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1

Introduction

The need to transform the electric power sector into a sustainable system that incorporates renewable sources – 
such as wind, solar, and geothermal – is now a high priority around the globe. Achievement of this goal will, in large 
part, depend on wisely planned long-distance transmission networks that deliver electricity from distant renewable 
sources.

Traditionally, transmission has been driven by the need to interconnect planned generation or to facilitate power 
trade among regions. Lately, however, researchers and some policy makers have argued that transmission 
planning should shift from a ‘reactive’ process to an ‘anticipative’ planning process for two reasons [1, 2]. First, 
since transmission projects require more time to complete, commitments for transmission investments must be 
made before generation investments. Second, transmission investment directly influences the siting and type of 
generation investments by affecting their profitability and environmental impacts. Therefore, a strategically planned 
network can help steer generation investment towards potentially better economic and environmental outcomes.

However, such an anticipative planning process faces serious challenges. First, the optimisation problem becomes 
larger because it must consider both generation and transmission investments [3, 4]. To address this, researchers 
have implemented large-scale single-level co-optimisation models [5, 6] and bi- and tri-level successive 
transmission-planning models [7]. Second, planning for an infrastructure that is large in scale, costly (with individual 
lines costing hundreds of million dollars or more), and long-lasting requires careful consideration of the various 
uncertain conditions that may arise in the future. For transmission planning, this includes multi-decadal 
uncertainties in, e.g. load growth, technological changes, fuel costs, environmental rules, and renewable mandates. 
Ignoring these uncertainties can result in stranded investments or missed opportunities [1, 8, 9]. A further 
complication is the need to model renewable variability and the complicated nature of the transmission network. 
This has led to proposals for use of large-scale stochastic optimisation to inform transmission planning processes.

A variety of methods have been suggested for planning under long-run uncertainty. These include chance-
constrained programming [10–13], and various scenario planning methods (e.g. least-regret planning [14] used by 
CAISO [15, 16], and MISO's multi-value planning [17]). A popular approach is multistage stochastic programming, 
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in which initial decisions must weigh the likelihood of different long-run outcomes, as well as how later recourse 
decisions can adapt the system as uncertainties unfold [18]. Several recent papers additionally assess the value of 
flexible network and non-network technologies such as phase-shifting transformers, energy storage, and demand-
side management in long-term transmission planning [19, 20].

Here, we use a two-stage stochastic transmission planning model JHSMINE (Johns Hopkins stochastic multi-stage 
integrated network expansion), which is a mixed-integer linear programming implementation that incorporates co-
optimisation (of generation and transmission investments) and long-term uncertainties represented by multiple 
scenarios [21]. When solved, this model provides an optimal (expected cost-minimising) solution that includes 
transmission lines to be built in each investment decision stage, the type and capacity of generators that should be 
built for each location and stage, and how much electricity each power plant should generate for each hour. In the 
second stage, a separate set of decision variables for each scenario represents ‘recourse’ or adaptations of the 
plan.

However, considering multiple scenarios vastly increases the number of variables and parameters considered, 
making stochastic programs hard to solve. As a result, many simplifications need to be made concerning network 
flows or operations. Thus, future models that aim to model more realistic conditions (e.g. AC power flow, unit-
commitment) will be even more computationally intensive. So there is a need to consider ways to reduce the 
number of scenarios to accelerate solution times but allow the model to still consider a full range of long-run 
uncertainties and short-run operating conditions.

In this paper, we analyse the effectiveness of several scenario reduction methods in the context of two-stage 
stochastic optimisation of multidecadal regional transmission plans. The methods include three existing methods, 
tailored specifically for our model, and an additional simple but effective heuristic method that we developed. The 
goal of this work is not to give theoretical guarantees but to use concrete examples to provide useful insight into 
scenario reduction methods; deriving theory-based general results is left for future work. The performance of these 
methods is compared by testing them on the Western Electricity Coordinating Council (WECC) 300 bus planning 
model [21]. The results suggest that two of the methods perform significantly better than the others; furthermore, 
the results indicate that it is unnecessary in this case to have a large number of scenarios to obtain most of the 
benefits of stochastic transmission planning, but is still important to carefully choose scenarios and their 
probabilities.

The rest of the paper is as follows. Section 2 reviews research on scenario reduction. Section 3 summarises the 
model framework that we use for this research, and then describes the scenario reduction methods compared. 
Section 4 outlines the experimental design of the WECC case study and compares the results based on various 
metrics. Section 5 discusses the results, followed by conclusions in Section 6.

2

Review of literature on scenario reduction

Scenario reduction methods have been widely studied in the field of optimisation. Dupačová et al. [22] originally laid 
out the basis for a scenario reduction method based on probabilistic distances between scenarios. The authors of 
[23] improved that work by proposing more effective forward-selection and backward-reduction algorithms. Hoyland 
and Wallace [24] suggested a different scenario reduction method that aims to match certain statistical properties of 
the original scenario set and the reduced scenario set. Recently, Papavasiliou and Oren [25] proposed an 
importance-sampling inspired approach that aims to select scenarios that best represent the impact of uncertainty 
on average costs.

