luate the benefits of research without having to wait for it to be implemented.  Sensitivity 

analysis can also be used to inform the manager of which parameters in the model most 

influence the choice of actions. 

The framework presented here is a useful tool for aiding in management decisions for 

sediment reduction.  While the methodology relies on a simplified view of a complicated 

system, it is useful for illustrating the consequences of conducting research on the choice 

of management actions; however, the framework does have limitations.  For example, the 

three watershed model used to illustrate the framework was a greatly simplified model of 

Maple River watershed.  Despite the simplification, the results depended on a complex 

combination of factors.  Thus, it is necessary to carefully consider the problem being ad-

dressed with this framework, and to include only as much detail as is necessary.  By care-

fully considering the problem at hand, the framework presented in this chapter can suc-
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cessfully be used to illustrate the consequences of conducting research on the choice of 

management actions. 
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Chapter 5  

Conclusions 

The research presented in this dissertation developed three novel approaches for optimal-

ly managing environmental management problems utilizing approaches from the fields of 

environmental systems analysis and decision analysis: designing nature reserves for spe-

cies protection, addressing behavior biases affecting preferences in the context of envi-

ronmental externalities in electricity generation planning, and reducing sediment to im-

paired water bodies.   

The first study successfully developed two novel integer programming models for deter-

mining nature reserve sites with irreplaceability value of 1.0, meaning that the site ap-

pears in all alternate optimal sets.  The first model efficiently identified irreplaceable sites 

in the context of the Species Set Covering Problem, and the second model identified ir-

replaceable sites in the context of the Maximal Covering Species Problem.  Using data on 

terrestrial invertebrates in the state Oregon, the research revealed that the designation of a 

site as irreplaceable is not an intrinsic quality of the site, but rather, the irreplaceability is 

context dependent, depending on the total number of sites available for selection.  

While the irreplaceable value of a nature reserve site is context dependent, the implica-

tions of identifying irreplaceable sites can still be extremely important to decision mak-

ers.  Understanding which sites are required to protect a maximum number of species at a 

given resource level allows the decision maker flexibility in the reserve design.  The set 

of irreplaceable sites can be protected first, while the combination of additional sites that 

best complements the irreplaceable sites can be addressed in the future, possibly by con-
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sidering a variety of criteria for these additional sites.  The knowledge gained from iden-

tifying which sites are irreplaceable allows for improved decision making and environ-

mental management aimed at protecting vulnerable species.   

While the models presented in Chapter 2 successfully identified irreplaceable sites, fur-

ther work can be done to address the shortcomings of the model.  For example, reserve 

design should concurrently consider all objectives, such as the spatial composition of the 

sites.  If constraints on connectivity of sites were incorporated into the model, it is likely 

that the set of irreplaceable sites identified would be different.  By considering all reserve 

objectives simultaneously, the contribution of each site can be described in a way that is 

more relevant for species management. The model could also be expanded by consider-

ing species data other than presence-absence data.  The presence of a species in a particu-

lar site says nothing about its ability to survive or thrive in that site.  If instead, the proba-

bility of survival of each species in each site was considered, the set of irreplaceable sites 

that protect the maximum number of species with a user-prescribed reliability could be 

determined.   

While the first study identifies alternate optimal solutions to single objective problems, 

the second study addresses alternate solutions to problems with multiple conflicting ob-

jectives, using approaches from the field of decision analysis.  When more than one alter-

native solution exists for a multiobjective problem, preference weights can be used to de-

termine the preferred alternative; however, certain techniques aimed at eliciting decision 

makers’ preferences are prone to biases.  The second research study in this dissertation 

quantified and mitigated biases that appear when using value trees to aid in preference 
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weight elicitation.  This research considered the problem of selecting among electricity 

generation planning alternatives, while considering environmental externalities.  

The framework developed in Chapter 3 successfully determined a debiased set of prefe-

rence weights that better reflected the preferences of the decision makers in the absence 

of value tree induced-bias, and investigated the impact of making decision using biased 

weights.  This research can be useful for debiasing preference weights when time is li-

mited.  In these cases, it is often not possible to investigate the source of the bias and per-

form additional tasks to identify preference weights that resonate with the decision mak-

ers.  

While this research successfully demonstrated the usefulness of the model for debiasing 

weights, the small sample size used in the research prevented generalizations about the 

method from being made.  To improve upon this work, larger datasets should be used to 

investigate the performance of the model.  It would also be informative to present the de-

biased weights to the decision makers to ask whether the debiased weights better 

represent their preferences.  This would provide the most powerful evidence that the 

weights produced by the model are better representations of the decision maker’s beliefs. 

The third research study addressed water quality impairments in the Minnesota River ba-

sin using a multiobjective, stochastic approach.  Chapter 4 presented the successful de-

velopment and application of a framework that combines expert elicitation, Bayesian in-

ference and multiobjective linear programming to identify the optimal set of management 

actions and research actions that minimize both the expected cost and expected sediment 

loadings to waterways in the Minnesota River basin.    The multiobjective stochastic 
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framework can be expanded in several ways. First, other sources of uncertainty can be 

included in the framework, such as uncertainty in the costs and sediment reduction effec-

tiveness of the management actions.  In addition, the framework can be expanded to con-

sider sediment reduction at a finer spatial scale.  Other areas for future work include the 

incorporation of other ancillary objectives, such as the aesthetics of stream restoration, 

and expanding the geographic scope to that consistent with the TMDL decision making – 

for instance, the full Minnesota River Basin.  

The shared goal of the methods developed in this dissertation is to help managers im-

prove environmental management decisions.  The common thread is the use of environ-

mental systems analysis to produce optimal management decisions.  This dissertation has 

illustrated the range of applications in which systems analysis and decision analysis can 

be used to improve choices in environmental management. 

Each method has applicability beyond the particular case used in its development.  The 

models developed to determine irreplaceable nature reserve sites can be used to deter-

mine the decision variables that appear in all alternate optimal solutions.  For many com-

binatorial problems, alternate optimal solutions exist.  When this is the case, it is often 

useful to identify these alternate solutions to provide the decision maker with flexibility 

in his or her decision.  For example, the problem of determining the optimal combination 

of obnoxious facilities, such as waste disposal sites, that impact the least number of 

people can be explored with the models in Chapter 2.  The set of locations that must be 

included in any optimal facility design can be determined.  This set identifies the facili-

ties that appear in all alternate optimal solutions.  Knowing this set allows the decision 

maker to implement the design beginning with the irreplaceable facilities.    
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Similarly, the method for debiasing weights in Chapter 3 can be applied to variety of en-

vironmental management problem.  In particular, the methodology can be used to identify 

and mitigate weighting biases in any problem in which two sets of preference weights are 

elicited with two different value trees.  For example, further objectives can be included in 

the sediment reduction framework in Chapter 4, and the relative importance of each ob-

jective can be elicited with the use of two value trees.  If the weights suffer from value 

tree-induced weighting biases, debiased weights can be determined, and then used to se-

lect the optimal management actions to reduce sediment loadings.      

The framework developed in Chapter 4 can also help decision makers to assess important 

tradeoffs between information acquisition and abatement effort in other contexts.  These 

types of tradeoffs are extremely common in environmental management problems.  Deci-

sion makers must often choose between learning more about the problem (and thus pos-

sibly delaying the solution of the problem), and acting with limited knowledge (and 

therefore risking expending resources on ineffective solutions).  While the methodology 

of Chapter 4 is applied to sediment reduction, the same concepts can be extended to other 

environmental management problems.  For example, nature reserve design can be ex-

amined with this framework.  If uncertainty exists about the success of protecting differ-

ent nature reserves, the decision maker must choose between learning more about how 

the protection measure will perform, and protecting species based on the current level of 

understanding.  While it may be costly in the short term to investigate the performance of 

protection measures, the long term benefits of improved understanding may incur a lower 

overall cost. 
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Overall, this dissertation has developed three widely applicable approaches that can im-

prove environmental management.  The methods incorporate techniques from environ-

mental systems analysis and decision analysis to provide decision makers with tools to 

aid in managing complex, real-world environmental problems.  As is the case with any 

model, simplifications were required to represent complex systems in manageable ways.  

Despite these simplifying assumptions, the novel approaches developed in this disserta-

tion can lead to improved choices regarding the management of environmental problems.   
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Appendices 

Appendix I: Chapter 3 Data and Results 

Table A.I- 1: Weights Elicited with the Nonhierarchical (NH) Value Tree and Hierarchical (H) Value 
Tree 

Subject Tree x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

NH 0.122 0.099 0.153 0.107 0.076 0.061 0.069 0.061 0.061 0.046 0.031 0.015 0.099
H 0.150 0.000 0.300 0.050 0.080 0.013 0.040 0.023 0.023 0.011 0.000 0.010 0.300
NH 0.000 0.000 0.500 0.300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.200
H 0.030 0.030 0.360 0.180 0.007 0.011 0.018 0.001 0.001 0.006 0.008 0.050 0.300
NH 0.150 0.070 0.200 0.100 0.030 0.020 0.010 0.100 0.040 0.050 0.100 0.080 0.050
H 0.050 0.025 0.400 0.025 0.008 0.006 0.006 0.024 0.008 0.008 0.040 0.200 0.200
NH 0.015 0.008 0.153 0.137 0.107 0.092 0.092 0.061 0.076 0.046 0.031 0.061 0.122
H 0.040 0.000 0.200 0.160 0.081 0.063 0.036 0.024 0.060 0.012 0.024 0.000 0.300
NH 0.060 0.070 0.300 0.210 0.050 0.030 0.030 0.040 0.030 0.030 0.020 0.070 0.060
H 0.000 0.000 0.450 0.150 0.060 0.020 0.020 0.030 0.020 0.040 0.010 0.100 0.100
NH 0.048 0.190 0.333 0.143 0.048 0.019 0.019 0.019 0.019 0.010 0.048 0.010 0.095
H 0.040 0.104 0.640 0.016 0.050 0.014 0.007 0.002 0.001 0.001 0.014 0.010 0.100
NH 0.090 0.100 0.130 0.110 0.080 0.070 0.070 0.020 0.040 0.040 0.030 0.110 0.110
H 0.060 0.120 0.240 0.180 0.023 0.018 0.010 0.025 0.015 0.008 0.003 0.150 0.150
NH 0.137 0.157 0.196 0.176 0.098 0.020 0.010 0.010 0.010 0.020 0.098 0.029 0.039
H 0.100 0.100 0.175 0.125 0.048 0.024 0.008 0.018 0.024 0.042 0.036 0.100 0.200
NH 0.082 0.148 0.164 0.082 0.016 0.041 0.016 0.074 0.066 0.074 0.098 0.090 0.049
H 0.060 0.180 0.240 0.120 0.008 0.016 0.016 0.018 0.006 0.018 0.018 0.150 0.150
NH 0.101 0.131 0.202 0.182 0.091 0.040 0.030 0.020 0.010 0.051 0.061 0.040 0.040
H 0.050 0.100 0.150 0.200 0.091 0.014 0.035 0.003 0.003 0.012 0.042 0.050 0.250
NH 0.078 0.059 0.196 0.137 0.049 0.049 0.118 0.098 0.118 0.059 0.020 0.010 0.010
H 0.040 0.040 0.240 0.080 0.008 0.056 0.011 0.068 0.113 0.034 0.011 0.100 0.200
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Table A.I- 2: Rankings of Alternatives for Each Subject Using Nonhierarchical (NH), Hierarchical 
(H), and Model weights 

Subject Method Ref A B C D E F G H I J K L M N
NH 6 3 1 14 15 12 8 5 2 9 7 4 13 10 11
H 3 2 9 12 14 10 8 6 1 7 5 4 13 11 15
Model 4 3 8 13 15 12 7 5 1 6 9 2 10 11 14
NH 1 4 7 6 11 5 8 10 3 12 13 14 15 2 9
H 1 2 7 6 12 3 10 9 4 15 8 11 14 5 13
Model 1 3 7 6 10 5 8 9 2 13 12 14 15 4 11
NH 2 3 1 10 14 13 9 8 6 15 4 5 12 7 11
H 1 2 3 9 13 8 11 10 7 15 4 5 12 6 14
Model 1 3 2 8 11 13 10 9 7 15 4 5 12 6 14
NH 8 6 7 14 13 15 10 3 4 1 5 2 11 12 9
H 5 2 12 15 13 10 9 3 1 6 7 4 14 8 11
Model 6 5 11 15 13 12 9 4 1 2 7 3 14 10 8
NH 3 2 1 12 15 10 8 5 4 13 9 6 14 7 11
H 4 3 1 12 15 13 9 8 2 5 10 6 14 7 11
Model 4 3 1 12 15 13 10 6 2 8 9 5 14 7 11
NH 4 3 1 9 15 5 7 6 2 14 12 11 13 8 10
H 5 6 2 8 15 4 7 3 1 12 14 11 13 9 10
Model 6 5 2 8 15 4 7 3 1 13 14 11 12 9 10
NH 5 4 1 14 15 8 10 7 6 9 3 2 11 12 13
H 2 3 1 10 15 5 11 9 6 14 4 8 13 7 12
Model 2 3 1 10 15 4 11 9 6 14 5 8 13 7 12
NH 3 2 1 11 15 4 7 6 5 14 9 8 13 10 12
H 3 2 1 10 15 5 11 9 6 14 4 7 12 8 13
Model 3 2 1 10 15 4 8 6 5 14 9 11 13 7 12
NH 2 3 1 12 14 10 9 8 5 15 4 6 13 7 11
H 2 3 1 8 15 4 11 10 6 14 5 9 12 7 13
Model 2 3 1 7 15 4 9 8 5 14 10 11 13 6 12
NH 5 2 1 10 15 6 8 4 3 14 9 7 13 11 12
H 3 2 5 10 15 4 9 6 1 14 8 7 12 11 13
Model 6 3 2 9 15 5 7 4 1 14 13 8 12 10 11
NH 7 6 1 15 12 13 9 4 5 2 8 3 14 11 10
H 1 3 2 14 12 13 9 8 5 10 4 6 15 7 11
Model 2 3 1 14 12 13 11 8 4 7 6 9 15 5 10
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Appendix II: Chapter 4 Probability and Observation Calculation and 
Results 

II.1 Probability and Observation Calculation Procedure 

To estimate discrete probabilities and observations of az% , the following procedure is 

used.   

Step 1) If the observation has 1 element, for example gauging in W1, the range of 

possible values of az%  is divided into 9 ranges.  If the observation has two 

elements, for example fingerprinting in W2 and W3, the range of each 

element is divided into 3 ranges, low, medium, and high.  For observations 

with more than 2 elements, 9 Latin hypercube samples are determined.  

