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A B S T R A C T

Urban stormwater management is shifting its attention from traditional centralized engineering solutions to a
distributed and greener approach, namely Green Infrastructure (GI). However, uncertainties concerning GI's
efficacy for reducing runoff and pollutants are a barrier to the adoption of GI. One strategy to deal with the
uncertainty is to implement GI adaptively, in which stormwater managers can learn and adjust their plans over
time to avoid undesired outcomes. We propose a new class of GI planning methods based on two-stage stochastic
programming and Bayesian learning, which accounts for projected information gains and decision makers' ob-
jectives and willingness to accept risk. In the hypothetical example, the model identifies four categories of
investment strategies and quantifies their benefits and costs: all-in, greedy investment plus deferral, mixed in-
vestments plus deferral, and learn-and-adjust. Which strategy is optimal depends on the user's risk attitudes, and
the alternatives' costs and risks.

1. Introduction

Green infrastructure (GI), sometimes referred to as “Low Impact
Development” or “Best Management Practices,” is a distributed ap-
proach that reduces urban stormwater runoff through on-site infiltra-
tion, storage, and evaporation to improve water quality in downstream
water courses. Examples of GI practices are rain gardens, rain barrels,
tree trenches, permeable pavement, and green roofs. GI is gaining po-
pularity due to its potential social and economic benefits
(Environmental Protection Agency, 2010). Among major US cities,
Philadelphia is the first that has committed to GI as the primary solu-
tion for stormwater problems (PWD, 2011). Starting in 2011, Phila-
delphia plans to invest $2.4 billion on GI over 25 years. Other cities,
such as Washington DC, Chicago, Portland, and Seattle, are also im-
plementing GI at site or neighborhood scales (Environmental Protection
Agency, 2010).

However, the runoff and pollution reductions provided by GIs de-
pend on, for example, their specific designs, local climate character-
istics, underlying soil properties, and vegetation (Montalto et al., 2011).
Also, GI performance may deteriorate with time. Maintenance costs and
the upstream and downstream relationships of multiple GIs add further
to the uncertainty of the efficacy and expense of GI, which complicates
stormwater management planning, and can result in a failure to meet

management goals (Chocat et al., 2007; Roy et al., 2008).
Researchers have developed tools for designing, sizing and selection

of GI for stormwater management at the site scale (Lee et al., 2005;
Loáiciga et al., 2013; Massoudieh et al., 2017; Morales-Torres et al.,
2016; Zhen et al., 2004), as well as watershed-scale investment plan-
ning models for managing water quality and runoff volume (McGarity,
2012; Montaseri et al., 2015; Sebti et al., 2016). Yet uncertainty has not
been recognized by these optimization frameworks. Because of the
uncertain interactions of GI, climate, and human activities, it is crucial
to recognize risks and the opportunity to learn when planning (Barton
et al., 2012; Williams and Brown, 2014); i.e., to manage adaptively.

An experienced planner or stormwater engineer may have a good
sense of the extent of potential learning from experimentation, such as
field trials of GI. However, we argue that formalizing the learning
process and estimating the value of learning can be worthwhile even
when quantification is difficult. This has not been done in previous GI
optimization models. In this paper, we propose a new method for GI
investment planning based on two-stage stochastic programming (TSP),
in which we incorporate projected information gains and decision
makers’ risk attitudes and objectives. The projected knowledge gains
are assumed to be a function of the amount of investments of in GI.
These gains are, called “learning” throughout this paper, and are used
to update our knowledge beliefs concerning of the GI cost-effectiveness
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in the later stages based on the idea of Bayesian Inference.
To our knowledge, this is the first time that risk aversion and

learning have been included in dynamic optimization models for
adaptive stormwater management. This method aims at providing
guidance regarding the choice of GI practices, investment timing and
amount, risks of failing to meet management goals, and maximization
of benefits (including social and economic benefits).

In the hypothetical example in Section 4, the goal of the two-stage
decision problem is to maximize cumulative stormwater reductions
given a fixed budget for the 40-year planning horizon, where early
investments (at year 1) may result in learning that updates our un-
derstanding of the GI cost-effectiveness in later decision stage (at year
11). In the example, we identify four broad classes of strategies, which
we call ‘all-in’, ‘greedy investment plus deferral’, ‘mixed investment
plus wait-and-see’, and ‘learn-and-adjust.’ This range of possibilities
involves tradeoffs between cost, expected stormwater reduction and
risks. The best choice in a given situation depends both on case study-
specific parameters and the decision maker's willingness to accept risks.

The remainder of this paper is organized as follows. In the next
section, we summarize the literature on adaptive management, risks
associated with GI, and the use of stochastic programming to model
learning. There are indeed previous models for water resource man-
agement that include uncertainty and risk aversion and models for
managing ecosystems and climate change that represent learning; yet
models that simultaneously consider both risk-aversion and learning for
adaptive management have not been proposed or implemented in
stormwater management or other related fields. Section 3 explains the
building blocks of the proposed method and illustrates the ideas with a
decision tree example. Section 4 shows the results from a hypothetical
example to illustrate the method which is formulated as Mixed Integer
Linear Programming with risk constraints. Sections 5 discusses the
sensitivity of the solutions and presents conclusions. Finally, the
mathematical formulation is presented in the Appendix.

2. Literature review

2.1. Adaptive stormwater management

Adaptive management is a framework for long-term planning under
uncertainty. It was first proposed by Holling (1978) for environmental
assessment and management, and by Walters and Hilborn (1976) in
ecological management. It is now widely recognized and applied in
those contexts (Lovell and Taylor, 2013; McCarthy and Possingham,
2007; Southwell et al., 2016; Williams, 2011).