Power systems have been a rich source of problems for stochastic optimisation, so researchers in the field have 
had a keen interest in scenario reduction methods. The distance-based method has been popular. Gröwe-Kuska et 
al. [26] were the first to implement that method in a portfolio management problem for a hydro-thermal power 
system, while Morales et al. [27] proposed a variant that works better for electricity market problems. Carrión et al. 
[28] applied the Kantorovich distance for a consumer's electricity procurement problem. Other methods such as 
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clustering and importance sampling have also been used. Feng and Ryan [29] proposed to cluster the original 
scenarios in a generation planning model before performing the forward-selection algorithm in [23]. Papavasiliou 
and Oren [25] applied their importance-sampling inspired method to multi-area stochastic unit commitment.

However, in spite of the wide range research on scenario reduction in the context of power systems, there has been 
little application to transmission expansion planning. In one exception, Yu et al. [30] proposed a robust transmission 
expansion planning method with Taguchi's orthogonal array testing, but they consider only a narrow set of 
uncertainties, and not the full set of economic, technology, and policy risks typically of concern to planners. Also, 
there has been a lack of research that compares the performance of different scenario reduction techniques for a 
single power systems problem. The only significant comparison work in power was done by Dvorkin et al. [31], who 
compare multiple scenario reduction techniques in the context of unit commitment. Sun et al. [32] present an 
objective-based scenario selection framework for transmission planning which can potentially be widely used for 
future research. Here, we will tailor the most promising scenario reduction methods to a continental-scale 
transmission network planning model, and compare their performance.

3

Methods

In this section, we first summarise the stochastic transmission planning model that we use in this research. Then, 
we explain how the original (full) set of 20 scenarios were generated. After that we introduce three existing scenario 
reduction methods and an additional novel method that we develop in this paper.

3.1

Basic stochastic planning framework – JHSMINE [21]

JHSMINE employs a stochastic two-stage optimisation that explicitly models uncertainty using scenarios. For a 
detailed description, refer to [21]. The model is a mixed-integer linear program, where binary variables represent 
grid reinforcements. Its objective is to minimise the present worth of total investment and operating costs, subject to 
various constraints: 

Minimise: Probability-weighted present-worth (PW) of investment and operations costs over 40 years

Subject to: 

System constraints (supply–demand balance at each node, transmission flow limits, disjunctive constraints to define 
flow constraints for new lines)

Generator constraints (capacity)

The set of decision variables in this model capture transmission and generation investment decisions, as well as 
operational decisions. They can be divided into first stage and the second stage decision variables, and because 
the uncertainty manifests itself between the first and second stage, the second stage decisions are scenario 
dependent. In other words, there is a same set of second-stage decision variables for each scenario. Furthermore, 
the choice of scenario set influences the feasible region of the problem because there are constraints in the model 
that represent the relationships between first- and second-stage decisions. Finally, the scenario set also influences 
the objective function by assigning different cost coefficients for different scenarios. It is clear that the choice of 
scenarios will greatly influence the optimal solution of the problem at hand.

One of the expected benefits of including a larger scenario set is that the model is then capable of incorporating a 
wider range of possibilities for the future, and thus will find a solution whose performance is robust against diverse 
situations. The disadvantage is that a larger scenario set will make the problem exponentially harder to solve. 
Scenario reduction tries to lessen the conflict between the objectives of robustness and computational ease. A well-
performing scenario reduction method will thus find a scenario set that has relatively fewer scenarios but still results 
in a solution that is robust against a wide range of possibilities. This paper's goal is to use JHSMINE to compare the 
performance of reduction methods in a realistic planning context.
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The version of JHSMINE used here omits Kirchhoff's voltage law and unit commitment constraints. We have tested 
the impact of including unit commitment considerations (ramp limits, Pmin constraints, and startup costs) in long run 
transmission models [21], and found that they have a noticeable effect only in coal-heavy scenarios. Due to large 
amounts of announced coal retirements in the western US due to environmental restrictions and low gas prices, 
such generating units will become a decreasingly important part of the generation mix. We can therefore omit unit 
commitment constraints, which allow us to solve a significantly larger model with more scenarios. Other versions of 
JHSMINE include those constraints, however at a cost of including fewer production hours and long-run scenarios. 
As our focus is on comparing alternative methods for representing long-run uncertainties, we simplify these aspects 
of the problem so that more long-run scenarios can be considered. For the simulations presented in our paper, we 
use k-means sampling to select 24 h from the available historic hourly data.

In our application to the WECC region, there are 328 buses, 53 backbone transmission lines, and 52 WREZ 
(Western Renewable Energy Zones) lines. Commitments to investment, both transmission and generation, occur in 
2014 (first stage, with an in-service date of 2024) and 2024 (second stage, in-service date of 2034). Planners are 
assumed to know which scenario has been realised in 2024, just before the second stage investment decisions are 
made. Therefore, first stage decisions are ‘here-and-now’ decisions made without knowing what scenario will occur, 
while second stage decisions are adaptations to the realised scenario (perfect information). Operation decisions are 
made every year with respect to the current grid situation.

The JHSMINE results that we focus on in this paper include: 

The expected cost of naïve solution (ECNS), which is the expected cost of the first stage transmission investments 
from a simplified (fewer scenario) model, but evaluated using all scenarios. This is described further in the next 
subsection.