For example, fingerprinting & SSA in W3 produces observations of fin-

gerprinting in W3 and fields, streambanks, ravines, and bluffs in W3.  The 

range of possible values for each element is subdivided into three ranges: 

low (l), medium (m), and high (h).  Thus, there are 35 or 243 combinations 

of the three ranges for the five elements.  Nine sample ranges from the set 

of 243 are determined with Latin hypercube sampling, resulting in the fol-

lowing, as an example.  

 Sample 
Element 1 2 3 4 5 6 7 8 9 
Fingerprinting in W3 l m h h l m l m h 
Fields W3 l m h l h m l h m 
Streambanks W3 l m h m h l h m l 
Ravines W3 l m h h l m l h m 
Bluffs W3 l m h m l h h l m 
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Step 2) Estimate the (joint) probability for each sample using Monte Carlo inte-

gration with antithetic sampling. 

Step 3) From Monte Carlo results, estimate mean and covariance of az% . 

Step 4) Determine the discrete probabilities and observations such that the means 

and covariances of the discrete distribution match the estimated means and 

covariances of the continuous distribution: 

 ( )
9 2

, ,
1

min ( ' ) ( )a n a n
n

p p
=

−∑ z ζ%  (A.II.1) 

 
9

, , , , ,
1

subject to ( )a n e a n a n e
n

p eη ζ ζ
=

= ∀ ∈Ε∑  (A.II.2) 
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p p e eφ ζ ζ η ζ ζ η
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( ) 1a n
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p ζ
=
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 ,0 ( ) 1 1,2,...,9a np nζ≤ ≤ ∀ =  (A.II.5) 
 , . 0 , 1, 2,...,9a n e e nζ ≥ ∀ ∈Ε =  (A.II.6) 
 , , , ', Latin Hypercube relationships,a n e a n eζ ζ= ∀  (A.II.7) 
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The objective function (A.II.1) minimizes the sum of squared deviations 

between the estimated probabilities and the calculated discrete probabili-

ties.  The first constraint (A.II.2) requires that the estimated means equal 

the discrete means.  The second constraint (A.II.3) requires that the esti-

mated covariances equal the discrete covariances.  Constraint (A.II.4) re-

quires that the calculated discrete probabilities sum to 1, while the fourth 

constraint (A.II.5) makes sure that the probabilities are between zero and 

1.  The fifth constraint (A.II.6) ensures that the discrete probabilities are 

non-negative, and the last constraint (A.II.7) requires that only three dis-

crete observations are produced for each element, in accordance with the 

Latin Hypercube sample.  Referring to the example Latin hypercube sam-

ples in Step 1 above, the Latin Hypercube constraints for element 1 would 

be  

,1,1 ,5,1 ,7,1

,2,1 ,6,1 ,8,1

,3,1 ,4,1 ,9,1

a a a

a a a

a a a

ζ ζ ζ

ζ ζ ζ

ζ ζ ζ

= =

= =

= =

. 

II.2 Results 

Table A.II- 1: Observations for Each Research Action 

n  = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
1 Fingerprinting W1 0.6694 0.7341 0.8 0.8525 0.9408 0.9877 1.0951 1.2 1.4985
2 Fingerprinting W1 0.6726 0.8416 1.0161 1.0161 0.6726 0.8416 0.6726 1.0161 0.8416
2 Fields W1 7650 7686 15097 7686 15097 7650 7686 7650 15097
2 Streambanks W1 499 854 2186 499 854 2186 2186 854 499
3 Fingerprinting W1 0.6726 0.8416 1.0161 1.0161 0.6726 0.8416 0.6726 1.0161 0.8416
3 Fields W2 7650 7686 15097 7686 15097 7650 7686 7650 15097
3 Streambanks W2 499 854 2186 499 854 2186 2186 854 499
4 Fingerprinting W1 0.7402 0.8687 1.1291 1.1291 0.7402 0.8687 0.7402 0.8687 1.1291
4 Fields W3 1660 7233 8400 1660 8400 7233 1660 8400 7233
4 Streambanks W3 2146 6534 12230 6534 12230 2146 12230 6534 2146
4 Ravines W3 14895 27738 36117 36117 14895 27738 14895 36117 27738
4 Bluffs W3 18695 29296 53572 29296 18695 53572 53572 18695 29296

Action 
ID (a)

Observations       Observation 
Element

,a nζ
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n  = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
5 Fingerprinting W1 0.646 0.8577 0.9992 0.646 0.8577 0.9992 0.646 0.8577 0.9992
5 Fingerprinting W2 0.6875 0.6875 0.6875 0.8223 0.8223 0.8223 1.0402 1.0402 1.0402
6 Fingerprinting W1 0.6288 0.925 0.9886 0.6288 0.925 0.9886 0.6288 0.925 0.9886
6 Fingerprinting W3 0.1966 0.1966 0.1966 0.2334 0.2334 0.2334 0.3677 0.3677 0.3677
7 Fingerprinting W2 0.6694 0.7341 0.8 0.8525 0.9408 0.9877 1.0951 1.2 1.4985
8 Fingerprinting W2 0.6726 0.8416 1.0161 1.0161 0.6726 0.8416 0.6726 1.0161 0.8416
8 Fields W1 7650 7686 15097 7686 15097 7650 7686 7650 15097
8 Streambanks W1 499 854 2186 499 854 2186 2186 854 499
9 Fingerprinting W2 0.6726 0.8416 1.0161 1.0161 0.6726 0.8416 0.6726 1.0161 0.8416
9 Fields W2 7650 7686 15097 7686 15097 7650 7686 7650 15097
9 Streambanks W2 499 854 2186 499 854 2186 2186 854 499
10 Fingerprinting W2 0.7402 0.8687 1.1291 1.1291 0.7402 0.8687 0.7402 0.8687 1.1291
10 Fields W3 1660 7233 8400 1660 8400 7233 1660 8400 7233
10 Streambanks W3 2146 6534 12230 6534 12230 2146 12230 6534 2146
10 Ravines W3 14895 27738 36117 36117 14895 27738 14895 36117 27738
10 Bluffs W3 18695 29296 53572 29296 18695 53572 53572 18695 29296
11 Fingerprinting W1 0.6288 0.925 0.9886 0.6288 0.925 0.9886 0.6288 0.925 0.9886
11 Fingerprinting W3 0.1966 0.1966 0.1966 0.2334 0.2334 0.2334 0.3677 0.3677 0.3677
12 Fingerprinting W3 0.1958 0.2107 0.2252 0.2414 0.2523 0.2638 0.2824 0.307 0.3989
13 Fingerprinting W3 0.2173 0.235 0.3335 0.3335 0.2173 0.235 0.2173 0.3335 0.235
13 Fields W1 7650 7811 15050 7811 15050 7650 7811 7650 15050
13 Streambanks W1 365 1197 1274 365 1197 1274 1274 1197 365
14 Fingerprinting W3 0.2173 0.235 0.3335 0.3335 0.2173 0.235 0.2173 0.3335 0.235
14 Fields W2 7650 7811 15050 7811 15050 7650 7811 7650 15050
14 Streambanks W2 365 1197 1274 365 1197 1274 1274 1197 365
15 Fingerprinting W3 0.1964 0.22 0.3318 0.3318 0.1964 0.22 0.1964 0.22 0.3318
15 Fields W3 2824 8012 10784 2824 10784 8012 2824 10784 8012
15 Streambanks W3 2907 8400 12835 8400 12835 2907 12835 8400 2907
15 Ravines W3 19961 29276 43220 43220 19961 29276 19961 43220 29276
15 Bluffs W3 19713 23799 60000 23799 19713 60000 60000 19713 23799
16 Gauging W1 7377 8235 8625 8912 9500 10500 11500 13182 18731
17 Gauging W1 7945 9273 13328 7945 9273 13328 7945 9273 13328
17 Fingerprinting W1 0.6278 0.6278 0.6278 0.8741 0.8741 0.8741 0.9897 0.9897 0.9897
18 Gauging W1 7945 9273 13328 7945 9273 13328 7945 9273 13328
18 Fingerprinting W2 0.6278 0.6278 0.6278 0.8741 0.8741 0.8741 0.9897 0.9897 0.9897
19 Gauging W1 7425 10105 13266 7425 10105 13266 7425 10105 13266
19 Fingerprinting W3 0.2032 0.2032 0.2032 0.2363 0.2363 0.2363 0.317 0.317 0.317
20 Gauging W1 7385 9908 14259 14259 7385 9908 7385 14259 9908
20 Fields W1 5629 10612 14030 10612 14030 5629 10612 5629 14030
20 Streambanks W1 146 1200 3429 146 1200 3429 3429 1200 146
21 Gauging W1 7385 9908 14259 14259 7385 9908 7385 14259 9908
21 Fields W2 5629 10612 14030 10612 14030 5629 10612 5629 14030
21 Streambanks W2 146 1200 3429 146 1200 3429 3429 1200 146
22 Gauging W1 6756 9000 14256 14256 6756 9000 6756 9000 14256
22 Fields W3 3145 6159 17718 3145 17718 6159 3145 17718 6159
22 Streambanks W3 2468 6922 15442 6922 15442 2468 15442 6922 2468
22 Ravines W3 9955 27925 35174 35174 9955 27925 9955 35174 27925
22 Bluffs W3 10682 24991 50165 24991 10682 50165 50165 10682 24991
23 Gauging W1 7641 9888 12904 7641 9888 12904 7641 9888 12904
23 Gauging W2 7722 7722 7722 9636 9636 9636 13239 13239 13239
24 Gauging W1 7689 9715 12813 7689 9715 12813 7689 9715 12813
24 Gauging W2 61601 61601 61601 93750 93750 93750 120257 120257 120257
25 Gauging W2 7377 8235 8625 8912 9500 10500 11500 13182 18731
26 Gauging W2 7945 9273 13328 7945 9273 13328 7945 9273 13328
26 Fingerprinting W1 0.6278 0.6278 0.6278 0.8741 0.8741 0.8741 0.9897 0.9897 0.9897
27 Gauging W2 7945 9273 13328 7945 9273 13328 7945 9273 13328
27 Fingerprinting W2 0.6278 0.6278 0.6278 0.8741 0.8741 0.8741 0.9897 0.9897 0.9897
28 Gauging W2 7425 10105 13266 7425 10105 13266 7425 10105 13266
28 Fingerprinting W3 0.2032 0.2032 0.2032 0.2363 0.2363 0.2363 0.317 0.317 0.317
29 Gauging W2 7385 9908 14259 14259 7385 9908 7385 14259 9908
29 Fields W1 5629 10612 14030 10612 14030 5629 10612 5629 14030
29 Streambanks W1 146 1200 3429 146 1200 3429 3429 1200 146
30 Gauging W2 7385 9908 14259 14259 7385 9908 7385 14259 9908
30 Fields W2 5629 10612 14030 10612 14030 5629 10612 5629 14030
30 Streambanks W2 146 1200 3429 146 1200 3429 3429 1200 146

Observation 
Element

Observations       Action 
ID (a)
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n  = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
31 Gauging W2 6756 9000 14256 14256 6756 9000 6756 9000 14256
31 Fields W3 3145 6159 17718 3145 17718 6159 3145 17718 6159
31 Streambanks W3 2468 6922 15442 6922 15442 2468 15442 6922 2468
31 Ravines W3 9955 27925 35174 35174 9955 27925 9955 35174 27925
31 Bluffs W3 10682 24991 50165 24991 10682 50165 50165 10682 24991
32 Gauging W2 7689 9715 12813 7689 9715 12813 7689 9715 12813
32 Gauging W3 61601 61601 61601 93750 93750 93750 120257 120257 120257
33 Gauging W3 59331 67980 73080 80000 85000 90000 100811 115388 198045
34 Gauging W3 62805 90238 110474 62805 90238 110474 62805 90238 110474
34 Fingerprinting W1 0.6315 0.6315 0.6315 0.8324 0.8324 0.8324 1.0392 1.0392 1.0392
35 Gauging W3 62805 90238 110474 62805 90238 110474 62805 90238 110474
35 Fingerprinting W2 0.6315 0.6315 0.6315 0.8324 0.8324 0.8324 1.0392 1.0392 1.0392
36 Gauging W3 58888 80739 120729 58888 80739 120729 58888 80739 120729
36 Fingerprinting W3 0.1973 0.1973 0.1973 0.2421 0.2421 0.2421 0.3027 0.3027 0.3027
37 Gauging W3 68057 78750 112930 112930 68057 78750 68057 112930 78750
37 Fields W1 6108 7650 14894 7650 14894 6108 7650 6108 14894
37 Streambanks W1 193 857 3735 193 857 3735 3735 857 193
38 Gauging W3 68057 78750 112930 112930 68057 78750 68057 112930 78750
38 Fields W2 6108 7650 14894 7650 14894 6108 7650 6108 14894
38 Streambanks W2 193 857 3735 193 857 3735 3735 857 193
39 Gauging W3 59404 88691 93751 93751 59404 88691 59404 88691 93751
39 Fields W3 3102 5981 9860 3102 9860 5981 3102 9860 5981
39 Streambanks W3 3696 5950 10492 5950 10492 3696 10492 5950 3696
39 Ravines W3 16136 25980 58000 58000 16136 25980 16136 58000 25980
39 Bluffs W3 14475 23799 33601 23799 14475 33601 33601 14475 23799
40 Fields W1 5702 9671 13276 5702 9671 13276 5702 9671 13276
40 Streambanks W1 289 289 289 881 881 881 2174 2174 2174
41 Fields W1 5824 9496 22745 5824 22745 9496 22745 9496 5824
41 Streambanks W1 503 876 7000 503 876 7000 876 503 7000
41 Fields W2 6171 7650 14648 8232 6171 14648 6171 14648 9853
41 Streambanks W2 261 1200 2393 2393 1200 261 2393 261 1200
42 Fields W1 5587 9452 18573 5587 9452 18573 9452 18573 5587
42 Streambanks W1 244 850 2605 2605 850 244 2605 244 850
42 Fields W3 3593 5950 14167 5950 14167 3593 14167 3593 5950
42 Streambanks W3 3628 5950 16018 16018 5950 3628 3628 16018 5950
42 Ravines W3 17257 26084 55677 26084 55677 17257 26084 55677 17257
42 Bluffs W3 16216 29383 49540 16216 49540 29383 29383 16216 49540
43 Fields W2 5702 9671 13276 5702 9671 13276 5702 9671 13276
43 Streambanks W2 289 289 289 881 881 881 2174 2174 2174
44 Fields W2 5587 9452 18573 5587 9452 18573 9452 18573 5587
44 Streambanks W2 244 850 2605 2605 850 244 2605 244 850
44 Fields W3 3593 5950 14167 5950 14167 3593 14167 3593 5950
44 Streambanks W3 3628 5950 16018 16018 5950 3628 3628 16018 5950
44 Ravines W3 17257 26084 55677 26084 55677 17257 26084 55677 17257
44 Bluffs W3 16216 29383 49540 16216 49540 29383 29383 16216 49540
45 Fields W3 3846 7144 17429 3846 17429 7144 17429 7144 3846
45 Streambanks W3 3860 5950 13243 3860 5950 13243 5950 3860 13243
45 Ravines W3 15014 23799 46822 33601 15014 46822 15014 46822 23799
45 Bluffs W3 17150 23799 49523 49523 23799 17150 49523 17150 23799