Adaptive management can be characterized as a process of
“learning to manage by managing to learn” (Bormann et al., 1994), in
which decisions at each planning stage must balance the cost and
benefits to future decisions of learning to reduce uncertainty, versus
investing to yield immediate benefits (Williams, 2011). This paper
presents a general methodology for quantitative implementation of
adaptive management that is designed to provide useful information in
the form of quantified risks and the costs and benefits of learning.

2.2. Risks in stormwater management with GI

Researchers have recognized that there exist risks in managing
stormwater and have tried to address them. Chocat et al. (2007)
pointed out three particular types of risks involved with GI:

1. transferring maintenance responsibility to end-users may result in
degraded performance,

2. uncertainties in the transition path from the centralized system to
decentralized systems, and

3. residual contamination in stormwater retained and treated by GI,
which could cause human health concerns.

In addition, Roy et al. (2008) flagged the risks of underestimating
costs of GI installation and maintenance, missing management goals,
loss of functionality, and community resistance to installations, parti-
cularly in municipalities of lower socio-economic status with relatively
few natural environmental assets.

However, quantifying the risks associated with stormwater man-
agement is challenging. A few studies have tried to estimate the risks of
stormwater pollution, for example, stormwater pollution risks to eco-
systems (Novotny and Witte, 1997), overflow risks from detention ba-
sins (Guo, 2002), and sediment pollution risks from combined sewer
overflows (CSOs) in receiving waters (Rossi et al., 2005). Yet neither
optimization models nor decision support tools, in general, have been
developed to manage risks or evaluate adaptive strategies in storm-
water management.

2.3. Stochastic programming applications and learning

Two-stage (or, more generally, multi-stage) stochastic programming
(TSP) is a logical way to model the implementation of adaptive man-
agement, as it can analyze “here-and-now” investments while con-
sidering opportunities to change course in future stages, depending on
what is learned and their probabilities (Shapiro and Philpott, 2007).
Generalizations of TSP, including stochastic dynamic programming and
partially observable Markov decision processes, describe sequential
decision processes where decisions are made in each stage based on the
decision maker's beliefs concerning the underlying state of nature and
the expected value of some objective (Monahan, 1982; White, 1991).
Chance-constrained and risk-averse programming are other optimiza-
tion approaches that use probability distributions and can be compa-
tible with TSP (Housh et al., 2013; Krokhmal et al., 2001; Wang and
Huang, 2014).

Other approaches to decision making under uncertainty attempt to
avoid the use of probabilities. One is robust decision making (RDM),
which was developed for the problems with deep uncertainty (i.e.,
uncertainty is highly subjective such that different experts’ estimates of
probability distributions may be very different from each other)
(Lempert and Collins, 2007). RDM generates plausible scenarios and
attempts to identify strategies that work well across all scenarios, in-
stead of using a probability distribution and an objective based on
(probability-weighted) expected value. RDM applications can be found
in the climate change and water supply literature (Beh et al., 2017;
Kasprzyk et al., 2013; Lan et al., 2015; Mortazavi-Naeini et al., 2015).
However, RDM does not naturally lend itself to quantifying the value of
learning in adaptive management, so our approach instead relies on
TSP.

Risk aversion, in which decision makers place greater weight on
poor outcomes compared to use of expected (probability-weighted)
values, has been considered in many environmental management pro-
blems (e.g., Baker, 2009; Chao and Hobbs, 1997; Piantadosi et al.,
2008). The particular implementation of risk aversion that we use,
conditional value at risk (CVaR, explicitly defined below), has been
applied in water supply allocation and storage problems to explore risk-
expected value tradeoffs (Paydar and Qureshi, 2012; Piantadosi et al.,
2008; Webby et al., 2007), but not in water quality management. Ours
is the first use of CVaR to address risk in water pollution investments.

Learning has been considered in a wide range of environmental
applications, usually in the form of Bayesian analysis. Kim et al. (2003)
and Jacobi et al. (2013) applied stochastic dynamic programming to
fishery and water quality management, respectively, where research
and monitoring (learning) are optimized in the first stage followed by
decisions concerning land and ecosystem management actions in the
second stage. Harrison (2007) developed a Bayesian programming
method for water quality control problems. Varouchakis et al. (2016)
applied Bayesian decision analysis in reservoir construction planning
problem. A number of analyses of uncertainty and learning can be
found in the climate policy literature (see Golub et al., 2014). For
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instance, Baker (2009) presented a TSP model for optimizing carbon
emissions abatement with learning about uncertain climate change
damages, while Webster et al. (2017) applied TSP to consider optimal
research into climate mitigation technologies whose performance is
uncertain. In their stochastic dynamic programming models, the state
variables (e.g., the belief of climate change and mean water level) are
updated by Bayes’ law with new observations, which is the type of
“learning” we implement in our models below.

In summary, we have found that stochastic programming has been
used to implement adaptive management in related contexts, but not in
GI planning itself. Learning has been addressed, but the construction of
the likelihood function is often challenging, which limits the applic-
ability of Bayesian approaches. The method presented in the following
section uses simple “learning curve functions” to depict the relationship
of the ”here-and-now” GI investment and learning, which provides an
intuitive way to express the amount of learning while avoiding the need
to explicitly construct likelihood functions.