First stage transmission investment decisions, which are what planners would focus on because those represent 
permitting and construction activities that would need to start immediately. These are used in the ECNS 
calculations.

First stage generation mix, in terms of installed capacity.

3.2

Expected cost of naïve solution

We define ECNS as the actual expected cost of the system across the full set of 20 scenarios if planners implement 
a ‘naïve’ first-stage (‘here-and-now’) transmission solution derived from a model based on a subset of the full 
scenarios set or the wrong probabilities. By calculating the ECNS, we can assess the performance of investment 
strategies resulting from the reduced scenario sets. For example, a first-stage solution based on a single ‘base case 
scenario’ might have a relatively high cost (when evaluated against the full set of 20 scenarios) compared to a 
solution developed from a model with all 20 scenarios. The value of the total cost function for the ‘ideal solution’ 
(stochastic optimisation considering the full set of scenarios), also called expected cost of the stochastic solution 
(ECSS) [5], will provide a lower bound for ECNS. The amount by which ECNS exceeds ECSS can be viewed as an 
expected penalty resulting from using a simplified scenario set and probabilities to solve for the first-stage 
transmission investments. If the ECNS of an investment plan resulting from a reduced scenario set is insignificantly 
larger than the ECSS, the scenario reduction is deemed successful.

We calculate ECNS as follows in this paper: 

(1) 20 scenarios with equal probabilities (i.e. the original scenario set) are assumed to represent the ‘true’ reality of 
the uncertain future.

(2) A solution is obtained from the stochastic optimisation using a reduced scenario set. The resulting first-stage 
transmission investment decisions are noted.

(3) Those first-stage transmission investments from (2) are fixed (as parameters) in the full stochastic model from 
(1), which is then re-solved, choosing the optimal solution from the remaining variables against the full scenario set. 
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The remaining variables include all generation investments, second stage transmission investment, and all 
generation operations. First-stage generation investment decisions are not fixed because we assume that the 
generators instead use the ‘correct’ set of scenarios and probabilities to make investments, accounting for the 
network design. If instead we fixed the first-stage generation investments at their ‘naïve’ values, then the expected 
penalty for naïve decision making would be much larger, and we would be assuming that the transmission planner 
controls the expectations of generators about the future. In order to avoid overstating the cost of simplifying the 
scenarios, we only fix first-stage transmission decisions, as in [6].

(4) The objective value (PW of investment and operating costs) of the solution from (3) is called the ECNS.

The process of calculating the ECNS is basically the testing of a subpar investment plan against the ‘assumed’ true 
reality.

3.3

Scenario development

The consideration of multiple long-run scenarios and their probabilities are what make our model a stochastic 
program. We have developed 20 scenarios representing a wide range of possible future technology, policy, and 
economic developments over the next two decades in collaboration with a project Technical Advisory Group (TAG) 
that was formed by WECC. TAG included several stakeholders from power companies, public interest groups, and 
public agencies. Each scenario describes a possible future for 2024–2054 with regards to the uncertain variables, 
whose values vary among the scenarios. Here we describe the three-step procedure used to define the 20 
scenarios that we assume represent the full range of uncertainties; one of the performance metrics for solutions 
obtained by using fewer scenarios – the ECNS – will be calculated against this complete set. We also note that as 
opposed to other stochastic problems that can consider hundreds of scenarios, for the transmission planning model 
that we consider, 20 scenarios is the highest number of scenarios we can use to solve the problem within 
reasonable time.

Uncertainties included: Our choice of uncertain variables was based upon an initial list generated by a panel of 
WECC stakeholders and experts – the TAG – which we then trimmed in order to reduce the complexity of the 
model [21] (e.g. storage was initially identified as an interesting uncertain variable but was judged to be less 
important than other uncertainties and so was dropped.). The need to limit the number of variables and 
consequently the number of scenarios emphasises the need for an effective scenario reduction technique. The 
result was a list of 11 uncertain variables (Table 1). 
Table 1 Cluster and uncertain variables modelled in JHSMINE

Cluster Uncertain variable Unit Low Level 
medium

High Cluster-variable 
relation

natural gas price, 
Pgas

% change in 
[$/mmBTU]

-51.2 0 86.2 ?+?

carbon price, Pcarbon
% change in [$/ton] 33.38 58 112.8

4
?+?

coal price, Pcoal
% change in 
[$/mmBTU]

-22 0 22 ?+?

1

WECC mean load 
growth, Gload

%/year -0.91 1.13 3.2 ?+?

national RPS, 
RPSfed

% of WECC-wide 
demand

0 0 15 ?+?

state RPS, RPSstate % change of base 
value

-50 0 50 ?+?

2

distributed 
generation, GDG

% of peak load 3.2 11 20 ?+?
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Cluster Uncertain variable Unit Low Level 
medium

High Cluster-variable 
relation

wind capital cost, 
Cwind

% change in 
[$/installed MW]

-18.3 0 7.49 ?

solar capital cost, 
Csolar

% change in 
[$/installed MW]

-
28.75

0 30 ?

geothermal capital 
cost, Cgeo

% change in 
[$/installed MW]

-15 0 10 ?

3
WECC peak load 
growth, Gpeak

%/year -0.37 1.28 2.64 ?+?