Observations       Action 
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Table A.II- 2: Expected Loadings from the Posterior for each Research Action and Observation 

Action Field W1 Stream W1 Field W2 Stream W2 Field W3 Stream W3 Ravine W3 Bluff W3
1 9117 1229 9109 2813 7405 10497 27564 29733
2 9057 1133 9052 1770 7201 8916 27717 28971
3 9027 1062 9028 1162 7098 7671 27949 28418
4 9002 1000 9000 865 6996 6890 28022 27995
5 8985 928 8989 583 6950 6028 28283 27700
6 8963 919 8968 497 6877 5759 28127 27372
7 8920 864 8924 365 6732 5291 28041 26852
8 8924 851 8930 293 6747 4985 28333 26878
9 8905 807 8911 186 6667 4458 28415 26500
1 9011 685 9011 2893 7119 9311 27104 28666
2 8987 1005 8993 1164 7014 7716 27459 28103
3 9200 2112 9183 781 7519 8253 29020 30055
4 8893 656 8903 669 6702 5593 27766 26736
5 9222 1038 9193 3041 7611 10493 28343 30712
6 9078 2127 9084 1257 7342 10037 27470 29458
7 9149 2193 9144 3133 7585 13886 27032 30658
8 8946 989 8955 704 6881 6495 27780 27441
9 9095 671 9072 1135 7145 6537 28916 28630
1 8884 939 8867 852 6612 6768 26955 26821
2 8974 1019 8962 1084 6899 7459 27468 27819
3 9254 1198 9284 1684 7907 8571 29597 30829
4 8921 914 8918 669 6739 6085 27678 27072
5 9076 1086 9083 1362 7273 8051 28175 28940
6 9080 1185 9073 2023 7262 9515 27621 29217
7 9041 1214 9020 2747 7139 10760 26866 29046
8 8977 988 8972 944 6922 7026 27713 27818
9 9044 975 9058 740 7140 6311 28853 28290
1 8358 543 8105 980 3965 5416 17436 18616
2 9001 1220 9000 1248 6976 8773 28693 28589
3 9171 2029 9192 992 7686 11369 35014 36090
4 8548 912 8278 684 4323 8458 25878 23321
5 8776 1831 8831 2511 6534 12661 23940 25390
6 9216 733 9188 869 7619 5246 28130 32692
7 8545 1522 8266 2247 4314 13424 20187 27847
8 9001 1120 9035 1187 7183 8748 30923 25855
9 9001 701 9004 609 6989 4931 27700 26949
1 9107 1378 9091 3566 7354 12571 27094 29950
2 9032 1030 9007 418 6988 6890 30247 29732
3 9022 982 8991 278 6917 6384 30552 29553
4 9048 1119 9090 3340 7408 9449 23896 26480
5 8931 858 8960 348 6875 5129 26239 25701
6 8897 813 8923 219 6763 4750 26211 25435
7 8782 647 8965 2607 7125 4373 16444 17982
8 8578 538 8741 187 6301 2247 17220 16663
9 8566 516 8727 97 6236 2038 17253 16512
1 9101 1199 9046 1205 7105 9124 31777 31864
2 9073 1104 9043 1093 7112 7994 30189 30308
3 9017 1016 9008 1026 7024 7214 28617 28609
4 9001 955 9013 946 7038 6459 27337 27291
5 8941 914 8966 906 6914 6093 26105 26057
6 8908 860 8945 857 6861 5634 25249 25185
7 8876 829 8935 840 6825 5205 23945 23824
8 8823 767 8909 757 6769 4551 22473 22309
9 8594 606 8748 600 6305 3188 17827 17560

Action 
ID (a)

Obs. 
(n)

Expected Loadings From Posterior                               

12 Fingerprinting 
in W3

10
Fingerprinting 
in W2 & SSA 

in W3

11 Fingerprinting 
in W2 & W3

8
Fingerprinting 
in W2 & SSA 

in W1

9 Fingerprinting 
& SSA in W2

7 Fingerprinting 
in W2

, ,( )i j a nE x ζ%
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Action Field W1 Stream W1 Field W2 Stream W2 Field W3 Stream W3 Ravine W3 Bluff W3
1 9108 777 9012 1163 6979 8361 34192 33382
2 9199 1545 9144 1243 7450 9832 31927 32985
3 9154 1555 9188 1023 7571 7063 26053 27032
4 8863 756 8902 879 6725 5784 25466 25148
5 9388 1573 9283 1390 7777 10553 34760 35825
6 9201 1615 9149 1263 7474 9993 31847 33036
7 9242 1636 9156 1332 7443 10784 33379 34625
8 8971 1481 9018 957 7120 7083 25005 25969
9 9253 776 9162 1132 7356 7548 33886 33025
1 9136 1154 9030 777 7023 8275 34386 33540
2 9198 1249 9132 1550 7401 9857 31764 32924
3 9136 1027 9215 1555 7729 7107 26219 27135
4 8861 874 8892 755 6683 5780 25410 25113
5 9384 1390 9317 1574 7943 10538 35050 35976
6 9203 1271 9138 1614 7417 9998 31745 32931
7 9224 1341 9127 1635 7360 10862 33175 34452
8 8991 971 9033 1483 7154 7091 25118 26029
9 9223 1130 9172 776 7445 7586 33845 33003
1 8684 432 8389 437 4614 4614 23859 23982
2 9018 1183 8994 1207 6875 8540 28424 27033
3 9274 1711 9540 1726 9441 7965 26979 28495
4 8625 828 8551 822 5147 6403 20681 17837
5 8981 995 8985 997 6961 6981 28067 28255
6 9314 636 9242 625 7697 4128 28804 34948
7 8816 1527 8580 1537 5138 11371 23216 31134
8 9174 1031 9206 1016 7770 7790 33141 27127
9 8921 569 9027 568 7131 3328 21999 20870
1 8780 612 8810 876 6514 6169 26524 26035
2 8877 696 8893 929 6720 6425 27198 26865
3 8906 738 8916 952 6765 6558 27382 27113
4 8942 774 8947 947 6855 6592 27628 27389
5 9008 848 9007 989 7002 6781 28110 27985
6 9104 993 9090 1049 7217 7144 28846 28884
7 9158 1181 9136 1086 7341 7551 29027 29413
8 9283 1625 9250 1172 7674 8351 29791 30720
9 9475 4816 9433 1486 8329 12548 30176 33339
1 8802 2208 8851 1115 6769 10229 25254 27127
2 8921 2677 8962 1184 7080 10809 26034 28239
3 9190 3935 9199 1375 7729 12309 27899 30877
4 8834 654 8854 920 6627 6456 26854 26551
5 8979 772 8981 975 6940 6689 27882 27734
6 9300 1220 9260 1145 7670 7657 30139 30689
7 8828 474 8845 859 6562 5725 27065 26234
8 8967 544 8963 928 6843 5948 28081 27395
9 9296 798 9248 1061 7588 6531 30594 30358
1 8948 801 8962 3559 7027 10664 26192 28320
2 9085 987 9078 3667 7332 11239 27189 29624
3 9384 2002 9346 3916 8103 13582 29007 32668
4 8830 659 8852 742 6618 6121 26891 26416
5 8962 820 8965 791 6881 6528 27786 27558
6 9273 1651 9242 908 7650 8028 29812 30574
7 8802 638 8823 484 6496 5400 26971 25954
8 8944 785 8949 518 6817 5726 28047 27219
9 9252 1571 9223 593 7557 6982 30066 30110

Obs. 
(n)

Expected Loadings From Posterior                               
Action 
ID (a)

18

Gauging in W1 
& 

Fingerprinting 
in W2

16 Gauging in W1

17
Gauging & 

Fingerprinting 
in W1

14
Fingerprinting 

in W3 & SSA in 
W2

15 Fingerprinting 
& SSA in W3

13
Fingerprinting 

in W3 & SSA in 
W1

, ,( )i j a nE x ζ%
, ,( )i j a nE x ζ% , ,( )i j a nE x ζ%
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Action Field W1 Stream W1 Field W2 Stream W2 Field W3 Stream W3 Ravine W3 Bluff W3
1 8823 513 8802 1003 6490 7584 30453 29588
2 9092 860 9037 1128 7074 8261 31954 31654
3 9282 1651 9211 1277 7550 9656 32369 33195
4 8739 468 8759 869 6367 6172 27072 26279
5 8982 771 8970 975 6883 6701 28266 27929
6 9221 1437 9206 1094 7590 7609 29367 29950
7 8554 378 8655 674 6088 4144 21391 20713
8 8803 615 8882 757 6668 4451 22516 22176
9 9044 1141 9111 845 7298 5001 23403 23654
1 8661 0 8694 738 6141 4336 26320 24569
2 9172 1168 9161 1105 7440 7943 28739 29714
3 9462 2559 9421 1414 8231 11225 30002 32922
4 9357 111 9279 874 7477 4081 32391 29904
5 8995 1074 9010 1037 7060 7798 27325 28215
6 9022 2469 9049 1225 7273 10874 26678 29109
7 8959 2172 8990 1162 7102 10269 26272 28436
8 9301 1371 9272 1175 7718 8305 29646 30863
9 9113 37 9077 824 7001 4151 30246 27967
1 8605 347 8613 0 5862 3653 25991 23782
2 9150 788 9157 1192 7412 7423 28677 29430
3 9568 2156 9558 2418 8709 12518 30719 34333
4 9255 1469 9221 119 7401 4754 31005 29448
5 8954 491 9003 1191 7026 6796 27384 27725
6 9125 881 9107 2835 7323 10445 27371 29696
7 9008 553 9050 2874 7233 9343 26887 28737
8 9309 1929 9257 1225 7661 9436 29115 31049
9 9019 585 9030 54 6907 3795 29586 27223
1 8284 375 8239 446 4686 3607 17953 17958
2 9040 839 9043 1001 6997 7335 29370 28268
3 9814 3058 9973 2363 10958 13445 39136 43270
4 9234 1533 9023 830 6352 8260 29370 27921
5 8618 1074 8929 2317 7380 10532 24523 23840
6 9285 529 9261 563 7670 3939 29155 33129
7 8503 1005 8441 2020 5194 11529 21292 29636
8 9201 863 9440 1048 8993 7034 34341 25748
9 9450 854 9365 530 7703 4107 29105 28943
1 8789 705 8784 540 6368 5751 26636 25840
2 8969 1690 8838 420 6384 7200 26983 27163
3 9068 5236 8951 518 6814 11200 26566 28921
4 8840 604 8944 1368 6994 6981 26993 27021
5 9026 926 9000 643 6924 6349 28409 27924
6 9191 2736 9085 587 7127 8917 28391 29639
7 8955 715 9044 5598 7386 11699 26349 28921
8 9114 803 9193 2625 7707 9070 28402 29800
9 9281 1165 9281 1113 7795 7650 30302 30693
1 8813 620 8833 888 6501 6164 26121 25762
2 8801 991 8752 804 6004 5857 22302 22672
3 8825 3124 8740 808 5876 7448 19496 21311
4 9242 582 9354 1313 8692 8627 39312 37928
5 9212 784 9250 1167 7927 7746 33211 32784
6 9206 1576 9165 1074 7289 7893 27740 28639
7 9526 567 9687 1639 10323 10450 50409 47758
8 9484 734 9575 1470 9407 9343 42534 41257
9 9458 1232 9464 1340 8526 8919 34955 35300

Expected Loadings From Posterior                               
Action 
ID (a)

Obs. 
(n)

24 Gauging in W1 
& W3

22 Gauging in W1 
& SSA in W3

23 Gauging in W1 
& W2

20 Gauging & SSA 
in W1

21 Gauging in W1 
& SSA in W2

19

Gauging in W1 
& 

Fingerprinting 
in W3

, ,( )i j a nE x ζ%
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Action Field W1 Stream W1 Field W2 Stream W2 Field W3 Stream W3 Ravine W3 Bluff W3
1 8812 886 8785 613 6372 6190 26573 26076
2 8895 924 8879 697 6626 6391 27194 26830
3 8923 952 8914 743 6739 6555 27462 27204
4 8959 968 8955 781 6862 6642 27792 27542
5 8989 978 8989 844 6944 6773 27919 27814
6 9080 1030 9093 998 7266 7137 28731 28779
7 9158 1100 9180 1185 7542 7560 29309 29671
8 9239 1164 9270 1611 7828 8303 29630 30561
9 9433 1482 9473 4779 8588 12487 30146 33327
1 8966 3556 8955 801 6965 10646 26266 28419
2 9061 3639 9063 983 7281 11200 26902 29384
3 9341 3906 9379 1993 8330 13547 28935 32603
4 8849 745 8829 663 6482 6136 26847 26427
5 8959 787 8957 820 6848 6513 27692 27460
6 9243 905 9274 1654 7844 8015 29836 30627
7 8834 492 8813 642 6406 5438 27126 26049
8 8943 518 8938 783 6766 5731 28004 27166
9 9234 594 9266 1559 7772 6954 30229 30249
1 8849 1107 8796 2212 6478 10214 25244 27073
2 8962 1200 8921 2678 6841 10921 26102 28293
3 9187 1360 9183 3927 7659 12240 27716 30692
4 8857 920 8837 646 6511 6396 26860 26529
5 8968 971 8963 777 6880 6728 27735 27642
6 9266 1136 9303 1222 7924 7622 30198 30738
7 8851 881 8835 474 6490 5786 27156 26342
8 8968 917 8972 547 6883 5921 28145 27435
9 9245 1061 9292 797 7854 6551 30595 30330
1 8851 999 8753 509 6238 7546 30193 29280
2 9078 1126 9017 875 6992 8364 31664 31477
3 9262 1292 9232 1669 7688 9756 32524 33309
4 8766 865 8720 456 6176 6098 26972 26137
5 9025 976 9015 758 7013 6609 28699 28325
6 9189 1084 9212 1441 7642 7624 29242 29871
7 8590 673 8626 368 5918 4070 21273 20614
8 8798 751 8881 610 6649 4435 22479 22109
9 9005 836 9129 1101 7435 4980 23500 23703
1 8605 347 8613 0 5862 3653 25991 23782
2 9150 788 9157 1192 7412 7423 28677 29430
3 9568 2156 9558 2418 8709 12518 30719 34333
4 9255 1469 9221 119 7401 4754 31005 29448
5 8954 491 9003 1191 7026 6796 27384 27725
6 9125 881 9107 2835 7323 10445 27371 29696
7 9008 553 9050 2874 7233 9343 26887 28737
8 9309 1929 9257 1225 7661 9436 29115 31049
9 9019 585 9030 54 6907 3795 29586 27223
1 8696 730 8666 0 5982 4314 26370 24595
2 9145 1132 9158 1171 7451 8052 28607 29687
3 9424 1418 9462 2558 8460 11245 30023 32956
4 9254 872 9329 111 7824 4093 32021 29596
5 8996 1052 8983 1070 6927 7825 27213 28082
6 9048 1239 9023 2469 7099 10881 26650 29042
7 8987 1172 8954 2175 6893 10286 26221 28425
8 9262 1212 9291 1374 7849 8404 29585 30871
9 9073 828 9109 38 7165 4155 30119 27907