3. Methodology

The primary objective of urban stormwater management is to re-
duce runoff in order to prevent sewer overflows and improve water
quality in streams. While the problem can be formulated as a multi-
objective optimization, for simplicity, our formulation considers only
one objective to be optimized (i.e., runoff reduction), subject to con-
straints on the other objectives (e.g., a fiscal budget and the risk of
undesired outcomes). In this section, we only explain the general
scheme of the method, and present the full mixed integer linear pro-
gram implementation of the TSP in the Appendix.

Section 3.1 presents a decision tree example that we use to illustrate
the underlying logic of the method for representing learning and
adaptive GI investment planning. Section 3.2 presents the basic sto-
chastic programming framework, and then explains the modeling of
risk-aversion and learning in that framework.

3.1. Decision tree representation of the adaptive GI investment planning
model

In the case of GI planning with two investment decision stages,

denoted by Stages I and II, the manager needs to make investment
planning with several distinct GIs whose performance (stormwater re-
ductions) are uncertain and independent. We summarize the manager's
problem as follows:

• Decisions: choose the GI investment portfolio in Stage I given a
budget shared with both stages while considering the opportunity to
change course in Stage II in order to:
o maximize the objective of expected reductions in total stormwater
runoff over a multidecadal time horizon, while

o satisfying a risk constraint concerning the annual runoff reduction
in Stage II and a fixed budget shared by both stages.

• Assumptions:
o The manager is risk-averse regarding the possibility of failing to
meet the State II reduction target in annual stormwater reduction.

o Investment in a particular type of GI in Stage I will result in
learning if the investment exceeds some threshold. This learning
can be taken advantage of in Stage II by
⁃ investing more in that type of GI, if it turns out to be highly
effective, or

⁃ investing in other types, if the first type is instead found to be
relatively ineffective.

o Learning about one type of GI provides no information about the
performance of others.

o GIs are installed in parallel (i.e., no interactions among GI in-
stallations) so that the reduction in stormwater can be summed

We next use a decision tree schematic to illustrate the underlying
logic of the method. Interested readers can refer to the Appendix for
details of the mathematical formulation.

3.1.1. Decision tree example
A decision tree involves decision nodes (squares), chance nodes

(circles) and outcomes (at the end of the tree branches). The chron-
ologic sequence of decisions and chance events proceeds from left to
right. A decision node represents a point in time when decisions must
be made among the alternatives represented as arcs exiting the right
side of the node; a chance node stands for random events, each re-
presented by arcs exiting the right whose probabilities sum to 1; and the

Fig. 1. Schematic decision tree example of two-stage decision making with uncertainty and learning to reduce uncertainty.
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outcomes show the objective function values realized for a particular
sequence of decisions and random events represented by the nodes and
arcs leading from the left-most node to the terminal node on the right.
Fig. 1 is a schematic in that only some of the nodes and branches are
shown for clarity.

In this example, the manager can make investments in either or both
Stages I and II, which can consist of investments in any or all of n types
of GI. In general, each type can have different levels of efficiency and
uncertainty in stormwater reduction per $ investment.

Following the terminology of Bayesian statistics, the distribution of
the GI performance in Stage I (representing our current understanding
about the technology), is called the prior distribution ( CI), and the
updated distribution in Stage II (representing our new knowledge given
the experience learned from the Stage I investment) is called the pos-
terior distribution ( CIIs). In probability, the posterior distribution is a
conditional probability of the outcome given what is learned.

We assumed three types of learning as follows:

• No learning (NL): the posterior distribution is the same as the prior
distribution
• Partial learning (PL): the variance of the posterior distribution is less
than the prior distribution but not 0, and
• Full learning (FL): the posterior distribution has zero variance
(certainty)

PL and FL are achieved for a particular GI type if investment xI in
that type exceeds thresholds, respectively (denoted as ThPL and ThFL,
ThPL <ThFL). Which of the types of learning that happens depends on
which of the thresholds are met. That is, if the investment in Stage I
(denoted xI) is:

• less than ThPL, nothing is learned and the posterior distribution is
the prior distribution;
• between ThPL and ThFL, then PL takes place; and
• otherwise, FL takes place.

We defer the discussion of the learning and investment relationship
to the next subsection and focus our discussion here on the decision
problem. To account for uncertainty, mI scenarios (indexed by s) are
generated after the Stage I decision is made, and mII scenarios (indexed
by r) are defined to follow each Stage II decision. The total number of
scenarios is m m .I II Each Stage I scenario contains a realization of
stormwater reduction and a learning outcome (the posterior distribu-
tion) from the Stage I investment, while each State II scenario describes
a realized reduction for investments in the second stage. To help the
reader understand the process, we present a numerical example of a PL
branch of the decision tree (Fig. 2).

In this example, the manager has two investment options: GI1,
whose performance is normally distributed (mean and variance equal to
0.5 gallon per $ per year (gal/$/yr) and 0.04 (gal/$/yr)2, respectively);
and GI2, which provides 0.48 gal/$/yr stormwater reduction with
certainty. The total budget for the two-stage planning problem is
$100M, and the investment decisions are made at year 1 and 11. We
assume that, once the first stage's GI is installed, it will continue pro-
viding stormwater reduction until the end of the planning horizon and,
therefore, the installations in Stage I can provide stormwater reduction
for 40 years while, if installed in Stage II, a GI reduces stormwater only
for 30 years. Costs are not discounted in this example. The manager's
objective is to maximize the total stormwater reduction over the 40-
year planning horizon. However, the manager may also be concerned
with the risk of very low reductions occurring in Stage II, as we explain
below.