Ranges of values: Each uncertain variable was assigned high and low values, representing ∼90% confidence 
intervals. The group's low and high values were obtained by averaging the individual responses of the group 
members. Medium values are based on the WECC 2034 common case values [21].

Clustering uncertain variables: For the scenario development process, uncertain variables were grouped into three 
clusters. This was done for two reasons. The first was to reduce dimensionality: the 11 uncertain variables in our 
model are correlated with each other to a certain extent. By grouping variables into subsets whose members are 
relatively highly correlated, we can reduce model dimensionality and the number of scenarios in the full set.

The second reason was the lack of data on uncertain variables: because there is little relevant historic information 
for many of the uncertain variables, expert judgment is needed to define the distributions of these variables. It is 
therefore desirable to have a conceptual framework that relates the variables to each other and makes it easier for 
us to define a coherent story about how the scenario might arise and influence socio-economic events. For 
instance, for a future scenario with strong economic growth, breakthroughs in renewable technology, and 
aggressive clean energy policies, we can define values of variables in one of our clusters (cluster 2) so that it has 
ambitious portfolio standards and low renewable capital costs.

The uncertain variables were clustered based both on the nature of their economic impact upon the electricity 
market, as well as their historical correlations. Cluster 1 contains uncertain variables that impact bulk electricity 
generation. Cluster 2 contains variables that are related to renewable energy, and Cluster 3 contains those that 
concern system reliability. These clusters can be expanded; e.g. future research could add a fourth cluster related 
to climate change including variables such as temperature rise and stream flows. Table 1 shows the list of uncertain 
variables that were included in the model used for this research, and the clusters to which they were assigned. 
Table 1 also shows the high-medium-low values for the variables, and the direction of their relationship with the 
cluster, accounting for whether correlations are positive or negative.

Scenario generation: Based on discussions with the TAG and the above-defined clusters and uncertain variables, 
we expanded the original set of five WECC scenarios used in their 2013 TEPPC process to a total of 20 scenarios 
in an attempt to capture the full range of possible outcomes [21]. Fig. 1 shows the characteristics of these 
scenarios. Cells that are coloured dark grey represent high values, light grey represents medium, and white 
represents low values. 

Fig. 1 Levels of uncertain variables in original 20 scenarios

The purpose of the three established sampling methods [random sampling (Rand), importance sampling (IS) and 
distance-based (DB)] is to select subsets of these 20 scenarios to include in the stochastic planning model. These 
methods are described in Sections 3.4.1–3.4.3. This paper also proposes a fourth method (stratified scenario 
sampling, SSS), which instead defines a small set of scenarios that can include one or more new scenarios in 
addition to the set of 20 above, as explained in Section 3.4.4. In our application to WECC, scenario subsets of size 
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three or seven are considered by the DB, IS, and SSS methods, while the Rand method considers a range of 
subset sizes.

Three scenarios represent one possible practical compromise between the computational efficiency of deterministic 
(single scenario) modelling and the desire to consider the robustness of transmission plans in the face of multiple 
scenarios. The SSS method aims to characterise the range of possibilities in the ‘uncertainty variable space’ with a 
minimum number of scenarios. This method will assign a stratified value for each uncertainty variable for each 
scenario such that the stratified value for the uncertainty variable will appear only once across all scenarios, similar 
in philosophy to Latin hypercube sampling [33]. The difference is that the SSS method clusters the variables before 
performing the Latin hypercube sampling. A specific instance of the algorithm is described at the end of the next 
section. We can generalise the algorithm by increasing the number of strata (which increases the number of 
scenarios) or clusters.

3.4

Scenario reduction methods

In this subsection, we provide brief descriptions on the scenario sampling methods that will be used in this paper. 
Define S as the set of original scenarios, S′ as the reduced scenario set, C as the set of clusters, and V as the set 
of selected uncertainty variables used to define a scenario. V(s) will denote the vector of uncertainty variable values 
for scenario s. Also, let |X| denote the cardinality of a set X.

3.4.1

Random sampling

Random selection of a small subset scenario represents a baseline, in that more sophisticated reduction methods 
are worthwhile only if they perform better. Random samples of size 2, 3, 5, 7, 9, and 14 scenarios are repeatedly 
drawn and tested; ten independent random samples re-chosen for each sample size and the resulting stochastic 
programs solved, assuming equiprobable scenarios. Further, each of the 20 possible deterministic (1 scenario) 
models are also solved.

3.4.2

Importance sampling inspired method

Papavasiliou et al. use an importance sampling inspired approach to reduce scenarios in a unit commitment 
problem [25]. We apply this method to sample ten independent sets of three scenarios each, and again to obtain 
ten sets of seven scenarios. We will name the former IS-3 and the latter IS-7.

Following their method, we first calculate the expected cost CD(s) of the system (by the model shown in 4.1) for a 
deterministic transmission investment plan optimised for each scenario s

S. Then the probability of selecting each scenario in the sampling procedure, qs, is calculated by (1) and the weight 
of the selected scenario, ps, that goes into the optimisation problem (section 3.1) is calculated by (2) (1)

(2)
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 Note that the probability of selecting a scenario is proportional to its deterministic cost. The weight (what we call 
probability of scenario in other parts of the paper) tries to account for the biasing that occurred in the sampling 
process when using (1).