Action 
ID (a)

Obs. 
(n)

Expected Loadings From Posterior                               

30 Gauging & 
SSA in W2

28

Gauging W2 
& 

Fingerprinting 
W3

29
Gauging in 

W2 & SSA in 
W1

26

Gauging in 
W2 & 

Fingerprinting 
in W1

27
Gauging and 

Fingerprinting 
in W2

25 Gauging in 
W2

, ,( )i j a nE x ζ%
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Action Field W1 Stream W1 Field W2 Stream W2 Field W3 Stream W3 Ravine W3 Bluff W3
1 8319 454 8232 386 4633 3629 18012 18036
2 9039 995 9037 849 6967 7344 29361 28254
3 9789 2366 9991 2956 11089 13319 39213 43247
4 9185 827 9059 1612 6536 8349 29173 27875
5 8652 2331 8891 1067 7172 10520 24556 23901
6 9284 565 9253 530 7630 3943 29139 33133
7 8546 2032 8423 1022 5092 11525 21359 29801
8 9200 1063 9424 850 8904 7041 34321 25727
9 9384 525 9400 863 7924 4118 28949 28784
1 8834 883 8815 612 6419 6128 26115 25781
2 8759 805 8768 989 6116 5880 22192 22511
3 8772 805 8787 3189 6101 7485 19404 21238
4 9328 1304 9285 584 8238 8682 39591 38096
5 9244 1158 9243 783 7860 7735 33370 32901
6 9165 1091 9196 1577 7483 7952 27593 28529
7 9622 1688 9562 577 9503 10842 50695 48053
8 9545 1471 9531 727 9100 9343 42703 41478
9 9465 1340 9494 1233 8669 8877 35095 35457
1 8724 827 8714 835 6083 5959 23615 23587
2 8864 902 8859 895 6518 6394 25646 25611
3 8942 940 8939 951 6767 6670 26814 26798
4 9033 1021 9032 1006 7076 7066 28307 28331
5 9082 1047 9088 1059 7280 7306 29268 29321
6 9141 1101 9146 1087 7487 7606 30433 30367
7 9245 1189 9257 1180 7892 8158 32394 32452
8 9383 1291 9403 1322 8446 8866 35201 35271
9 9961 2005 9997 2007 11022 12725 48882 49415
1 8751 2970 8744 898 6153 8823 21188 23206
2 9084 3394 9094 1236 7349 11106 26565 29113
3 9266 3629 9284 1472 8063 12726 30107 32877
4 8714 623 8701 795 5979 5706 22956 22939
5 9073 798 9076 1051 7215 7102 28840 28903
6 9262 900 9275 1199 7964 7981 32713 32837
7 8681 172 8669 722 5870 4473 23532 22665
8 9049 244 9050 914 7106 5458 29904 28606
9 9255 304 9262 1061 7872 6192 33960 32642
1 8765 921 8737 2964 6126 8894 21270 23261
2 9103 1232 9092 3404 7306 11093 26641 29160
3 9285 1474 9284 3625 8031 12679 30257 33025
4 8709 798 8700 617 5981 5691 22952 22923
5 9076 1026 9074 799 7197 7031 28823 28879
6 9261 1205 9275 903 7968 8036 32646 32837
7 8672 713 8663 169 5861 4483 23553 22550
8 9037 922 9045 258 7111 5528 29681 28584
9 9263 1065 9278 301 7933 6160 34077 32707
1 8571 802 8461 796 5135 7105 22969 22899
2 8862 1010 8785 985 6116 8056 27102 27138
3 9256 1258 9234 1270 7748 9002 33657 33852
4 8558 677 8521 671 5351 5228 20727 20613
5 8857 844 8868 842 6478 5888 24668 24575
6 9288 1092 9366 1090 8366 6586 31024 30961
7 8536 597 8580 592 5588 3848 18364 18121
8 8841 748 8943 733 6816 4287 21922 21715
9 9261 958 9452 948 8898 4793 27701 27478

Action 
ID (a)

Obs. 
(n)

Expected Loadings From Posterior                               

36
Gauging & 

Fingerprinting 
in W3

34

Gauging in W3 
& 

Fingerprinting 
in W1

35

Gauging in W3 
& 

Fingerprinting 
in W2

32 Gauging in W2 
& W3

33 Gauging in W3

31 Gauging in W2 
& SSA in W3

, ,( )i j a nE x ζ%
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Action Field W1 Stream W1 Field W2 Stream W2 Field W3 Stream W3 Ravine W3 Bluff W3
1 8777 849 8781 899 6334 6471 24745 24950
2 9050 1508 9048 1124 7152 9093 26334 28261
3 9590 3935 9578 1713 8931 14297 31903 36362
4 9341 860 9361 1146 8252 7307 35342 34167
5 9049 1497 9012 1052 6872 8416 24647 26580
6 9096 3734 9098 1315 7343 12549 24519 28561
7 8994 3666 8982 1171 6910 11695 22554 26427
8 9365 1549 9391 1397 8421 10430 33008 34803
9 9102 854 9073 993 7059 6532 28299 28062
1 8803 903 8788 850 6323 6473 24928 25008
2 9053 1153 9048 1509 7143 9107 26243 28267
3 9558 1721 9588 3934 9037 14293 31708 36323
4 9324 1144 9336 861 8166 7321 34995 34092
5 9008 1074 9014 1500 6933 8470 24372 26426
6 9093 1308 9075 3742 7257 12574 24429 28540
7 9008 1190 8992 3663 6933 11601 22533 26512
8 9353 1424 9351 1545 8273 10513 32832 34640
9 9065 983 9086 854 7174 6515 28300 28015
1 8862 835 8824 832 6415 6100 26002 25643
2 9405 1194 9461 1188 8452 8181 34373 33873
3 9711 1564 9834 1549 9975 11047 42742 38411
4 9432 941 9330 950 7730 8522 39331 33012
5 9016 1595 9202 1611 7895 9801 28253 27724
6 9510 976 9548 987 8714 6401 34086 36071
7 8889 1451 8843 1436 6460 10257 26290 30004
8 9580 1060 9726 1060 9601 8048 41789 31804
9 9488 955 9536 954 8700 6456 34840 34434
1 8800 215 8814 807 6451 4895 27216 25808
2 8926 217 8921 836 6694 4829 28292 26777
3 9003 218 8986 854 6844 4789 28956 27376
4 8916 791 8931 981 6842 7037 27189 27367
5 9044 796 9040 1016 7099 6944 28264 28394
6 9122 800 9105 1038 7257 6888 28927 29029
7 9012 1876 9027 1148 7175 9395 27167 28699
8 9141 1889 9137 1189 7444 9273 28240 29777
9 9220 1897 9203 1214 7611 9200 28904 30441
1 8901 896 8893 671 6679 6238 27419 26932
2 9192 1239 9162 1564 7482 9481 28306 30210
3 9678 5820 9629 2514 9019 17078 30377 36119
4 9121 880 9135 2557 7487 9857 27742 29848
5 9331 1245 9216 1571 7495 9342 29218 31065
6 9310 5947 9332 663 8074 10543 29189 31766
7 9392 1236 9277 2560 7710 10866 29198 31959
8 9080 903 9101 675 7248 6067 29263 28514
9 9311 5791 9340 1528 8230 15185 27931 32576
1 8657 352 8606 853 5503 5731 24441 23303
2 9170 957 9110 1115 6962 8103 29546 30559
3 9828 2502 9833 2101 9792 15156 42819 42653
4 9008 2399 9060 1766 7114 14619 29978 27766
5 9785 987 9924 1281 10733 8211 42631 41559
6 8852 355 8574 869 4920 5837 24196 26265
7 9635 2426 9791 907 10177 6804 31294 34670
8 8849 351 8571 1588 4913 12652 35346 24894
9 9152 989 9186 1353 7511 7973 27820 35067

Obs. 
(n)

Expected Loadings From Posterior                               
Action 
ID (a)

42 SSA in W1 & 
W3 

40 SSA in W1

41 SSA in W1 & 
W2

38
Gauging in 

W3 & SSA in 
W2

39
Gauging in 

W3 & SSA in 
W3

37
Gauging in 

W3 & SSA in 
W1

, ,( )i j a nE x ζ%
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Action Field W1 Stream W1 Field W2 Stream W2 Field W3 Stream W3 Ravine W3 Bluff W3
1 8814 807 8800 213 6373 4895 27216 25808
2 8921 836 8926 216 6722 4829 28292 26777
3 8986 854 9003 217 6940 4789 28956 27376
4 8931 981 8916 790 6756 7037 27189 27367
5 9040 1016 9044 796 7125 6944 28264 28394
6 9105 1038 9122 799 7356 6888 28927 29029
7 9028 1148 9012 1877 7083 9395 27167 28699
8 9137 1190 9141 1890 7469 9273 28240 29777
9 9203 1215 9220 1897 7711 9200 28904 30441
1 8662 853 8603 351 5489 5731 24444 23305
2 9154 1113 9117 957 7003 8106 29493 30509
3 9787 2092 9853 2502 9946 15169 42671 42519
4 9024 1774 9054 2402 7070 14610 30034 27812
5 9787 1284 9924 988 10731 8209 42678 41601
6 8787 859 8600 354 5046 5847 24008 26080
7 9638 908 9792 2430 10175 6802 31328 34706
8 8784 1570 8598 350 5039 12675 35074 24718
9 9167 1358 9180 990 7463 7970 27865 35125
1 8672 620 8609 620 5510 4819 21806 22258
2 9058 932 9090 933 7172 6532 28080 27846
3 9714 1962 9895 1962 10783 11499 41606 41919
4 9159 627 9036 628 6687 5139 29174 31709
5 9226 1276 9453 1277 8971 6345 27710 30623
6 9121 1318 9146 1318 7351 11231 34748 27241
7 9426 1450 9634 1451 9685 6508 28863 37935
8 9167 562 9187 562 7484 4966 32907 25792
9 8830 1391 8748 1392 5873 11198 26765 26532

Expected Loadings From Posterior                               
Action 
ID (a)

Obs. 
(n)

44 SSA in W2 & 
W3

45 SSA in W3

43 SSA in W2

, ,( )i j a nE x ζ%
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Table A.II- 3: Optimal Expected Cost and Expected Sediment Reduced for Each Research Action, 
Observation, and Weight on the Sediment Reduction Objective. 

Data (1000/yr) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 80.99 80.99 12.09 12.09 12.09 12.09 12.09 71.52 71.52

Reduction (tons/yr) 9.02 8.82 1.70 1.69 1.66 1.65 1.63 7.60 7.56
20 Cost ($/yr) 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65

Reduction (tons/yr) 34.62 34.15 33.51 33.59 33.18 33.03 32.76 32.81 32.40
50 Cost ($/yr) 1257.26 797.94 797.94 797.94 755.14 755.14 755.14 755.14 755.14

Reduction (tons/yr) 55.28 44.08 43.41 43.62 42.35 42.20 41.94 42.07 41.64
100 Cost ($/yr) 1555.10 1555.10 1555.10 1555.10 1544.62 1544.62 1544.62 1544.62 1085.30

Reduction (tons/yr) 59.27 56.86 54.84 54.38 52.96 52.52 51.79 51.55 46.09
200 Cost ($/yr) 2225.54 2225.54 2225.54 2505.48 2505.48 2505.48 2505.48 2505.48 2505.48

Reduction (tons/yr) 65.63 63.22 61.17 62.14 60.81 60.37 59.62 59.42 58.40
400 Cost ($/yr) 4950.29 4031.65 4031.65 4031.65 4031.65 4031.65 4031.65 4031.65 4031.65

Reduction (tons/yr) 76.18 70.95 68.88 68.48 67.15 66.69 65.94 65.75 64.70
500 Cost ($/yr) 5323.55 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 77.01 71.78 69.71 69.33 67.99 67.53 66.78 66.60 65.56
600 Cost ($/yr) 5323.55 5323.55 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 77.01 73.56 69.71 69.33 67.99 67.53 66.78 66.60 65.56
1000 Cost ($/yr) 6242.19 6242.19 6242.19 5323.55 5323.55 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 78.27 74.69 71.91 70.32 68.92 67.53 66.78 66.60 65.56
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 79.39 75.82 73.02 72.30 70.61 70.05 69.15 68.85 67.65
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 12.09 12.09 140.42 12.09 80.99 80.99 80.99 12.09 71.52

Reduction (tons/yr) 1.63 1.67 15.64 1.63 8.83 8.93 8.88 1.68 7.74
20 Cost ($/yr) 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65

Reduction (tons/yr) 32.27 33.02 36.46 32.60 34.38 34.48 34.02 33.26 33.95
50 Cost ($/yr) 755.14 797.94 797.94 755.14 797.94 1257.26 1257.26 797.94 797.94

Reduction (tons/yr) 41.09 42.80 47.10 41.61 44.48 53.94 54.48 43.18 44.19
100 Cost ($/yr) 1544.62 1555.10 1555.10 1544.62 1555.10 1555.10 1555.10 1555.10 1555.10

Reduction (tons/yr) 52.38 54.08 59.86 52.21 56.49 57.90 58.42 54.08 54.34
200 Cost ($/yr) 2225.54 2225.54 2505.48 2225.54 2505.48 2225.54 2225.54 2225.54 2505.48

Reduction (tons/yr) 58.71 60.37 67.93 58.60 64.31 64.28 64.73 60.40 62.19
400 Cost ($/yr) 4031.65 4031.65 4031.65 4031.65 4031.65 4031.65 4950.29 4031.65 4031.65

Reduction (tons/yr) 66.28 68.01 74.51 66.25 70.70 72.03 75.12 68.10 68.60
500 Cost ($/yr) 4404.91 4404.91 4404.91 4404.91 4404.91 5323.55 5323.55 4404.91 4404.91

Reduction (tons/yr) 67.10 68.84 75.40 67.09 71.54 74.89 75.93 68.94 69.46
600 Cost ($/yr) 4404.91 4404.91 5323.55 4404.91 4404.91 5323.55 5323.55 4404.91 4404.91

Reduction (tons/yr) 67.10 68.84 77.08 67.09 71.54 74.89 75.93 68.94 69.46
1000 Cost ($/yr) 5323.55 6242.19 6242.19 5323.55 6242.19 6242.19 6242.19 6242.19 5323.55