Moving forward in time (from left to right in Fig. 2), first the
manager decided to invest $40M in GI1 and none in GI2 because she
knows that the former investment would result in PL and reduce the

performance uncertainty in GI1 to an assumed value of 0.01 (gal/
$/yr)2. However, she does not know which scenario s she would be in
prior to entering Stage II. Either one of the two Stage I scenarios could
happen. Scenario s=1 consists of a realization of a performance of 0.7
gal/$/yr reduction for the investment made in GI1 in Stage I, and a
posterior distribution with mean and variance equal to 0.675 gal/$/yr
and 0.01 (gal/$/yr)2, respectively. Meanwhile scenario s=2 could
consist of a realization of 0.6 gal/$/yr reduction for that GI, and a
posterior distribution with mean and variance equal to 0.325 gal/$/yr
and 0.01 (gal/$/yr)2, respectively.

Note that those two realized performance values are consistent with
the assumed prior mean and variance (i.e., mean: (0.675 + 0.325)/
2 = 0.5; variance: ((0.675–0.5)2 +(0.325–0.5)2)/2 + 0.01 = 0.04;
more details of the preservation of the prior mean and variance can be
found in the Appendix). Note also that, although we only have two
scenarios for each chance node for brevity, a large number of scenarios
is recommended to better represent the random distributions. In Stage
II, the manager then makes another investment decision, which de-
pends on which scenario she is in. If she is in scenario s=1, the Stage II
investment would be to allocate the remaining part of the budget
($60M) in GI1 in order to take advantage of its high expected perfor-
mance in the posterior distribution. Whereas, if she is in scenario s=2,
she would rather invest the remaining budget in GI2 since the expected
value of the posterior distribution for GI1's performance is lower than
0.48 gal/$/yr. The final outcomes at the end of the tree are the total
stormwater reduction for the 40-year planning horizon.

We assume equal probability for each scenario (50%) so that we can
calculate the stormwater reduction under each combination of first- and
second-stage scenarios (s,r), as shown in Table 1, and the expected re-
duction of the first-stage decision ( =x [$40M, $0]I ), 1840MG.

In contrast, if learning is not considered, a risk-neutral manager
would invest all her budget in GI1 in Stage I (“all-in”) and receive an
expected value of 2000 MG stormwater reduction (=0.5*40 yr*0.7 gal/
$/yr + 0.5*40 yr*0.3 gal/$/yr). However, if she is risk-averse and
would like to make sure the annual reduction she received at the end of
the planning horizon would be higher than some management goal, she
may want to instead consider the investment option in Fig. 2. Although
the investment presented in Fig. 2 provides less total stormwater re-
duction (1840 MG = 0.25*2515 + 0.25*2155 + 0.5*1,344, next to
last column of Table 1; this is 160MG less than the “all-in” case), the
worst annual reduction (40.8MG/yr, under s=2) is higher than the
worst reduction of the “all-in” strategy ($100M*0.3 gal/$ = 30 MG/yr).
This example is just one branch of the decision tree in which the PL
takes place; there could be other investment strategies that show dif-
ferent tradeoffs between expected reduction and risk in the NL, FL, and
other PL branches, which are not shown.

It is worth noting that the mean of particular posteriors for parti-
cular scenarios s could be higher or lower than the prior's mean;
however, the overall mean is preserved when averaged across all sce-
narios, while the posterior variance is always reduced because of our
learning assumption. Moreover, the realizations of the prior may not
correspond to the means of the posteriors. For example, the first-stage
realization for a particular GI might be a disappointingly low storm-
water reduction per $ of investment. Yet as a result of this experience,
engineers may also have learned how to improve that GI's design, which
improves the mean of the posterior distribution of gal/$ for that GI. As
another example, the reduction realized in the first stage could be high,
however, the stormwater managers may find that the best locations
have been taken, so that remaining sites would cost more for installing
GI, which results in a lower mean of the posterior distribution com-
pared to the prior distribution.

Rather than defining a decision tree by discretizing values of Stage I
and II investments x in this manner and then solving it by standard
backward induction methods, we instead solve a stochastic optimiza-
tion problem with the same logical structure using mixed integer linear
programming, as described in the Appendix. This allows us to treat x as
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continuous variables, and risk constraints can also be imposed (which is
done only with difficulty in a decision tree). The proposed method can
handle a large number of scenarios and GI types and is, in general, easy
to solve. Furthermore, our formulation allows the user to define
learnings (discussed in the next subsection). By changing the fiscal
budget and target CVaR (our risk metric in the proposed method),
tradeoffs between expenditures, risk, and expected stormwater reduc-
tions can be explored, as we illustrate with the example described in
Section 4.

3.1.2. Learning and learning curve functions
Learning is the process of understanding the system of interest.

Specifically, in statistics, learning is the process of updating one's beliefs
about the system from new observations or new findings, where a belief
is expressed as the distribution of a random variable. The traditional
Bayesian approach assumes a prior distribution for a random variable
based on current understanding, while representing learning by the
adjustments in the distribution in the later stages (Kelly and Kolstad,
1999). For example, such adjustments might depend on what is learned
and include: a. a reduction in the variance of the probability distribu-
tion, and/or b. a change in the mean of the distribution, as shown in the
decision tree example, above.