3.4.3

Distance-based method

Scenario reduction methods that aim to minimise some distance metric between the original scenario set and the 
reduced scenario set have often been proposed. One method is to minimise the Kantorovich distance [22, 23, 26], 
which we use in the fast forward selection DB method. Starting with a set including just the single scenario that is 
on aggregate closest to the others, that method iteratively adds a single scenario to the set that results in the 
smallest distance to the non-included scenarios, and continues until the desired number of scenario remains. More 
specifically, the algorithm from [26] is tailored for our purposes (see below). After finding the reduced scenario set, 
the probability of each omitted scenario is absorbed into the closest selected scenario. This procedure yields a 
single set of DB scenarios and probabilities to be tested.

Algorithm 1

Fast forward selection method (based on [26]) 

Step 0: Compute L-2 norm distances of each scenario pair 

Step 1: Compute 

Then choose 

, and set 

Step k: Compute 

Then find 

, and set 
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Step m + 1: The reduced set 

3.4.4

Stratified scenario sampling

Below is a summary of the SSS algorithm for the case in which the reduced scenario set has cardinality 3. The 
algorithm is readily generalised for higher number of scenarios. 

Step 1: For each random variable v

V, the modeller selects three ‘stratified’ values from the range of values. For instance, for Pgas select three values 
for PgasLow, PgasMedium, PgasHigh. The resulting data will look like Table 1.

Step 2: Partition the |V| random variables into |C| clusters. This clustering process groups random variables 
according to certain criteria. An example of this process is explained in Section 4.3. For our case study, where 
|C| = 3, the result of the partition is shown in Table 1.

Step 3: Create a ‘base case’ scenario that has ‘medium (M)’ stratum assigned for every cluster. For each of the 
other two scenarios, assign either low (L) or high (H) from each cluster so that low and high each occur in at least 
one scenario. An example would be: scenario 1 (MMM), scenario 2 (HLH), scenario 3 (LHL).

Step 4: For each scenario, the value of the random variable is decided by the stratum of the cluster that it is part of, 
and the cluster-variable relationship. For instance, if the cluster is assigned ‘high’ and the cluster-variable 
relationship is ‘( + )’, the variable will take on a ‘high’ value. However, if the cluster–variable relationship is ‘( - )’, the 
variable will take on a ‘low’ value.

The above algorithm yields small sets of scenarios (here, 3) to which probabilities must be assigned. For instance, 
considering all the possible combinations in step 3, there are four possible distinct sets of scenarios: [MMM, HHH, 
LLL], [MMM, HLH, LHL], [MMM, HLL, LHH], [MMM, HHL, LLH]. Two assignment methods are considered. Equal 
probabilities have the advantage of simplicity, and avoid putting the bulk of the weight on one of the scenarios 
(method SSS-E). In contrast, the advantage of moment matching (method SSS-MM) is that the resulting distribution 
of uncertain variables more closely resembles the original (20 scenario) distribution.

Selecting scenarios and probabilities to match certain statistical properties was previously suggested by Hoyland 
and Wallace [24]. Moment matching was also adopted by CAISO [15]. We use this method to assign probabilities to 
the scenarios selected by the SSS method to check if a differentiated set of probabilities will perform better than 
equal probabilities. Moment matching assigns probabilities to the SSS reduced scenarios so that the resulting 
mean, standard deviation, and covariance of selected crucial variables come close to those of the original set of 20 
scenarios. The chosen variables are ‘natural gas price’, ‘carbon price’, ‘load growth’, ‘peak load growth’, ‘wind 
capital cost’, ‘PV capital cost’, and ‘geothermal capital cost’. The crucial variables were selected based on the result 
of a workshop where TAG members evaluated each variable's relevance to the economic valuation of transmission 
additions.

An optimisation model performs the matching, based on normalised values of the uncertain variables (rescaled so 
that 0 is the low value and 1 is the high value). The first term in the minimisation objective below penalises 
differences among scenario probabilities in order to encourage the model to assign significant probabilities to each 
scenario. The second term penalises deviations of variable probability-weighted means from their averages among 
the 20 scenarios. The other terms similarly penalise deviations of standard deviations and covariances from their 
values for the full 20 scenarios. The weights on each term can be customised (3)



Page 10 of 17

Comparing scenario reduction methods for stochastic transmission planning

 

 where 

 is the probability of scenario s, 

 is the mean value (across the full 20 scenarios) for the uncertain variable j, and 

 is the probability-weighted average of the uncertain variable for the reduced scenario set. Other terms are defined 
analogously, where SD and COV stand for standard deviation and covariance, respectively.

4

Case study: WECC 300

The performance of the reduction methods is assessed by solving the JHSMINE model with each reduced scenario 
set and then comparing the solutions by three criteria. First, the ECNS of the obtained solution is compared with the 
ECSS (refer to Section 3.2). Reduction methods that yield lower values of ECNS (and are therefore closer to the 
ideal of ECSS) are preferable. Then in Sections 4.2–4.3, we contrast the transmission and generation solutions for 
the best reduction methods with the ideal solution, and finally consider how the reduction methods compare in 
terms of a regret measure (Section 4.4).