Reduction (tons/yr) 68.06 70.93 78.30 68.01 74.01 76.07 77.16 70.88 70.42
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 70.01 72.04 79.45 69.78 75.13 77.19 78.28 71.99 72.28

Weight 
(W)

ObservationAction 
ID (a)

1 or 7

2 or 9
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Data (1000/yr) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 80.99 12.09 140.42 12.09 140.42 80.99 80.99 12.09 140.42

Reduction (tons/yr) 8.69 1.68 15.32 1.60 15.34 8.96 9.30 1.64 14.81
20 Cost ($/yr) 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65

Reduction (tons/yr) 33.61 33.29 35.68 32.33 35.84 34.45 35.19 32.91 34.37
50 Cost ($/yr) 1257.26 797.94 797.94 755.14 1257.26 1257.26 1257.26 755.14 797.94

Reduction (tons/yr) 52.69 43.11 46.14 41.36 56.64 54.40 58.85 41.95 44.69
100 Cost ($/yr) 1555.10 1555.10 1555.10 1544.62 1555.10 1555.10 1555.10 1544.62 1555.10

Reduction (tons/yr) 56.59 54.67 58.48 51.41 60.71 58.37 62.91 52.99 55.12
200 Cost ($/yr) 2225.54 2225.54 2505.48 2225.54 2505.48 2225.54 2225.54 2225.54 2505.48

Reduction (tons/yr) 62.88 60.98 66.46 57.79 68.61 64.73 69.28 59.40 63.01
400 Cost ($/yr) 4950.29 4031.65 4031.65 4031.65 4950.29 4031.65 4950.29 4031.65 4031.65

Reduction (tons/yr) 73.40 68.64 72.97 65.44 78.12 72.45 80.13 67.08 69.44
500 Cost ($/yr) 5323.55 4404.91 5323.55 4404.91 5323.55 5323.55 6242.19 4404.91 4404.91

Reduction (tons/yr) 74.22 69.47 75.96 66.27 78.97 75.40 83.13 67.91 70.31
600 Cost ($/yr) 5323.55 4404.91 5323.55 4404.91 5323.55 5323.55 6242.19 4404.91 4404.91

Reduction (tons/yr) 74.22 69.47 75.96 66.27 78.97 75.40 83.13 67.91 70.31
1000 Cost ($/yr) 5323.55 6242.19 5323.55 4404.91 6242.19 6242.19 6242.19 5323.55 5323.55

Reduction (tons/yr) 74.22 71.63 75.96 66.27 80.01 76.67 83.13 68.90 71.44
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 76.02 72.74 77.88 68.70 81.15 77.79 84.26 70.71 73.24
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 0.00 140.42 140.42 0.00 12.09 80.99 0.00 71.52 12.09

Reduction (tons/yr) 0.00 14.68 18.05 0.00 1.58 9.82 0.00 8.21 1.68
20 Cost ($/yr) 142.96 447.65 447.65 447.65 358.51 447.65 358.51 447.65 447.65

Reduction (tons/yr) 9.33 34.16 42.46 28.47 25.65 37.17 26.14 32.98 32.57
50 Cost ($/yr) 625.94 797.94 1257.26 744.80 1214.46 797.94 1085.26 797.94 797.94

Reduction (tons/yr) 25.37 44.37 66.19 36.61 50.23 47.31 47.39 43.89 42.46
100 Cost ($/yr) 1406.83 1555.10 1741.73 1544.62 1544.62 1555.10 1544.62 1555.10 1555.10

Reduction (tons/yr) 35.16 57.03 72.70 49.13 54.59 56.76 53.83 56.37 51.20
200 Cost ($/yr) 2225.54 2505.48 2505.48 2225.54 2225.54 2505.48 2225.54 2505.48 2225.54

Reduction (tons/yr) 41.67 64.85 79.22 55.11 60.68 64.63 59.46 64.44 57.53
400 Cost ($/yr) 3471.75 4031.65 4404.91 4031.65 4950.29 4031.65 3471.75 4031.65 4031.65

Reduction (tons/yr) 46.80 71.23 87.13 62.30 70.37 71.07 64.81 70.94 65.23
500 Cost ($/yr) 3471.75 4404.91 5323.55 4404.91 4950.29 4404.91 4950.29 4404.91 4404.91

Reduction (tons/yr) 46.80 72.09 89.17 63.08 70.37 71.92 68.31 71.87 66.06
600 Cost ($/yr) 4031.65 4404.91 5323.55 4404.91 6242.19 4404.91 4950.29 4404.91 4404.91

Reduction (tons/yr) 47.85 72.09 89.17 63.08 72.91 71.92 68.31 71.87 66.06
1000 Cost ($/yr) 5323.55 6242.19 6242.19 4404.91 6242.19 4404.91 6242.19 6242.19 4404.91

Reduction (tons/yr) 49.35 74.56 90.16 63.08 72.91 71.92 70.43 74.17 66.06
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 50.90 75.67 91.30 65.72 74.00 74.66 71.47 75.29 68.49

Weight 
(W)

Action 
ID (a)

Observation

3 or 8

4 or 10
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Data (1000/yr) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 80.99 80.99 80.99 80.99 80.99 12.09 80.99 12.09 12.09

Reduction (tons/yr) 9.21 8.73 8.49 9.13 8.58 1.62 8.77 1.74 1.69
20 Cost ($/yr) 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65

Reduction (tons/yr) 35.08 34.01 33.57 34.89 33.63 33.21 33.79 33.34 32.86
50 Cost ($/yr) 1257.26 755.14 755.14 1257.26 797.94 755.14 797.94 797.94 797.94

Reduction (tons/yr) 56.96 42.99 42.63 55.35 43.56 42.35 43.76 43.45 42.91
100 Cost ($/yr) 1555.10 1544.62 1544.62 1555.10 1555.10 1544.62 1555.10 1555.10 1555.10

Reduction (tons/yr) 60.99 56.84 54.86 59.35 54.93 53.25 55.79 53.35 52.08
200 Cost ($/yr) 2225.54 2225.54 2225.54 2225.54 2225.54 2505.48 2225.54 2505.48 2505.48

Reduction (tons/yr) 67.38 63.29 61.31 65.74 61.28 61.10 62.12 61.12 59.81
400 Cost ($/yr) 4950.29 4031.65 4031.65 4950.29 4031.65 4031.65 4031.65 4031.65 4031.65

Reduction (tons/yr) 78.85 71.01 69.04 76.10 69.01 67.43 69.82 67.46 66.13
500 Cost ($/yr) 5323.55 5323.55 4404.91 5323.55 4404.91 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 79.67 73.69 69.88 76.93 69.84 68.28 70.65 68.31 66.98
600 Cost ($/yr) 5323.55 5323.55 4404.91 5323.55 4404.91 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 79.67 73.69 69.88 76.93 69.84 68.28 70.65 68.31 66.98
1000 Cost ($/yr) 6242.19 6242.19 6242.19 6242.19 6242.19 5323.55 6242.19 5323.55 4404.91

Reduction (tons/yr) 81.00 74.83 72.06 78.19 71.99 69.23 73.10 69.25 66.98
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 82.13 75.95 73.18 79.32 73.11 71.05 74.22 70.98 69.40
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 80.99 140.42 140.42 12.09 12.09 12.09 12.09 12.09 12.09

Reduction (tons/yr) 9.26 15.21 15.27 1.79 1.64 1.64 1.74 1.51 1.50
20 Cost ($/yr) 447.65 447.65 447.65 358.51 447.65 447.65 142.96 142.96 142.96

Reduction (tons/yr) 35.25 35.42 35.54 26.70 30.84 30.96 9.78 9.30 9.31
50 Cost ($/yr) 1257.26 755.14 755.14 1257.26 755.14 755.14 500.80 636.28 636.28

Reduction (tons/yr) 57.53 45.21 45.45 49.08 39.35 39.56 22.89 24.44 24.46
100 Cost ($/yr) 1555.10 1544.62 1544.62 1555.10 1544.62 1544.62 957.99 947.51 947.51

Reduction (tons/yr) 61.58 56.82 56.59 52.86 48.89 48.74 30.22 28.97 29.00
200 Cost ($/yr) 2225.54 2505.48 2505.48 2225.54 2225.54 2225.54 2225.54 1766.22 1766.22

Reduction (tons/yr) 67.97 64.91 64.71 58.99 55.19 55.06 41.30 35.58 35.62
400 Cost ($/yr) 4950.29 4031.65 4031.65 4950.29 4031.65 4031.65 4390.39 3471.75 3471.75

Reduction (tons/yr) 79.28 71.38 71.20 69.63 62.67 62.58 49.31 43.07 42.96
500 Cost ($/yr) 5323.55 4404.91 4404.91 4950.29 4404.91 4404.91 4390.39 3471.75 3471.75

Reduction (tons/yr) 80.10 72.28 72.11 69.63 63.46 63.37 49.31 43.07 42.96
600 Cost ($/yr) 5323.55 4404.91 4404.91 5323.55 4404.91 4404.91 4950.29 4031.65 4031.65

Reduction (tons/yr) 80.10 72.28 72.11 70.35 63.46 63.37 50.30 44.10 43.99
1000 Cost ($/yr) 6242.19 5323.55 5323.55 6242.19 4404.91 4404.91 5323.55 4404.91 4404.91

Reduction (tons/yr) 81.46 73.30 73.11 71.45 63.46 63.37 50.80 44.61 44.51
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 7633.47 7633.47

Reduction (tons/yr) 82.59 74.84 74.51 72.57 65.74 65.53 52.54 46.19 46.10

Weight 
(W)

Action 
ID (a)

Observation

5

6 or 11
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Data (1000/yr) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 140.42 140.42 140.42 12.09 12.09 12.09 12.09 12.09 12.09

Reduction (tons/yr) 16.16 15.45 14.68 1.70 1.67 1.65 1.65 1.63 1.52
20 Cost ($/yr) 447.65 447.65 447.65 447.65 447.65 358.51 358.51 358.51 142.96

Reduction (tons/yr) 37.82 36.06 34.17 32.70 31.27 25.86 24.57 23.12 9.71
50 Cost ($/yr) 797.94 797.94 797.94 797.94 755.14 755.14 755.14 636.28 636.28

Reduction (tons/yr) 49.02 46.75 44.35 42.48 39.79 38.53 36.59 32.06 25.63
100 Cost ($/yr) 1741.73 1555.10 1555.10 1555.10 1544.62 1544.62 1544.62 947.51 947.51

Reduction (tons/yr) 64.16 58.76 55.46 52.75 50.36 48.57 46.12 37.27 30.25
200 Cost ($/yr) 2505.48 2505.48 2505.48 2225.54 2225.54 2225.54 2225.54 2225.54 2225.54

Reduction (tons/yr) 70.45 66.77 63.28 59.06 56.67 54.82 52.27 49.23 40.16
400 Cost ($/yr) 4404.91 4031.65 4031.65 4031.65 4031.65 4031.65 4031.65 3471.75 3471.75

Reduction (tons/yr) 78.00 73.27 69.66 66.73 64.18 62.21 59.51 54.93 45.54
500 Cost ($/yr) 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4031.65 4031.65 3471.75

Reduction (tons/yr) 78.00 74.17 70.52 67.55 64.96 62.97 59.51 56.28 45.54
600 Cost ($/yr) 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4031.65

Reduction (tons/yr) 78.00 74.17 70.52 67.55 64.96 62.97 60.23 56.96 46.61
1000 Cost ($/yr) 6242.19 6242.19 6242.19 6242.19 4404.91 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 80.41 76.37 72.56 69.45 64.96 62.97 60.23 56.96 47.14
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 81.53 77.49 73.67 70.56 67.89 65.79 63.00 59.58 49.42
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 140.42 140.42 12.09 12.09 140.42 140.42 140.42 12.09 140.42

Reduction (tons/yr) 17.01 16.55 1.83 1.62 17.92 16.55 17.25 1.72 16.95
20 Cost ($/yr) 447.65 447.65 447.65 358.51 447.65 447.65 447.65 358.51 447.65

Reduction (tons/yr) 39.85 38.80 32.14 25.85 42.09 38.81 40.58 26.46 39.56
50 Cost ($/yr) 797.94 1257.26 797.94 755.14 1257.26 1257.26 1257.26 797.94 797.94

Reduction (tons/yr) 51.79 59.93 41.61 38.62 64.89 60.09 63.12 39.90 51.46
100 Cost ($/yr) 1741.73 1741.73 1555.10 1544.62 1983.63 1741.73 1741.73 1555.10 1741.73

Reduction (tons/yr) 66.40 66.05 52.52 48.78 73.83 66.21 69.43 50.71 65.26
200 Cost ($/yr) 2505.48 2505.48 2225.54 2225.54 2940.92 2505.48 2505.48 2225.54 2505.48

Reduction (tons/yr) 72.80 72.40 58.83 55.01 80.16 72.55 75.87 56.88 71.73
400 Cost ($/yr) 4404.91 4404.91 4031.65 4031.65 4404.91 4404.91 4404.91 4031.65 4404.91

Reduction (tons/yr) 80.57 80.02 66.44 62.41 85.93 80.17 83.63 64.28 79.54
500 Cost ($/yr) 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 80.57 80.02 67.22 63.17 85.93 80.17 83.63 65.03 79.54
600 Cost ($/yr) 4404.91 5323.55 5323.55 4404.91 5323.55 5323.55 5323.55 4404.91 4404.91

Reduction (tons/yr) 80.57 81.57 68.78 63.17 87.50 81.78 85.27 65.03 79.54
1000 Cost ($/yr) 5323.55 6242.19 6242.19 4404.91 6242.19 6242.19 6242.19 6242.19 5323.55

Reduction (tons/yr) 81.73 82.81 69.80 63.17 88.89 83.04 86.60 67.47 80.67
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 83.63 83.94 70.94 65.91 90.04 84.18 87.74 68.58 82.59

Weight 
(W)

Action 
ID (a)

Observation

13 or 14

12
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Data (1000/yr) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 0.00 71.52 80.99 12.09 80.99 140.42 80.99 71.52 12.09

Reduction (tons/yr) 0.00 7.63 9.23 1.24 8.57 16.43 8.84 8.83 1.72
20 Cost ($/yr) 358.51 447.65 447.65 142.96 447.65 447.65 358.51 447.65 142.96

Reduction (tons/yr) 24.13 32.88 34.04 10.10 33.67 39.12 29.44 34.99 11.60
50 Cost ($/yr) 744.80 755.14 797.94 636.28 797.94 797.94 1214.46 797.94 679.08

Reduction (tons/yr) 35.82 42.13 44.11 27.20 43.68 49.48 52.41 46.72 31.69
100 Cost ($/yr) 1544.62 1544.62 1797.01 1406.83 1555.10 1095.78 1544.62 1741.73 957.99