In practice, the prior distribution (of some uncertain variable CI) can
be updated using Bayes’ Law with actual observations after research or
monitoring take place. Although the actual observation is not available
at the first planning stage, we will usually expect that more GI invest-
ment will result in a more significant reduction in uncertainty (of GI
performance) in later stages. The underlying assumption is that im-
plementation experience can be transformed into the knowledge of the
systems through a process which is described as a learning curve
function (Berglund and Söderholm, 2006; Ferioli et al., 2009;
Söderholm and Sundqvist, 2007).

We adopt learning curve functions in our model and use them to

describe how the Bayesian updating process will be affected by the level
of investment. For example, learning curves, denoted G(x), might show
how the variance changes using 1-step, 2-step, or linear functions, as
shown in Fig. 3.

In the figure, the 1-step function shows that if the investment is
larger than or equal to $8M, learning occurs and the variance is reduced
to zero. Otherwise, the variance will remain unchanged. The 2-step
function has three states: no learning (NL), partial learning (PL) and full
learning (FL) with 100%, 25%, and 0% variance, respectively, corre-
sponding to investment under $8M, between $8M and $15M, and over
$15M. On the other hand, the linear function shows that the variance
reduction is proportional to any investment less than $20M.

Learning curves can be very general, for instance representing shifts
in the mean of the uncertain variable such that the average over the
posteriors is better than the prior because learning has improved the
technology. The users can choose the form and parameterization of the
learning curves to reflect expert judgment, statistical analyses, or both.

Fig. 2. Numerical example: portion of a GI planning decision tree in which the total budget for the 40-year planning horizon is $100M; the Stage I investment results
in PL for the uncertain GI1; and the Stage II decision can be either to invest further in GI1 or instead make all subsequent investments in GI2.

Table 1
The total stormwater reduction of each of the three scenarios in the PL branch example (Fig. 2).

Scenario s,r Time Horizon (year) Realization (gal/$) Investment ($M) Total Reduction (MG) Annual Reduction in Stage II (MG/yr)
Stage I Stage II Stage I Stage II Stage I Stage II Objective Risk Metric

1,1 40 30 0.7 0.775 40 60 2515 74.5
1,2 40 30 0.7 0.575 40 60 2155 62.5
2,1 40 30 0.3 0.48 40 60 1344 40.8

Fig. 3. Examples of learning curves that predict the fraction of reduction in
variance as a function of the investment.
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3.2. Two-stage stochastic programming with CVaR constraints

This section introduces a general mathematical statement of the
proposed method, which can help readers to understand the full for-
mulation in the Appendix.

3.2.1. Basic two-stage stochastic programming (TSP)
A generic formulation of a TSP model is as follows. Risk aversion is

ignored for the moment, so the objective (Eq. (1)) is to maximize the
expected reductions in runoff subject to a resource/budget constraint
and the non-negativity constraints (Eqs. (2) and (3)):

Choose x x{ , }I II in order to Maximize

= +f x x E C x E C x( , ) [ ] [ ]I I II I I s S IIs IIs (1)

Subject to:

+A x x B s S( ) 0,I IIs (2)

x x0, 0I II (3)

Notation:

• S is the set of future scenarios and s S is the index of the scenarios
• ×x x RandI IIs

n1 are the decision vectors representing the $ in-
vestments in n types of GI in Stage I and in scenario s, Stage II,
respectively
• =x x s S{ , for all }II IIs

• fI(x x,I II) is the overall expected benefit function (e.g., expected
reductions in stormwater runoff)
• CI

×Rn 1 is a random vector representing the GI's performance
coefficients (e.g., gal/$/yr) in Stage I
• ×C RIIs

n 1 is a random vectors representing the GI's performance
coefficients in scenario s, Stage II
• ×A Rm n and ×B Rm 1 are constant matrices for linear resource
constraints

The probability distribution of CI is the prior distribution while CIIs
is the posterior distribution, given that scenario s has occurred.
Updating the prior ofCI to the posterior of CIIs, given s, is the process of
“learning.” Matrices A and B are deterministic in the problem for-
mulations above, but they could also be stochastic.

A special case of the TSP model is one with a deterministic second-
stage problem. However, in the simplest case in which the decision
maker is risk-neutral, it makes no difference whether the second-stage
problem has residual uncertainty in the objective function or not, since
the objective is to maximize expected performance−we can just use
the expected value of CII s in the second stage objective. This is however
not true if the decision maker is risk-averse, in which case, a formula-
tion that includes the decision maker's risk attitude is needed. This
generalization is the subject of the next subsection.

3.2.2. Risk-averse optimization
A decision maker's risk-averse preferences can be modeled with

constraints on some risk measures (see Artzner et al., 1999). Let f x( ) be
the uncertain value of the objective function (assuming that f x( ) is to
be maximized), given decisions x. Conditional Value at Risk (CVaR) is
the risk measure used in this paper, and is a popular measure because of
certain mathematical properties it possesses. To explain CVaR, we first
introduce another popular risk metric, Value at Risk (VaR). VaR is the
value of the -quantile of the uncertain objective f x( ), given that the
decisions are x. is a specified number ranging from 0 to 1 indicating
the probability of the least acceptable outcome to the decision maker.
CVaR is the conditional mean of the outcomes worse than VaR x( ),
given and the decisions x. Therefore, CVaR VaR . The mathema-
tical expressions of the two risk measures are as follows:

• VaR:

=VaR x Min Prob f x y( ) { ( ( ) ) }y (4)

• CVaR:

=CVaR x VaR x dy( ) 1 ( )y
0 (5)

Fig. 4 illustrates the meaning of standard deviation ( ), VaR, and
CVaR for a standard normal distribution (mean=0, variance=1) and

= 0.025.
The VaR and CVaR measures are indices of “bad outcomes”, and so

more is desired if f x( ) is to be maximized (as is the case here with
stormwater reductions). Thus, to represent a limit on risk, they would
be constrained by imposing lower bounds. We chose to constrain CVaR,
because it has two appealing properties: (a) ease of computation (a
linear program can be used fx1 when there are discrete scenarios)
(Rockafellar and Uryasev, 2000); and (b) CVaR reflects the distribution
of outcomes below VaR, penalizing distributions whose tails encompass
more extreme values.