4.1

Criterion 1: expected cost of naïve solution

Fig. 2 summarises the results of the different scenario reduction methods as box-whisker plots. The runs shown 
include the random method Rand (10 samples each for sets of 2, 3, 5, 7, 9, and 14 scenarios, plus the full 20 
scenario case), the 10 sets of results for the IS-3, IS-7, and DB, and four runs each for the SSS-E and SSS-MM 
methods, as described above. 

Fig. 2 Box-and-whisker plot showing the ECNS for different scenario sampling methods. (top and bottom whiskers 
show max/min values; top and bottom box edges are the third and first quartiles. The line in the middle of the box is 
the median. The number on top is the mean. The numbers on the x-axis are the number of random scenarios used. 
The grey dotted line is ECSS

For example, when using random sampling (Rand) with 14 scenarios (‘Rand-14’), the mean (across the sample of 
10 stochastic optimisations) of the value of ECNS ($881.8B) is just 0.12% above the ‘ideal’ solution 
(ECSS = $880.7B), with the worst Rand-14 ECNS being 0.47% worse ($884.8B) than the ideal. Although this 
penalty is not large, neither are the computational savings from using 14 scenarios versus the full 20 scenarios.
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As we expected, Rand plan performance degrades as we use fewer scenarios. The Rand results with 5, 7, and 9 
scenarios show median performance (across each of their sample of 10 runs) similar to Rand-14, but their worst 
cases are much costlier, resulting in higher mean costs than for Rand-14 solutions. For instance, the mean ECNS 
for Rand-3 solutions is $887.3B; this mean penalty of $6.6B relative to ECSS is comparable in magnitude to the 
present worth of the first stage transmission investments themselves and therefore can be viewed as important. 
Single backbone lines typically cost several hundred million dollars, and the present worth of first-stage backbone 
transmission investments is between $1B and $6B, depending on the solution (0.1–1% of the objective). Note that 
the bulk of the objective's value consists of fuel and generation investment costs.

Meanwhile, the deterministic runs (Rand results with 1 scenario each) vary greatly in their results, producing ECNS 
values ranging from 0.15 to 4.17% above the ideal solution. The deterministic run with just using scenario 11 
performed the best among the deterministic runs, and even did better than some of the Rand-14 runs. This 
reinforces the point that more scenarios do not necessarily improve the solution, and intelligent selection of 
scenarios can be much more beneficial than simply adding a lot more scenarios.

Better performance is obtained with scenarios chosen systematically by the SSS, IS, and DB methods. First, for the 
four SSS-E cases (equally weighted three scenarios), their average ECNS ($883.8B) exceeds the ideal solution 
(ECSS) by 0.35%. The four solutions from the SSS method with moment-matched probabilities (SSS-MM) perform 
even better (mean ECNS = $882.7B, 0.22% above the ideal). From among the SSS-MM results, run SSS-MM1 
(extreme sample consisting of HHH, MMM, LLL) gives the best ECNS ($881.4B), just 0.08% above the ideal.

Meanwhile, the IS method with three scenarios gives an ECNS value that is on average 0.37% above ECSS. 
However, performance is highly inconsistent among the samples. Using importance sampling with seven scenarios 
gives better results but the computational savings are then modest relative to the full 20 scenario case. Finally, the 
distance-based method (DB) with three scenarios yields an ECNS (881.5) that is only 0.09% above the ECSS ideal. 
Thus, with a 85% reduction in the number of scenarios (20 to 3), we are still able to obtain solutions that closely 
approach the cost of the ideal stochastic solution.

4.2

Criterion 2: transmission investment

Similar expected costs may result from different configurations of the network. Therefore, a careful comparison of 
two different solutions should contrast not just their total costs but also their transmission investment decisions. 
From this section on, we focus mainly on the runs that yield low ECNS values. These are SSS-E1, SSS-E2, SSS-
MM1, SSS-MM2, and DB. To clarify what we mean by, for instance SSS-E1, this means that it is the first set of 
scenarios sampled using the SSS-E method. Accordingly, SSS-MM2 means that it is the second set of scenarios 
sampled using the SSS-MM method. We will occasionally discuss other runs for comparison.

Candidates for transmission line investments include backbone network line additions and WREZ lines. The former 
is a duplicate of the largest (or sometimes second largest) capacity line in each transmission path. Using binary 
variables, the model must build a full line or none at all. In contrast, WREZ lines, which connect renewable 
resources to the existing network, are represented by continuous variables, and can be built in any size between 
zero and the maximum capacity.

Fig. 3 shows the first-stage backbone line additions. The ideal solution (in the box) suggests that we build eight 
backbone transmission lines in the first stage. The DB method provides the closest solution because it recommends 
seven of these eight lines. Meanwhile, the SSS runs shown build only four or five transmission lines. In general, 
although Figs. 3b–d show solutions that are not equal to the ideal solution, the lines chosen are all subsets of the 
ideal solution's set of lines. This is also true for the SSS runs that are not shown in Fig. 3 (SSS-E3, SSS-E4, SSS-
MM3, SSS-MM4). 
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Fig. 3 Plot of ‘suggested year 2024 backbone transmission investments’ obtained by solving JHSMINE. Blue dotted 
circles show where the investment decisions are located

(a) Ideal solution, (b) Solution for SSS-E1 and all SSS-MM runs, (c) Solution for SSS-E2, (d) Solution for DB