Reduction (tons/yr) 44.60 55.21 58.57 38.36 54.52 53.83 56.92 60.36 36.15
200 Cost ($/yr) 2225.54 2505.48 2708.67 2225.54 2505.48 2505.48 2225.54 2505.48 2225.54

Reduction (tons/yr) 50.53 63.11 65.05 45.22 62.27 65.94 62.90 66.78 46.72
400 Cost ($/yr) 4031.65 4031.65 4031.65 3471.75 4031.65 4031.65 3471.75 4404.91 3471.75

Reduction (tons/yr) 57.57 69.48 70.42 50.69 68.60 72.46 68.56 74.51 52.46
500 Cost ($/yr) 4031.65 4404.91 4404.91 4031.65 4404.91 4404.91 4031.65 4404.91 4031.65

Reduction (tons/yr) 57.57 70.33 71.23 51.93 69.44 73.33 69.95 74.51 53.78
600 Cost ($/yr) 4404.91 4404.91 6242.19 4031.65 4404.91 4404.91 5323.55 4404.91 4404.91

Reduction (tons/yr) 58.28 70.33 74.67 51.93 69.44 73.33 72.18 74.51 54.44
1000 Cost ($/yr) 4404.91 6242.19 6242.19 4404.91 6242.19 4404.91 6242.19 6242.19 4404.91

Reduction (tons/yr) 58.28 72.72 74.67 52.55 71.43 73.33 73.71 76.56 54.44
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 60.21 73.83 75.83 55.27 72.54 75.74 74.79 77.70 56.69
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 12.09 12.09 12.09 12.09 12.09 140.42 140.42 140.42 140.42

Reduction (tons/yr) 1.57 1.62 1.63 1.65 1.69 14.85 15.04 15.60 16.48
20 Cost ($/yr) 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65

Reduction (tons/yr) 31.32 32.25 32.51 32.83 33.50 34.51 35.00 36.35 38.61
50 Cost ($/yr) 755.14 755.14 755.14 755.14 797.94 797.94 797.94 797.94 1257.26

Reduction (tons/yr) 39.95 41.10 41.43 41.83 43.52 44.80 45.37 47.01 62.05
100 Cost ($/yr) 1544.62 1544.62 1544.62 1544.62 1555.10 1555.10 1555.10 1555.10 2038.91

Reduction (tons/yr) 50.51 52.01 52.50 52.97 54.16 55.88 56.90 59.46 71.26
200 Cost ($/yr) 2225.54 2225.54 2225.54 2225.54 2505.48 2505.48 2505.48 2505.48 4342.69

Reduction (tons/yr) 56.76 58.35 58.86 59.37 61.92 63.76 64.83 67.54 84.04
400 Cost ($/yr) 4031.65 4031.65 4031.65 4031.65 4031.65 4031.65 4031.65 4031.65 4950.29

Reduction (tons/yr) 64.23 65.94 66.48 67.04 68.27 70.20 71.31 74.12 86.09
500 Cost ($/yr) 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 5323.55

Reduction (tons/yr) 65.02 66.75 67.31 67.86 69.11 71.06 72.18 75.01 87.00
600 Cost ($/yr) 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 5323.55 5323.55

Reduction (tons/yr) 65.02 66.75 67.31 67.86 69.11 71.06 72.18 76.64 87.00
1000 Cost ($/yr) 4404.91 5323.55 5323.55 5323.55 5323.55 6242.19 6242.19 6242.19 6242.19

Reduction (tons/yr) 65.02 67.68 68.26 68.81 70.10 73.11 74.44 77.81 88.48
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.12

Reduction (tons/yr) 67.60 69.48 70.10 70.69 72.06 74.23 75.58 78.95 89.65

Weight 
(W)

Action 
ID (a)

Observation

15

16 or 25
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Data (1000/yr) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 12.09 80.99 80.99 12.09 12.09 140.42 12.09 12.09 140.42

Reduction (tons/yr) 1.63 8.60 9.40 1.60 1.67 15.67 1.58 1.65 15.66
20 Cost ($/yr) 358.51 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65

Reduction (tons/yr) 27.28 32.91 35.75 31.86 33.21 36.46 31.69 33.01 36.37
50 Cost ($/yr) 1214.46 1257.26 1257.26 755.14 797.94 797.94 755.14 755.14 797.94

Reduction (tons/yr) 50.18 53.10 58.14 40.60 43.15 47.23 40.50 42.15 47.27
100 Cost ($/yr) 1544.62 1555.10 1555.10 1544.62 1555.10 1555.10 1544.62 1544.62 1555.10

Reduction (tons/yr) 54.67 56.96 62.22 51.50 53.67 58.98 50.64 52.65 57.87
200 Cost ($/yr) 2225.54 2225.54 2225.54 2225.54 2225.54 2505.48 2225.54 2505.48 2505.48

Reduction (tons/yr) 60.87 63.15 68.66 57.80 60.00 67.11 56.94 60.49 66.04
400 Cost ($/yr) 4031.65 4950.29 4950.29 4031.65 4031.65 4031.65 4031.65 4031.65 4031.65

Reduction (tons/yr) 68.21 73.32 80.42 65.33 67.71 73.72 64.49 66.81 72.67
500 Cost ($/yr) 5323.55 5323.55 5323.55 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 71.17 74.10 81.26 66.13 68.55 74.62 65.30 67.65 73.59
600 Cost ($/yr) 5323.55 5323.55 5323.55 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 71.17 74.10 81.26 66.13 68.55 74.62 65.30 67.65 73.59
1000 Cost ($/yr) 6242.19 6242.19 6242.19 5323.55 5323.55 6242.19 4404.91 5323.55 5323.55

Reduction (tons/yr) 72.29 75.28 82.63 67.05 69.52 76.98 65.30 68.58 74.65
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 73.38 76.39 83.77 68.80 71.41 78.13 67.72 70.24 76.60
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 80.99 80.99 140.42 12.09 12.09 140.42 12.09 12.09 140.42

Reduction (tons/yr) 8.60 9.00 16.02 1.60 1.66 15.56 1.57 1.64 15.48
20 Cost ($/yr) 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65

Reduction (tons/yr) 33.02 34.45 37.60 31.77 33.03 36.24 31.43 32.86 35.97
50 Cost ($/yr) 1257.26 1257.26 1257.26 755.14 755.14 797.94 755.14 755.14 797.94

Reduction (tons/yr) 53.10 55.47 61.67 40.53 42.08 46.91 40.20 41.99 46.70
100 Cost ($/yr) 1555.10 1555.10 2038.91 1544.62 1544.62 1555.10 1544.62 1544.62 1555.10

Reduction (tons/yr) 56.97 59.45 70.77 51.08 53.17 59.02 49.99 52.25 57.73
200 Cost ($/yr) 2225.54 2225.54 3376.35 2225.54 2225.54 2505.48 2225.54 2505.48 2505.48

Reduction (tons/yr) 63.18 65.79 78.33 57.38 59.59 67.10 56.27 60.07 65.83
400 Cost ($/yr) 4950.29 4950.29 4950.29 4031.65 4031.65 4031.65 4031.65 4031.65 4031.65

Reduction (tons/yr) 74.25 77.14 84.46 64.91 67.28 73.67 63.80 66.38 72.41
500 Cost ($/yr) 5323.55 5323.55 6242.19 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 75.04 77.96 87.33 65.71 68.11 74.57 64.60 67.22 73.31
600 Cost ($/yr) 5323.55 5323.55 6242.19 4404.91 4404.91 5323.55 4404.91 4404.91 5323.55

Reduction (tons/yr) 75.04 77.96 87.33 65.71 68.11 76.22 64.60 67.22 74.88
1000 Cost ($/yr) 5323.55 6242.19 6242.19 4404.91 4404.91 5323.55 4404.91 4404.91 5323.55

Reduction (tons/yr) 75.04 78.95 87.33 65.71 68.11 76.22 64.60 67.22 74.88
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 76.95 80.07 88.49 68.21 70.83 78.27 66.82 69.64 76.62

Action 
ID (a)

ObservationWeight 
(W)

17 or 27

18 or 26
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Data (1000/yr) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 140.42 140.42 140.42 12.09 12.09 140.42 12.09 12.09 12.09

Reduction (tons/yr) 15.18 16.14 16.72 1.54 1.66 15.30 1.47 1.61 1.76
20 Cost ($/yr) 447.65 447.65 447.65 447.65 447.65 447.65 142.96 358.51 358.51

Reduction (tons/yr) 35.47 37.73 39.15 31.67 33.49 35.59 11.18 23.00 24.44
50 Cost ($/yr) 755.14 797.94 1257.26 755.14 755.14 797.94 636.28 636.28 797.94

Reduction (tons/yr) 45.34 48.97 60.26 40.48 42.69 46.11 30.03 31.96 37.13
100 Cost ($/yr) 1544.62 1741.73 1741.73 1544.62 1544.62 1555.10 947.51 947.51 1555.10

Reduction (tons/yr) 57.53 63.25 66.44 51.02 53.98 57.75 34.98 37.15 45.74
200 Cost ($/yr) 2505.48 2505.48 2505.48 2225.54 2505.48 2505.48 2225.54 2225.54 2225.54

Reduction (tons/yr) 65.55 69.54 72.86 57.28 61.85 65.76 46.22 48.99 51.85
400 Cost ($/yr) 4031.65 4404.91 4404.91 4031.65 4031.65 4031.65 3471.75 3471.75 4031.65

Reduction (tons/yr) 71.93 77.11 80.55 64.78 68.19 72.28 51.74 54.69 59.12
500 Cost ($/yr) 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4031.65 4031.65 4031.65

Reduction (tons/yr) 72.85 77.11 80.55 65.59 69.03 73.16 53.03 56.04 59.12
600 Cost ($/yr) 4404.91 4404.91 5323.55 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 72.85 77.11 82.20 65.59 69.03 73.16 53.67 56.72 59.82
1000 Cost ($/yr) 5323.55 5323.55 6242.19 4404.91 5323.55 6242.19 4404.91 4404.91 5323.55

Reduction (tons/yr) 73.85 78.23 83.48 65.59 70.01 75.69 53.67 56.72 60.96
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 75.45 80.22 84.62 68.01 71.89 76.83 55.79 59.18 62.93
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 12.09 140.42 140.42 140.42 12.09 80.99 80.99 140.42 71.52

Reduction (tons/yr) 1.48 15.08 16.32 15.90 1.70 8.86 8.65 15.62 8.04
20 Cost ($/yr) 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65

Reduction (tons/yr) 30.06 35.14 38.21 36.70 33.38 33.85 33.15 36.41 34.31
50 Cost ($/yr) 755.14 797.94 1257.26 797.94 797.94 1257.26 1257.26 797.94 797.94

Reduction (tons/yr) 38.61 45.43 60.25 48.15 43.17 54.34 52.88 47.04 45.01
100 Cost ($/yr) 1085.30 1555.10 2038.91 1524.31 1555.10 1555.10 1555.10 1555.10 1095.78

Reduction (tons/yr) 42.84 57.38 69.42 56.57 54.84 58.28 56.76 59.45 48.88
200 Cost ($/yr) 2225.54 2505.48 3424.05 2940.92 2225.54 2225.54 2225.54 2505.48 2505.48

Reduction (tons/yr) 53.35 65.29 77.37 66.86 61.14 64.56 62.99 67.52 61.07
400 Cost ($/yr) 4031.65 4031.65 4950.29 4404.91 4031.65 4950.29 4031.65 4031.65 4031.65

Reduction (tons/yr) 60.73 71.76 81.97 72.41 68.80 74.64 70.52 74.10 67.59
500 Cost ($/yr) 4404.91 4404.91 5323.55 4404.91 4404.91 5323.55 5323.55 4404.91 4404.91

Reduction (tons/yr) 61.52 72.62 82.87 72.41 69.62 75.44 73.48 74.99 68.50
600 Cost ($/yr) 4404.91 4404.91 5323.55 4404.91 4404.91 5323.55 5323.55 4404.91 4404.91

Reduction (tons/yr) 61.52 72.62 82.87 72.41 69.62 75.44 73.48 74.99 68.50
1000 Cost ($/yr) 4404.91 6242.19 6242.19 4404.91 6242.19 6242.19 6242.19 6242.19 4404.91

Reduction (tons/yr) 61.52 74.89 84.28 72.41 71.73 76.66 74.64 77.54 68.50
5000 Cost ($/yr) 7633.47 8552.11 8552.11 7633.47 8552.11 8552.11 8552.11 8552.11 7633.47

 63.33 76.03 85.45 74.43 72.85 77.78 75.75 78.69 70.45

Action 
ID (a)

ObservationWeight 
(W)

19 or 28

20 or 30
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Data (1000/yr) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 12.09 140.42 140.42 140.42 12.09 80.99 80.99 140.42 71.52

Reduction (tons/yr) 1.41 14.99 16.93 15.48 1.69 9.01 8.76 15.54 7.88
20 Cost ($/yr) 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65

Reduction (tons/yr) 29.28 34.90 39.65 35.80 33.03 34.57 33.65 36.33 33.48
50 Cost ($/yr) 755.14 797.94 1257.26 797.94 797.94 1257.26 1257.26 1257.26 755.14

Reduction (tons/yr) 37.72 45.16 63.30 46.80 42.83 54.86 52.66 56.22 43.10
100 Cost ($/yr) 1085.30 1555.10 2038.91 1555.10 1555.10 1555.10 1555.10 1555.10 1085.30

Reduction (tons/yr) 41.84 56.57 72.65 55.56 53.46 58.85 56.57 60.33 47.66
200 Cost ($/yr) 2225.54 2505.48 3471.75 2505.48 2225.54 2225.54 2225.54 2505.48 2505.48

Reduction (tons/yr) 51.61 64.47 80.97 63.76 59.76 65.22 62.87 68.35 59.49
400 Cost ($/yr) 4031.65 4031.65 4950.29 4031.65 4031.65 4950.29 4950.29 4031.65 4031.65

Reduction (tons/yr) 58.92 70.93 85.23 70.40 67.41 75.77 73.37 74.89 65.93
500 Cost ($/yr) 4404.91 4404.91 6242.19 4404.91 4404.91 5323.55 5323.55 5323.55 4404.91

Reduction (tons/yr) 59.70 71.79 88.31 71.33 68.23 76.60 74.18 77.70 66.82
600 Cost ($/yr) 4404.91 4404.91 6242.19 4404.91 4404.91 5323.55 5323.55 5323.55 4404.91

Reduction (tons/yr) 59.70 71.79 88.31 71.33 68.23 76.60 74.18 77.70 66.82
1000 Cost ($/yr) 4404.91 5323.55 6242.19 5323.55 5323.55 5323.55 5323.55 6242.19 4404.91