By adding CVaR constraints, the optimization model can represent
risk-averse preferences. If the constraint is binding, the result is likely to
be an investment that increases the expected performance in the worst-
case scenarios (those with a cumulative probability less than ).
However, this will likely be at the expense of a deterioration in the
expected value of the objective (1). That is, there will be tradeoffs be-
tween risk and expected performance.

Adding CVaR constraints in TSP directly makes it a non-linear
problem because of the nonlinearity of the probability distribution
function. However, Rockafellar and Uryasev (2000) proposed a linear
programming formulation with Monte Carlo sampling that approx-
imates the CVaR problem. We adopt a variant of that model (Krokhmal
et al., 2001) that maximizes the expectation of f x( ) subject to CVaR
constraints (6):

…z f x for all k m
P z CVaR

( ), {1,2, , }.
,

k k

s S k k
1

1 (6)

where k is the index of m realizations of the random variables; is an
auxiliary variable for VaR calculation; zk is an auxiliary variable for
the calculation of the loss exceeding VaR under realization k, which
has probability Pk; f x( )k is the function of some metric that we would
like to constrain the risk on under realization k; andCVaR is a specified
number representing the least acceptable outcome (e.g., the smallest
runoff reduction that is acceptable). Our implementation is somewhat
more complex to account for the two-stage nature of the problem in
which overall performance depends on realizations in both Stage I
(earlier years) and Stage II (later years). More details are provided in
the Appendix.

Fig. 4. Standard deviation ( ), VaR , and CVaR on Normal (0,1) (shaded area
0.025) (Note: f x( ) is the uncertain value of the objective function, not the

probability density.).
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4. A hypothetical example

4.1. Overview of assumptions

The modeling framework summarized above is general in that it
gives us the flexibility to build versions based on a range of assumptions
about learning to assess whether considering learning could sig-
nificantly change the optimal Stage I investment decisions. In the il-
lustrative example of this section, we implement two versions: the
Multi-level Learning (ML) model and the Technology Improvement (TI)
model, the details for both of which are presented in the Appendix. The
ML model assumes that the first-stage investment for a given GI type
could yield either NL, PL or FL (as in the two-step learning function
shown in Fig. 3). Meanwhile, the TI model assumes that learning not
only reduces the variance but also increases the expected value of the
posterior distributions of stormwater reductions. The TI model can be
viewed as having two learning curves for each GI type showing the
impact of learning upon the mean and variance, respectively, of the
posterior distributions, whereas the ML model only has a single learning
curve function corresponding to just the posterior variance.

In this two-stage planning example, we make the following as-
sumptions.

1. The stormwater manager can invest in three GI types, called
GI , GI , and GI1 2 3;

2. The types have random first-stage performance (stormwater reduc-
tion in gal/$/yr) levels, C C C, , andI I I

1 2 3, respectively;
3. A budget of $100M is available, which can be optimally split be-

tween Stages I and II. The planning horizon is 40 years: Stage I
begins at year 1 and Stage II will begin at year 11;

4. The decision variables are how to distribute the $100M budget be-
tween the stages, and among the GI types. The distribution of the
budget allocated to Stage II among GI types depends on the scenario
s;

5. The objective function is to maximize the total probability-weighted
annualized runoff reduction (in million gallons/year, MG/yr) re-
sulting from the investments, with the reductions summed over a
40-year planning horizon. Once a GI type is installed, it will con-
tinue to provide stormwater benefits until the end of the planning
horizon (year 40);

6. Constraints on investment include the overall budget constraint,
nonnegativity for all investments in each stage, and definitions of
CVaR and learning relationships (defined above; also see the
Appendix). A prespecified lower bound is placed on CVaRα=0.1.
That is, the manager specifies a minimum acceptable stormwater
reduction corresponding to the conditional expectation of the worst
10% of the outcomes. In the examples, we vary CVaRα=0.1 (MG/yr)
from 0 to 60 to represent increasing degrees of risk aversion. The
relationships between first stage investments and learning are
summarized in Sections 4.2 and 4.3.

The final set of assumptions concern the three GI types. They re-
present three distinct technologies: GI1 is a low-cost and well-under-
stood technology (a low variance for CI

1) with the lowest learning
thresholds for both PL and FL; GI2 is more cost-efficient than GI1 (in
terms of expected gal/$/yr performance) but the uncertainty associated
with its performance and its learning thresholds are also higher; andGI3
is a new technology with little empirical data for its cost-effectiveness
but is believed to have the highest expected cost-efficiency as well as
the most uncertainty about its gal/$/yr performance, and also the
highest learning thresholds for both PL and FL. Table 2 shows the as-
sumptions made about their first-stage performance in this example.