In Fig. 4, we show the first-stage WREZ line additions. Since WREZ line additions are modelled as continuous 
variables, the solutions are presented via a colour gradation. Yellow indicates a low investment level and red 
indicates a high investment. Although Fig. 4 gives a geometric depiction of the solutions, it is difficult to 
quantitatively compare different solutions. Therefore, as one index of the level of agreement between different 
solutions, the sum of absolute differences in WREZ line investment decisions in MW with respect to the ‘ideal 
solution’ is calculated and graphed in Fig. 5. We can see that the WREZ investment decisions for the SSS-MM1 
(extremely stratified sampling with moment matching) are closest to the ideal solution. SSS-E1 and DB also 
performed relatively well. Just like with the ECNS results, use of moment-matched probabilities (instead of equal 
probabilities) improves the performance of the SSS method. 

Fig. 4 Plot showing the ‘suggested year 2024 WREZ investments’ obtained by solving JHSMINE (best viewed 
online in colour)

(a) Ideal solution, (b) Solution for SSS-E1, (c) For SSS-E2, (d) For SSS-MM1, (e) For SSS-MM2, (f) For DB. For 
each WREZ line, the model is allowed to choose between 0 and 100% of the maximum investable capacity. Line 
colours vary from yellow to red; yellow is a low amount of capacity and red is high

Fig. 5 Sum of absolute differences in WREZ line investment decisions with respect to the ‘ideal solution’ for SSS-E, 
SSS-MM, and DB

4.3

Criterion 3: generation mix

So far, in terms of ECNS and transmission plans, the extreme SSS-MM (i.e. SSS-MM1) and DB methods seem 
most promising. Another criterion for comparing the performance of different scenario reduction methods is the 
difference in the mix of first-stage generation investments relative to the ideal. We focus on the first-stage 
generation investment decisions from the ECNS solutions, which assume that non-naïve generators consider all 20 
scenarios, subject to the first-stage grid decisions that naïve grid planners obtain using the reduced scenario set.

The ideal solution projects that generation investment in 10 years will be mostly on-shore wind energy (39.7 GW) 
and combined cycle capacity (37.2 GW) with a small percentage of gas CT (3.7 GW), distributed solar PV (2.0 GW), 
and geothermal (2.1 GW). Fig. 6 shows the generation mix by percentage for the SSS-E, SSS-MM and DB 
solutions. 

Fig. 6 First-stage generation investments for the ideal (20 scenarios), DB, SSS-E, and SSS-MM solutions

We can see that the DB method provides a solution that is very close to the ‘ideal’. It underestimates gas CT and 
overestimates solar by a small percentage. Meanwhile, the SSS-E solutions anticipate too much gas and too little 
wind compared to the ideal solution. The performance improves once we use moment-matched probabilities. The 
extreme SSS-MM (i.e. SSS-MM1) mix is close to the ideal solution, although not as close as the DB method.

4.4

Criterion 4: maximum regret
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Expected cost is not the sole metric by which decisions are made. Risk, which might be defined as the chance of 
very poor performance, is also a major concern [34, 35]. A plan that does well in expected value terms might do 
poorly in terms of risk. A recent paper by Konstantelos et al. [36] proposes a min–max regret optimisation model to 
address this issue. Although we do not incorporate risk into our initial optimisation model, it would be interesting to 
compare how each solution performs in terms of this criteria. As we show below, some reduction methods appear 
to do as well or better in terms of risk than the full 20 scenario solutions.

In this paper, we consider one possible risk metric, which is the maximum regret (Max-regret) (across the 20 
scenarios) of each first-stage transmission solution. The calculation of regret here is based on the standard 
definition [6]: regret for a particular first-stage plan x is calculated by taking the PW of the cost of that plan for a 
scenario s (calculated by the ECNS metric in Section 4.2, and designated as CNS(x,s)), and then subtracting the 
cost of a plan x*(s) optimised for that same scenario, C(x*(s),s). The Max-regret is then calculated as (4)

 Fig. 7 plots the tradeoff between ECNS and Max-regret for all the sampling methods that we tested. The Pareto 
frontier (red line) of that figure shows that the solutions obtained by using the SSS-E, SSS-MM and DB methods do 
slightly worse in terms of ECNS compared to the ideal solution (20 scenario stochastic solution) but actually do 
much better in Max-regret. For instance, the ECNS for SSS-MM1 is $0.7B higher than the ideal solution but the 
Max-regret is $5.9B lower than the ideal solution; the ECNS for DB method is $0.8B higher than the ideal solution 
but the Max-regret is $2.4B lower. The higher maximum regret for the ideal solution results from a relatively poor 
preparation for the extreme scenarios. 

Fig. 7 Maximum regret versus ECNS for all reduction methods. The dotted curve on left shows tradeoffs between 
the objectives (best viewed online in colour)

These results indicate that preparing for so many future scenarios can indeed put the system in danger of being 
less robust against extreme cases. Whether this is a general result that applies to other power systems would need 
to be confirmed by additional case studies.