Reduction (tons/yr) 59.70 72.98 88.31 72.80 69.43 76.60 74.18 78.92 66.82
5000 Cost ($/yr) 7633.47 8552.11 8552.11 7633.47 8552.11 8552.11 8552.11 8552.11 7633.47

Reduction (tons/yr) 61.11 74.90 89.50 73.94 71.03 78.60 75.85 80.07 68.52
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 12.09 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 2.64 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 0.00 140.42 355.97 71.52 12.09 140.42 80.99 71.52 140.42

Reduction (tons/yr) 0.00 14.75 43.05 7.70 1.78 16.05 8.48 9.38 15.03
20 Cost ($/yr) 142.96 447.65 447.65 447.65 358.51 447.65 358.51 447.65 447.65

Reduction (tons/yr) 9.44 34.20 50.09 33.78 24.83 37.90 27.93 34.72 34.77
50 Cost ($/yr) 631.96 797.94 1257.26 755.14 1257.26 797.94 1095.60 797.94 797.94

Reduction (tons/yr) 25.45 44.61 77.69 43.31 48.61 48.36 47.88 47.04 45.23
100 Cost ($/yr) 947.51 1555.10 2225.54 1544.62 1555.10 1095.78 1544.62 1983.63 1579.59

Reduction (tons/yr) 29.87 55.83 90.21 56.13 52.17 52.60 54.49 62.40 54.12
200 Cost ($/yr) 2225.54 2505.48 3471.75 2505.48 2225.54 2505.48 2225.54 2940.92 3376.35

Reduction (tons/yr) 40.00 63.75 97.29 64.19 58.19 64.55 60.24 68.71 65.82
400 Cost ($/yr) 3471.75 4031.65 6242.19 4031.65 4950.29 4031.65 3471.75 4404.91 4031.65

Reduction (tons/yr) 45.17 70.19 106.23 70.67 67.74 71.10 65.68 74.41 68.04
500 Cost ($/yr) 3471.75 4404.91 6242.19 4404.91 4950.29 4404.91 4950.29 4404.91 4404.91

Reduction (tons/yr) 45.17 71.07 106.23 71.55 67.74 71.97 68.98 74.41 68.91
600 Cost ($/yr) 4031.65 4404.91 6242.19 5323.55 5323.55 4404.91 5323.55 4404.91 4404.91

Reduction (tons/yr) 46.25 71.07 106.23 73.08 68.47 71.97 69.62 74.41 68.91
1000 Cost ($/yr) 4404.91 5323.55 6242.19 5323.55 6242.19 4404.91 6242.19 5323.55 4404.91

Reduction (tons/yr) 46.79 72.07 106.23 73.08 69.55 71.97 70.62 75.46 68.91
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 48.63 74.03 107.45 75.04 70.63 74.21 71.67 77.48 71.46

Action 
ID (a)

ObservationWeight 
(W)

21 or 29

22 or 31
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Data (1000/yr) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 12.09 12.09 80.99 12.09 71.52 140.42 80.99 140.42 140.42

Reduction (tons/yr) 1.54 1.54 8.70 1.69 7.64 14.91 8.84 15.09 15.73
20 Cost ($/yr) 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65

Reduction (tons/yr) 31.18 32.30 33.56 32.35 33.55 34.87 33.61 35.14 36.56
50 Cost ($/yr) 755.14 755.14 1214.46 797.94 755.14 797.94 1257.26 797.94 797.94

Reduction (tons/yr) 39.85 41.08 53.42 42.02 42.80 45.00 54.84 45.37 47.40
100 Cost ($/yr) 1544.62 1544.62 1544.62 1555.10 1544.62 1555.10 1555.10 1555.10 1555.10

Reduction (tons/yr) 49.95 52.75 58.07 52.77 53.75 57.91 58.76 58.45 59.15
200 Cost ($/yr) 2225.54 2225.54 3144.18 2225.54 2505.48 2505.48 3144.18 2505.48 2505.48

Reduction (tons/yr) 56.20 59.08 69.67 59.00 61.65 65.77 70.60 66.32 67.29
400 Cost ($/yr) 4031.65 4031.65 4950.29 4031.65 4031.65 4950.29 4950.29 4950.29 4031.65

Reduction (tons/yr) 63.68 66.65 77.25 66.57 68.02 74.93 78.16 75.38 73.91
500 Cost ($/yr) 4404.91 4404.91 5323.55 4404.91 4404.91 5323.55 5323.55 5323.55 4404.91

Reduction (tons/yr) 64.47 67.46 78.05 67.38 68.87 75.79 78.95 76.23 74.82
600 Cost ($/yr) 4404.91 5323.55 5323.55 4404.91 4404.91 5323.55 5323.55 5323.55 4404.91

Reduction (tons/yr) 64.47 69.15 78.05 67.38 68.87 75.79 78.95 76.23 74.82
1000 Cost ($/yr) 4404.91 5323.55 5323.55 5323.55 5323.55 5323.55 5323.55 5323.55 6242.19

Reduction (tons/yr) 64.47 69.15 78.05 68.74 69.80 75.79 78.95 76.23 77.10
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 66.81 70.67 79.68 70.45 71.56 77.50 80.78 78.17 78.24
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 12.09 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 2.49 0.00 0.00
10 Cost ($/yr) 12.09 12.09 12.09 140.42 140.42 80.99 355.97 140.42 140.42

Reduction (tons/yr) 1.57 1.45 1.42 19.61 16.88 8.75 48.61 21.27 18.01
20 Cost ($/yr) 447.65 358.51 142.96 447.65 447.65 447.65 625.94 625.94 447.65

Reduction (tons/yr) 30.96 23.16 10.88 45.62 39.26 33.92 68.19 58.45 41.95
50 Cost ($/yr) 755.14 636.28 636.28 797.94 797.94 797.94 1395.06 1257.26 797.94

Reduction (tons/yr) 39.47 32.01 29.29 59.46 51.05 43.87 88.57 73.83 54.39
100 Cost ($/yr) 1544.62 1544.62 1406.83 1983.63 1741.73 1555.10 2225.54 2225.54 2225.54

Reduction (tons/yr) 50.01 44.32 41.50 77.42 65.00 55.70 98.91 86.14 74.74
200 Cost ($/yr) 2225.54 2225.54 2225.54 2940.92 2505.48 2225.54 4031.65 3471.75 3471.75

Reduction (tons/yr) 56.25 50.30 48.62 83.96 71.44 62.13 109.42 93.19 81.38
400 Cost ($/yr) 4031.65 3471.75 4390.39 4404.91 4404.91 4031.65 4404.91 4404.91 4404.91

Reduction (tons/yr) 63.68 55.96 57.26 90.13 79.21 69.93 110.94 97.02 84.52
500 Cost ($/yr) 4404.91 4031.65 4950.29 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 64.46 57.29 58.43 90.13 79.21 70.76 110.94 97.02 84.52
600 Cost ($/yr) 4404.91 4404.91 4950.29 4404.91 4404.91 5323.55 5323.55 4404.91 4404.91

Reduction (tons/yr) 64.46 57.96 58.43 90.13 79.21 72.34 112.58 97.02 84.52
1000 Cost ($/yr) 4404.91 5323.55 5323.55 5323.55 5323.55 6242.19 5323.55 5323.55 6242.19

Reduction (tons/yr) 64.46 58.95 59.01 91.44 80.37 73.41 112.58 98.49 87.09
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 67.06 60.84 60.91 93.17 82.30 74.55 114.33 100.41 88.27

Action 
ID (a)

ObservationWeight 
(W)

23

24 or 32
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Data (1000/yr) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.09

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.66
10 Cost ($/yr) 12.09 12.09 12.09 140.42 140.42 140.42 140.42 140.42 355.97

Reduction (tons/yr) 1.47 1.57 1.63 14.56 15.06 15.61 16.62 18.03 49.69
20 Cost ($/yr) 358.51 447.65 447.65 447.65 447.65 447.65 447.65 447.65 625.94

Reduction (tons/yr) 24.14 30.67 32.06 33.85 35.01 36.29 38.69 42.01 68.69
50 Cost ($/yr) 755.14 755.14 755.14 797.94 797.94 797.94 797.94 797.94 1395.06

Reduction (tons/yr) 35.97 39.03 40.80 43.95 45.44 47.12 50.21 54.50 91.40
100 Cost ($/yr) 1544.62 1544.62 1544.62 1555.10 1555.10 1555.10 1741.73 2225.54 2225.54

Reduction (tons/yr) 46.10 49.80 51.97 54.90 56.71 58.77 64.51 74.76 101.94
200 Cost ($/yr) 2225.54 2225.54 2225.54 2505.48 2505.48 2505.48 2505.48 3376.35 4031.65

Reduction (tons/yr) 52.13 56.03 58.31 62.70 64.64 66.86 70.93 80.90 112.48
400 Cost ($/yr) 4031.65 4031.65 4031.65 4031.65 4031.65 4031.65 4404.91 4404.91 4404.91

Reduction (tons/yr) 59.23 63.43 65.89 69.06 71.09 73.41 78.63 84.55 113.94
500 Cost ($/yr) 4031.65 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 6242.19

Reduction (tons/yr) 59.23 64.20 66.69 69.91 71.97 74.32 78.63 84.55 117.96
600 Cost ($/yr) 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 6242.19

Reduction (tons/yr) 59.94 64.20 66.69 69.91 71.97 74.32 78.63 84.55 117.96
1000 Cost ($/yr) 4404.91 4404.91 6242.19 6242.19 6242.19 6242.19 6242.19 6242.19 6242.19

Reduction (tons/yr) 59.94 64.20 68.58 71.94 74.08 76.51 81.00 87.16 117.96
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 62.68 67.10 69.69 73.06 75.20 77.64 82.14 88.32 119.19
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 12.09 80.99 140.42 12.09 140.42 140.42 12.09 140.42 140.42

Reduction (tons/yr) 1.48 8.88 16.29 1.44 14.85 16.80 1.42 14.97 16.99
20 Cost ($/yr) 358.51 447.65 447.65 358.51 447.65 447.65 358.51 447.65 447.65

Reduction (tons/yr) 23.36 33.83 38.17 23.49 34.52 39.12 23.38 34.68 39.43
50 Cost ($/yr) 636.28 1257.26 1257.26 755.14 797.94 797.94 755.14 797.94 797.94

Reduction (tons/yr) 31.79 54.53 61.72 35.00 44.81 50.75 35.17 45.28 51.44
100 Cost ($/yr) 1544.62 1555.10 1555.10 1544.62 1555.10 1741.73 1085.30 1555.10 1741.73

Reduction (tons/yr) 46.99 58.48 65.96 44.82 55.84 64.92 39.24 54.65 63.88
200 Cost ($/yr) 2225.54 2225.54 2505.48 2225.54 2505.48 2505.48 2225.54 2505.48 2505.48

Reduction (tons/yr) 52.89 64.78 74.08 50.80 63.71 71.36 49.71 62.63 70.38
400 Cost ($/yr) 4390.39 4950.29 4950.29 3471.75 4031.65 4404.91 4031.65 4031.65 4404.91

Reduction (tons/yr) 61.45 75.80 84.31 56.45 70.14 79.10 56.79 69.10 78.22
500 Cost ($/yr) 4950.29 5323.55 5323.55 4031.65 4404.91 4404.91 4031.65 4404.91 4404.91

Reduction (tons/yr) 62.72 76.60 85.21 57.83 71.00 79.10 56.79 70.00 78.22
600 Cost ($/yr) 5323.55 5323.55 5323.55 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 63.35 76.60 85.21 58.52 71.00 79.10 57.49 70.00 78.22
1000 Cost ($/yr) 5323.55 6242.19 6242.19 4404.91 5323.55 5323.55 4404.91 4404.92 5323.55

Reduction (tons/yr) 63.35 77.83 86.68 58.52 72.05 80.30 57.49 70.00 79.28
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 7633.48 8552.11 8552.11

Reduction (tons/yr) 65.33 78.96 87.83 61.01 73.97 82.35 59.29 72.28 80.73

Action 
ID (a)

ObservationWeight 
(W)

33

34 or 35
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Data (1000/yr) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 12.09 12.09 140.42 12.09 12.09 140.42 12.09 12.09 12.09

Reduction (tons/yr) 1.24 1.47 17.20 1.29 1.56 16.09 1.35 1.64 2.15
20 Cost ($/yr) 358.51 447.65 447.65 142.96 358.51 447.65 142.96 358.51 447.65

Reduction (tons/yr) 23.26 32.27 40.19 10.83 25.19 37.17 9.79 22.57 33.43
50 Cost ($/yr) 755.14 755.14 797.94 636.28 755.14 797.94 636.28 636.28 797.94

Reduction (tons/yr) 34.74 41.07 52.08 29.35 37.56 48.34 26.16 31.30 43.64
100 Cost ($/yr) 1544.62 1544.62 1741.73 1406.83 1544.62 1797.01 947.51 947.51 1797.01

Reduction (tons/yr) 45.80 53.54 67.38 39.35 47.76 61.48 30.72 36.47 54.82
200 Cost ($/yr) 2225.54 2225.54 2505.48 2225.54 2225.54 2940.92 2225.54 2225.54 2660.97

Reduction (tons/yr) 51.67 59.83 73.86 46.36 53.93 69.49 41.29 48.11 61.08
400 Cost ($/yr) 3471.75 4031.65 4404.91 3471.75 4031.65 4031.65 3471.75 3471.75 4031.65

Reduction (tons/yr) 57.23 67.37 81.67 51.81 61.23 73.99 46.64 53.80 66.76
500 Cost ($/yr) 4031.65 4404.91 4404.91 4031.65 4031.65 4404.91 3471.75 4031.65 4404.91

Reduction (tons/yr) 58.60 68.19 81.67 53.06 61.23 74.92 46.64 55.11 67.59
600 Cost ($/yr) 4404.91 4404.91 4404.91 4031.65 4404.91 4404.91 4031.65 4404.91 4404.91

Reduction (tons/yr) 59.29 68.19 81.67 53.06 61.97 74.92 47.74 55.77 67.59
1000 Cost ($/yr) 4404.91 6242.19 6242.19 4404.91 4404.91 6242.19 4404.91 4404.91 6242.19

Reduction (tons/yr) 59.29 70.18 84.19 53.68 61.97 77.10 48.29 55.77 69.50
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 61.95 71.27 85.34 56.08 64.75 78.26 50.54 58.35 70.66
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 12.09 80.99 140.42 140.42 12.09 80.99 12.09 140.42 12.09

Reduction (tons/yr) 1.53 8.62 17.72 17.75 1.66 8.74 1.67 17.45 1.70
20 Cost ($/yr) 358.51 447.65 447.65 447.65 358.51 358.51 358.51 447.65 447.65

Reduction (tons/yr) 25.45 33.06 41.67 41.19 26.78 28.34 26.23 40.81 33.65
50 Cost ($/yr) 755.14 797.94 1257.26 797.94 755.14 1257.26 1095.60 1257.26 797.94