The learning curves (variance reduction for each GI type) used in
the ML model are shown in Fig. 5. There, G x( )i = 1,i {1,2,3} signifies
that the investment is not enough to trigger learning (NL); G x( )i = 0.25

means the investment results in partial learning (PL) and the variance is
reduced to one-fourth of the original value; and G x( )i = 0 means that
perfect information is provided in Stage II (FL), so that variance is re-
duced to zero. The PL (75% reduction) and FL (100% reduction)
thresholds are $5M and $10M respectively for GI1; $8M and $15M re-
spectively for GI ,2 and $15M and $30M respectively for GI3.

In the rest of Section 4, we show the Stage I decisions resulting from
the ML and TI models (Sections 4.2 and 4.3, respectively) for a range of
CVaR values, which represent different levels of risk aversion. Also, we
show the tradeoff between expected stormwater reduction and risk,
indicating that a substantial improvement in risk can be purchased with
a slight deterioration in expected reduction. The specific learning as-
sumptions used in the ML and TI models are described in their re-
spective sections.

4.2. Results from the ML model (assumes no technological improvement)

To represent uncertainty in GI performance, we generated 1000
Stage I scenarios s, as well as 5 Stage II scenarios r for each Stage I
scenario. We generated more State I scenarios because computational
experience shows that a larger sample size in Stage I can help solutions
to converge, but that increasing sample sizes in the later stage has less
of an effect (Ji et al., 2005). The issue of solution convergence is dis-
cussed further in Section 5.1.

The ML model is solved for values of CVaR ranging from 16MG/yr
to 42MG/yr under the $100M budget, and the resulting first stage in-
vestments in the three GI types are shown in Fig. 6 (left axis). The figure
also shows the probability-weighted average stormwater reduction,
averaged over the 40-year time horizon (right axis). At a CVaR of
16MG/yr, the CVaR constraint no longer binds and the risk-neutral
solution results, i.e., this is the solution that maximizes the expected
annual stormwater reduction, achieving 60MG/yr. Higher values of the

Table 2
GI performance assumptions for the hypothetical example (All
distributions assumed to be independent).

gal/$/yr CI
1∼ Normal ( =µI

1 0.4, =I
1 0.05)

CI
2∼ Normal ( =µI

2 0.5, =I
2 0.20)

CI
3∼ Normal ( =µI

3 0.6, =I
3 0.25)

Fig. 5. Variance learning curve functions used in the ML and the TI models.

Fig. 6. Stage I investment solutions (left axis) and the objective function values
(right axis) from ML model for CVaR0.1 in the range [16,42].
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CVaR lower the risk of “poor” stormwater results, but at the expense of
lower expected performance. CVaR can be feasibly increased as far as
42MG/yr, which represents a 163% increase; at that level, expected
stormwater reduction, however, falls about 13%, from 60 to 52MG/yr.
Whether that deterioration in expected performance is justified by the
reduced risk of abysmal performance is a value judgment that the de-
cision makers must make, informed by the results of the model.

Depending on the degree of risk aversion, the optimal strategy falls
into one of four groups. The results suggest that a risk-neutral decision
maker should invest all $100M in GI3 in Stage I, because GI3 has the
largest expected benefit, which is shown as the “All-in” solutions (when
CVaR 16 MG/yr). There appear to be insufficient incentives to invest
in other technologies or to wait to obtain better estimates of GI per-
formance. However, if the manager is risk-averse, she may prefer to
save some budget for future investment or mix her investment with
more than one GI type or to take advantage of learning. For example,
when <16 CVaR 24 MG/yr, the model suggests investments in GI3 but
also to save some budget for the later stage in case GI3turns out to be
worse than expected (called “greedy investment with deferral”
strategy). When <24 CVaR 41 MG/yr, the model suggests investments
in both GI2and GI3 while saving some budget to take advantage of
learning from FL or PL (called “mixed investment with deferral”
strategy) in GI2 and GI3. Finally, when <41 CVaR 42 MG/yr, the
model suggests investing only for learning (PL for GI and GI1 3; FL for
GI2) and saving the rest of the budget to invest in the second stage in
order to minimize the risk (i.e., maximize CVaR) (which we call the
“learn-and-adjust” strategy). Not surprisingly, the most investment
strategies suggest investing early because “to wait” means that there is
no reduction in the first 10 years, which lowers the total runoff re-
duction over the 40-year time horizon.

4.3. Results from the TI model (assumes technology improvement)

The TI model adds another set of learning curve functions (Fig. 7,
denoted Hi(x) for i {1,2,3}) to the above ML model such that, if the
learning criteria are met, the expected values of GI performance
C C C, andII II II

1 2 3 will improve by 50%, 20% and 0%, respectively. As a
result, compared to the ML model of Section 4.2, the model has a higher
incentive to make “here-and-now” (Stage I) investments for reducing
uncertainty and increasing the expected values (Fig. 8).

Moreover, under the technology improvement assumption, the
CVaR value can be as high as 51MG/yr and still yield a feasible solution
because of the increase in performance resulting from Stage I invest-
ment, while, in the ML model, the CVaR cannot exceed 42MG/yr.
Finally, when CVaR is set to 39MG/yr or higher, the TI model also
suggests an investment of $5M in GI1 to obtain PL, whereas this tech-
nology is not invested in by the ML model except the most risk-averse
case. This is becauseGI1, being more uncertain, has a higher potential to
increase its performance so that it may become a preferable option in
Stage II, if its uncertain second stage performance turns out to be re-
latively high. But if we do not invest in GI1 in Stage I, we may be dis-
appointed by the achieved runoff reduction in Stage II if GI2 and GI3
both turn out to be less efficient than expected.