5

Discussion

5.1

Solution time versus accuracy tradeoffs

All models were run to full optimality (zero MIP gap). Table 2 shows the solving times and ECNS gap (ECNS-
ECSS) for all scenario reduction methods. The gaps are calculated as in Section 3.1. As noted before, a 0.5% 
divergence from the optimal objective value (total costs) is not trivial because it is on the same order of the total 
transmission investment in the first stage. Table 2 shows that only SSS-MM and DB provide solutions that are 
consistently within 0.5% of the ideal while also reducing solution times significantly. Among the random sampling 
solutions, only Rand-14 solutions are within 0.5% of the ideal solution on average, but their solution times improve 
little upon the full 20 scenario model. Although solution times of several hours are not necessarily unreasonable for 
a planning model, we should remember that this planning model has many other simplifications. 

Table 2 Solution time and ECNS gap

Sampling method Range of time, s Range of ECNS (as % above the ECSS, see Fig. 2)

Rand-1 [13, 37] [0.15, 4.17]

Rand-3 [94, 147] [0.03, 3.18]

Rand-14 [2486, 8594] [0.01, 0.47]



Page 14 of 17

Comparing scenario reduction methods for stochastic transmission planning

 

Sampling method Range of time, s Range of ECNS (as % above the ECSS, see Fig. 2)

SSS-E [86, 102] [0.18, 0.53]

SSS-MM [77, 90] [0.08, 0.35]

DB 94 0.09

IS-3 [89, 132] [0.02, 2.09]

IS-7 [631, 1109] [0.02, 0.49]

20 full scenario 33,600 0 (by definition)

Adding, e.g. unit-commitment, Kirchhoff's voltage law, or a more detailed network will result in much longer solution 
times, so planners are likely to appreciate the one to three order of magnitude improvements in solution times that 
some scenario reduction methods yield.

5.2

Additional advantages of SSS-MM: lower Max-regret and less backbone investments to commit

Although presenting a new scenario sampling method is not the focus of this paper, we note two attractive features 
of the solutions from the SSS-MM method proposed here. This heuristic method worked surprisingly well for this 
case study, as shown in Section 5. Investigating the generalisability of this result and developing a improved 
versions of this method is left to future work.

The first feature is that the SSS-MM solutions reduce risk for this case study, as measured by the Max-regret 
metric. The DB method also has a lower Max-regret compared to the ideal solution (expected cost minimisation), 
but the reduction is only half that in the case of the SSS-MM solution. Further research is needed to determine 
whether this is likely to be a general result, and why it occurs.

Another attractive attribute of the SSS-MM method is that it provides a solution in this case whose cost is very close 
to the ideal but with less investment in backbone transmission (as shown in Fig. 3). Permitting, public hearings, 
right-of-way acquisition, and aesthetic impacts all stimulate public opposition to new lines. Therefore, planners and 
regulators may prefer transmission plans that involve less construction. Several of the solutions share similar ECNS 
values but vary in the number of backbone transmission line investments. In other words, it appears that we can 
obtain a near-optimal cost solution as long as we invest in a ‘core’ set of backbone lines. This implies that some of 
the lines that the ideal solution picks have benefits only slightly in excess of their costs; so if minimising construction 
is an objective, it should be possible to do so with little loss of economic efficiency.

6

Conclusion

The motivation for this paper is the conflict between the need for larger models with more realistic detail and 
multiple scenarios, and computer capabilities that greatly limit the size of those models. By clever selection of 
scenarios, we show that model size can be drastically reduced while preserving the benefits of stochastic 
programming, which allows the user to either add other features to the model or execute more runs more quickly. 
This paper explored the performance of four scenario reduction methods within the framework of stochastic 
transmission planning. The methods analysed include three existing methods: Rand, IS, DB, and an additional 
method, which we call SSS. The performance of these methods was measured by comparing values of ECNS, first-
stage transmission investment decisions, first-stage generation investment decisions, and reductions in solution 
time. The following bullet-points summarise the major findings of this paper: 

For scenario reduction, an intelligent reduction of the scenario set can be much more beneficial than simply adding 
a lot more scenarios. To restate one of the examples, a random scenario reduction that reduces the original 
scenario set from 20 to 14 scenarios performs worse than a DB reduction method that reduces the original scenario 
set to three scenarios.
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The DB method and the stratified scenario sampling/moment-matching (SSS-MM) method both provide solutions 
with relatively little loss of cost efficiency when compared to the full 20 scenario model solution. Furthermore, both 
methods greatly reduce solution times.

Compared to other scenario reduction methods, the overall investment decisions obtained from using the DB 
method better match the optimum from the most complex model that utilises the full 20 scenarios.

The SSS-MM method has slightly less accurate solutions than those obtained from the DB method but has lower 
worst-case regret, and lower expenditures on backbone investments in the first stage. This may be attractive to 
policy makers concerned about environmental impacts of transmission.

Although the complexity of the case study gives some confidence that these results will apply to other situations, 
these conclusions need to be confirmed with further testing in other planning contexts. A future study should also 
conduct sensitivity analyses on the number of original scenarios and the number of uncertain variables. In addition, 
if possible, it is desirable to obtain theoretical results that guarantee the performance of different scenario reduction 
methods when applied to multi-stage stochastic transmission planning, perhaps by taking advantage of the special 
structure of transmission planning problems. The ultimate goal is to design scenario reduction methods that can be 
depended on to yield robust solutions with modest computational effort.
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