Reduction (tons/yr) 37.85 42.55 67.51 53.70 39.15 54.13 46.91 63.04 43.74
100 Cost ($/yr) 1544.62 1555.10 2225.54 2225.54 1544.62 1555.10 1544.62 2225.54 1555.10

Reduction (tons/yr) 48.62 55.53 78.92 72.31 52.09 58.04 53.78 74.26 54.15
200 Cost ($/yr) 2225.54 2225.54 3471.75 3376.35 2225.54 2225.54 2225.54 3376.35 2505.48

Reduction (tons/yr) 54.75 61.80 85.47 78.44 58.35 64.23 59.90 80.29 61.97
400 Cost ($/yr) 4031.65 4031.65 5323.55 4404.91 4031.65 4950.29 4390.39 4404.91 4031.65

Reduction (tons/yr) 62.01 69.37 92.27 82.09 65.73 75.37 69.34 83.73 68.37
500 Cost ($/yr) 4031.65 4404.91 5323.55 4404.91 4031.65 4950.29 4950.29 4404.91 4404.91

Reduction (tons/yr) 62.01 70.16 92.27 82.09 65.73 75.37 70.69 83.73 69.22
600 Cost ($/yr) 4404.91 4404.91 6242.19 4404.91 4404.91 5323.55 5323.55 5323.55 4404.91

Reduction (tons/yr) 62.75 70.16 93.99 82.09 66.47 76.10 71.37 85.28 69.22
1000 Cost ($/yr) 4404.91 6242.19 6242.19 5323.55 6242.19 6242.19 6242.19 6242.19 5323.55

Reduction (tons/yr) 62.75 72.79 93.99 83.24 69.02 77.42 72.54 86.68 70.21
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 65.59 73.91 95.17 85.25 70.14 78.54 73.65 87.84 72.19

Action 
ID (a)

ObservationWeight 
(W)

37 or 38

36
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Data (1000/yr) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 12.09 140.42 140.42 140.42 12.09 140.42 80.99 140.42 140.42

Reduction (tons/yr) 1.55 17.52 20.75 18.18 1.90 18.06 8.88 18.85 17.82
20 Cost ($/yr) 447.65 447.65 625.94 447.65 447.65 447.65 447.65 447.65 447.65

Reduction (tons/yr) 30.80 40.65 56.60 41.74 33.58 42.24 34.17 42.25 41.31
50 Cost ($/yr) 755.14 797.94 1257.26 797.94 1257.26 797.94 1214.46 797.94 797.94

Reduction (tons/yr) 39.27 52.89 73.80 55.42 53.60 54.43 52.99 57.01 53.73
100 Cost ($/yr) 1544.62 2225.54 2225.54 1983.63 1555.10 2225.54 1544.62 2225.54 2225.54

Reduction (tons/yr) 49.73 72.35 86.14 73.01 57.47 72.31 57.63 76.85 71.60
200 Cost ($/yr) 2225.54 3424.05 3471.75 2940.92 2505.48 3471.75 2225.54 3471.75 3471.75

Reduction (tons/yr) 55.97 78.71 93.33 79.59 65.30 78.94 63.90 83.93 78.26
400 Cost ($/yr) 4031.65 4404.91 4404.91 4404.91 4031.65 4404.91 4031.65 4404.91 4404.91

Reduction (tons/yr) 63.41 82.04 97.17 85.78 71.71 82.01 71.37 87.69 81.40
500 Cost ($/yr) 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 64.19 82.04 97.17 85.78 72.56 82.01 72.16 87.69 81.40
600 Cost ($/yr) 4404.91 4404.91 6242.19 4404.91 6242.19 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 64.19 82.04 100.29 85.78 75.76 82.01 72.16 87.69 81.40
1000 Cost ($/yr) 4404.91 6242.19 6242.19 6242.19 6242.19 6242.19 6242.19 6242.19 6242.19

Reduction (tons/yr) 64.19 84.43 100.29 87.67 75.76 83.97 75.05 89.81 83.31
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 66.95 85.59 101.50 88.83 76.89 85.15 76.15 91.00 84.48
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 12.09 12.09 71.52 12.09 80.99 140.42 80.99 80.99 140.42

Reduction (tons/yr) 1.56 1.61 7.73 1.65 8.64 14.91 8.73 9.06 15.33
20 Cost ($/yr) 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65

Reduction (tons/yr) 31.40 32.60 33.33 32.65 33.89 34.66 33.71 34.99 35.78
50 Cost ($/yr) 755.14 755.14 755.14 755.14 797.94 797.94 1257.26 1257.26 1257.26

Reduction (tons/yr) 40.25 41.80 42.75 41.51 43.98 44.98 52.86 54.40 55.36
100 Cost ($/yr) 1544.62 1544.62 1544.62 1544.62 1555.10 1555.10 1555.10 1555.10 1555.10

Reduction (tons/yr) 49.52 51.11 52.10 53.08 54.81 55.81 56.77 58.41 59.42
200 Cost ($/yr) 2225.54 2505.48 2505.48 2225.54 2505.48 2505.48 2225.54 2505.48 2505.48

Reduction (tons/yr) 55.81 58.95 60.05 59.44 62.61 63.72 63.07 66.25 67.37
400 Cost ($/yr) 4031.65 4031.65 4031.65 4031.65 4031.65 4031.65 4031.65 4031.65 4031.65

Reduction (tons/yr) 63.36 65.26 66.44 67.05 68.98 70.17 70.72 72.67 73.87
500 Cost ($/yr) 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 5323.55 5323.55 5323.55

Reduction (tons/yr) 64.18 66.11 67.31 67.86 69.83 71.04 73.41 75.41 76.64
600 Cost ($/yr) 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91 5323.55 5323.55 5323.55

Reduction (tons/yr) 64.18 66.11 67.31 67.86 69.83 71.04 73.41 75.41 76.64
1000 Cost ($/yr) 4404.91 4404.92 4404.91 5323.55 5323.55 5323.55 6242.19 6242.19 6242.19

Reduction (tons/yr) 64.18 66.11 67.31 68.84 70.84 72.07 74.56 76.59 77.85
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 66.29 68.27 69.49 70.74 72.76 74.00 75.68 77.73 78.99

Action 
ID (a)

ObservationWeight 
(W)

39

40 or 43
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Data (1000/yr) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 12.09 140.42 140.42 80.99 140.42 140.42 140.42 140.42 80.99

Reduction (tons/yr) 1.61 15.12 17.37 9.09 15.52 15.83 15.79 14.85 9.93
20 Cost ($/yr) 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65

Reduction (tons/yr) 32.37 35.35 40.92 34.86 36.34 36.99 37.05 34.40 37.15
50 Cost ($/yr) 755.14 1257.26 1257.26 1257.26 1257.26 1257.26 1257.26 797.94 1257.26

Reduction (tons/yr) 41.30 55.00 69.07 54.71 56.14 58.08 58.40 44.83 62.51
100 Cost ($/yr) 1544.62 1555.10 2038.91 1555.10 1555.10 1555.10 1797.01 1555.10 1797.01

Reduction (tons/yr) 52.02 59.03 78.61 58.71 60.25 62.25 65.02 54.80 69.15
200 Cost ($/yr) 2225.54 2505.48 4390.39 2225.54 2505.48 3424.12 2940.92 2505.48 3579.61

Reduction (tons/yr) 58.38 66.90 92.76 65.11 68.27 76.24 72.83 62.74 81.21
400 Cost ($/yr) 4031.65 4031.65 5868.93 4950.29 4031.65 4950.29 4950.29 4031.65 4950.29

Reduction (tons/yr) 66.00 73.35 97.10 75.44 74.82 82.81 79.78 69.19 86.93
500 Cost ($/yr) 4404.91 4404.91 6242.19 5323.55 4404.91 5323.55 5323.55 4404.91 5323.55

Reduction (tons/yr) 66.82 74.20 98.01 76.27 75.70 83.69 80.65 70.07 87.77
600 Cost ($/yr) 4404.91 5323.55 6242.19 5323.55 5323.55 5323.55 5323.55 4404.91 5323.55

Reduction (tons/yr) 66.82 75.76 98.01 76.27 77.27 83.69 80.65 70.07 87.77
1000 Cost ($/yr) 4404.91 6242.19 6242.19 5323.55 6242.19 5323.55 6242.19 4404.91 6242.19

Reduction (tons/yr) 66.82 77.00 98.01 76.27 78.51 83.69 81.89 70.07 89.29
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.12 8552.11 8552.11 8552.11

Reduction (tons/yr) 69.49 78.14 99.20 78.28 79.66 85.50 83.04 72.77 90.45
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 0.00 0.00 12.09 0.00 12.09 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 2.59 0.00 2.45 0.00 0.00
10 Cost ($/yr) 12.09 140.42 140.42 71.52 140.42 0.00 140.42 59.43 80.99

Reduction (tons/yr) 1.33 15.34 21.76 8.01 21.68 0.00 17.48 7.42 10.37
20 Cost ($/yr) 358.51 447.65 625.94 447.65 625.94 358.51 447.65 447.65 447.65

Reduction (tons/yr) 23.96 35.96 59.76 34.08 59.06 25.97 40.48 33.48 38.78
50 Cost ($/yr) 755.14 797.94 1257.26 1257.26 797.94 750.82 797.94 1210.14 797.94

Reduction (tons/yr) 36.17 46.43 81.04 59.33 65.32 37.96 52.03 57.39 48.80
100 Cost ($/yr) 1544.62 1555.10 2225.54 1555.10 2225.54 1544.62 2225.54 1731.25 1555.10

Reduction (tons/yr) 45.96 58.58 93.69 63.18 86.13 48.06 70.22 63.70 61.11
200 Cost ($/yr) 2225.54 2505.48 3471.75 2505.48 3471.75 2225.54 3471.75 2505.48 2225.54

Reduction (tons/yr) 51.99 66.56 100.91 71.16 93.36 54.11 76.81 70.06 67.53
400 Cost ($/yr) 4031.65 4031.65 5323.55 4950.29 4404.91 4031.65 5323.55 4404.91 4031.65

Reduction (tons/yr) 59.14 73.06 107.27 80.03 97.20 61.27 82.05 77.74 75.33
500 Cost ($/yr) 4031.65 4404.91 6242.19 5323.55 4404.91 4031.65 5323.55 4404.91 4404.91

Reduction (tons/yr) 59.14 73.95 109.37 80.93 97.20 61.27 82.05 77.74 76.16
600 Cost ($/yr) 4404.91 4404.91 6242.19 6242.19 4404.91 4404.91 5323.55 5323.55 4404.91

Reduction (tons/yr) 59.87 73.95 109.37 82.70 97.20 62.00 82.05 79.33 76.16
1000 Cost ($/yr) 4404.91 6242.19 6242.19 6242.19 6242.19 4404.91 5323.55 5323.55 6242.19

Reduction (tons/yr) 59.87 76.02 109.37 82.70 99.47 62.00 82.05 79.33 78.51
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 62.15 77.15 110.58 83.82 100.69 64.30 84.16 80.76 79.64

Action 
ID (a)

ObservationWeight 
(W)

41

42 or 44
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Data (1000/yr) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n  = 7 n  = 8 n = 9
1 Cost ($) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 Cost ($) 0.00 0.00 12.09 0.00 0.00 0.00 0.00 0.00 0.00

Reduction (tons) 0.00 0.00 2.60 0.00 0.00 0.00 0.00 0.00 0.00
10 Cost ($/yr) 12.09 12.09 140.42 140.42 80.99 71.52 140.42 71.52 12.09

Reduction (tons/yr) 1.33 1.73 21.56 15.48 9.63 9.07 17.65 8.71 1.42
20 Cost ($/yr) 358.51 447.65 447.65 447.65 447.65 447.65 447.65 447.65 447.65

Reduction (tons/yr) 22.63 33.43 49.99 36.61 35.79 35.59 41.85 33.84 31.63
50 Cost ($/yr) 636.28 797.94 1257.26 755.14 797.94 1257.26 797.94 797.94 1214.46

Reduction (tons/yr) 31.26 43.47 76.39 46.09 46.01 58.99 52.56 45.45 51.51
100 Cost ($/yr) 1406.83 1555.10 2225.54 1544.62 1797.01 1741.73 2038.91 1741.73 1544.62

Reduction (tons/yr) 41.01 53.87 88.92 56.05 58.93 64.92 68.63 56.16 55.85
200 Cost ($/yr) 2225.54 2505.48 3471.75 2505.48 2660.97 2505.48 3424.05 2505.48 2225.54

Reduction (tons/yr) 48.24 61.66 96.07 64.08 65.19 71.39 76.49 62.56 62.10
400 Cost ($/yr) 3471.75 4031.65 4404.91 4031.65 4031.65 4404.91 4031.65 4404.91 4031.65

Reduction (tons/yr) 53.80 68.04 99.81 70.53 70.86 79.24 78.46 70.27 69.59
500 Cost ($/yr) 4031.65 4404.91 6242.19 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 55.11 68.88 103.73 71.41 71.70 79.24 79.33 70.27 70.39
600 Cost ($/yr) 4404.91 4404.91 6242.19 4404.91 4404.91 4404.91 4404.91 4404.91 4404.91

Reduction (tons/yr) 55.76 68.88 103.73 71.41 71.70 79.24 79.33 70.27 70.39
1000 Cost ($/yr) 4404.91 6242.19 6242.19 4404.91 6242.19 6242.19 6242.19 4404.91 6242.19

Reduction (tons/yr) 55.76 70.74 103.73 71.41 74.25 81.88 82.23 70.27 73.17
5000 Cost ($/yr) 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11 8552.11

Reduction (tons/yr) 58.07 71.87 104.95 73.79 75.40 83.01 83.41 72.53 74.26
1 Cost ($) 0.00

Reduction (tons) 0.00
5 Cost ($) 0.00

Reduction (tons) 0.00
10 Cost ($/yr) 12.09

Reduction (tons/yr) 1.69
20 Cost ($/yr) 447.65

Reduction (tons/yr) 33.47
50 Cost ($/yr) 797.94

Reduction (tons/yr) 43.46
100 Cost ($/yr) 1555.10

Reduction (tons/yr) 54.31
200 Cost ($/yr) 2505.48

Reduction (tons/yr) 62.06
400 Cost ($/yr) 4031.65

Reduction (tons/yr) 68.39
500 Cost ($/yr) 4404.91

Reduction (tons/yr) 69.23
600 Cost ($/yr) 4404.91

Reduction (tons/yr) 69.23
1000 Cost ($/yr) 6242.19

Reduction (tons/yr) 71.23
5000 Cost ($/yr) 8552.11

Reduction (tons/yr) 72.35

Weight 
(W)

0

Action 
ID (a)

Observation

45

 
 
The values of the decision variables for each run of the multiobjective linear program are 
available on CD from the author by request.   
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