Fig. 8 shows the model's objective (expected stormwater reduction

over 40 years) as a function of CVaR. It reveals that, without con-
sidering risk aversion, the objective value is 60MG/yr (the same as in
Fig. 6), which like the ML model is an outcome of the “all-in” strategy.
It turns out that under risk neutrality, the expected gains in technology
effectiveness in Stage II are not justified by the loss of efficiency re-
sulting from the Stage I investments necessary to achieve those gains.
However, in the presence of risk-aversion, CVaR can be increased to
51MG/yr, if the decision maker is willing to accept a loss of 5.6MG/yr
(from 60 to 54.4) in expected value. This occurs from investing the
minimal amount needed in Stage I to achieve the technology im-
provements and posterior variance reductions that are possible in all
three technologies. Also, when applying a “mixed investment plus wait-
and-see” strategy (CVaR in the range of [21,47]), the objective curve is
higher than the results in Fig. 5, which is a result of technology im-
provements. The technology improvement assumption can be viewed as
indicating that a drop in cost or an increase in efficiency for a particular
GI is forecasted as possible in the near future. Then the TI model can
help answer the question of how Stage I investments can help expedite
these improvements by providing several distinct solutions (mixes of
GIs) for the decision makers to ponder, with some solutions empha-
sizing reducing uncertainty and others focused on improving expected
stormwater reductions.

5. Discussion

Section 4 has shown that, in this hypothetical example, the ML and
TI models both suggest four distinct investment strategies, depending
on the learning assumptions, decision maker's risk attitudes, and the
particular parameter values assumed for the model. In a more realistic
case study, the choices of the model input assumptions need to reflect
the conditions and the opportunities in the study area; these will in-
clude the probability distributions and learning, costs, resource, and
other physical and regulatory constraints. However, the user should
keep in mind that, as with the results of any model, the precise nu-
merical results should be viewed skeptically and that the most valuable
outputs are insights as to which investment alternatives appear most
economic and why. In this paper, we focus on the definition and il-
lustration of the method; future work will apply the method to a rea-
listic case study.

In this section, we consider two crucial implementation issues. The
first issue is solution instability due to scenario sampling errors, in
which the optimal investments may be a function of the particular
sample that is taken. Section 5.1 presents a solution stability analysis to
examine the variability of the solutions and the resulting risk levels. The
second issue, which is discussed in Section 5.2, is the impact of alter-
native learning assumptions since they are based on expert judgment
and are likely to be imprecise and significantly impact the solution.

Fig. 7. Learning curve functions for expected value improvement in the TI
model.

Fig. 8. Stage I investments and objective function values from the TI model,
CVaR0.1 in the range [16, 51].
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5.1. Are solutions robust to sample error?

The technique we used to solve the ML and TI models in Section 4.1
and 4.2 relies on generating scenarios to approximate the random dis-
tributions, which are subject to sample error. A large sample size can
reduce this error but will increase computational costs. Our numerical
example presented in Section 4.1 has 14,013 decision variables and
18,013 constraints, respectively, which takes about 10–30min to solve
on a conventional laptop (Intel Core i7, 4 GB RAM). Therefore, it is not
practical to include much larger samples. A solution stability analysis
can provide information about solution variability due to sampling
errors, which also provides alternative solutions for the decision maker
to consider.

To evaluate whether the sample size is adequate and to assess the
resulting variability of the solutions, we perform a solution stability
analysis by running a Monte Carlo simulation of the ML model (Section
4.1) 100 times, with each of the 100 solutions obtained setting CVaR0.1
to 40MG/yr. Recall that the number of scenarios is 1000 and 5 for
Stage I and II, respectively.

Fig. 9 shows the results from the Monte Carlo simulation runs. The
histograms of the first stage solutions indicate that it is optimal to invest

=x $01 in GI1 in all solutions, and =x $8M (PL)2 in GI2 for 9% of the
solutions and =x $15M (PL)2 for 91% of the solutions. For GI3, it sug-
gests a range of =x $31M3 to $43M (FL) with an average investment of
$38.5M. Meanwhile, the CVaR0.1 value is set to 40 but the 90% ex-
ceedance value VaR0.1can vary from 45 to 47MG/yr and the expected
annualized runoff reduction can vary from 54.2 to 55MG/yr. Thus, the
pattern of investment is somewhat stable in the face of sample error,
but the precise level of risk and expected performance of the system can
vary. Larger sample sizes would result in smaller variations. The
stormwater manager can choose an investment decision and run the
Monte Carlo simulation to evaluate the variability of the objective and
CVaR values. For example, Fig. 10 shows the histograms of the objec-
tive and CVaR values of the initial GI investment plan of {$0M, $15M,
$30M} from 100 simulation runs, which are in the ranges of (53.7,
54.1) and (40.3,43), respectively. This analysis provides additional in-
formation regarding the stability of the resulting expected outcomes
and risk levels.

5.2. How do first-stage recommendations depend on learning opportunities
and risk aversion?

Decision makers can adjust learning assumptions to explore whether
the possible benefits of learning can justify significantly different
portfolios of the first stage investments. A trivial example is that a risk-
neutral decision maker would apply the same “all-in” strategy in the
previous ML and TI examples (Figs. 6 and 8), even though the latter has
an additional technology improvement assumption. On the contrary, a
risk-averse decision maker (with the CVaR set to 36MG/yr), would
likely adopt a “mixed investment with deferral” strategy, but the in-
vestment portfolio in the ML example (Fig. 6) consists of only GI2 and
GI3 whereas the investment portfolio in the TI example (Fig. 8) also
includes an investment in GI .1

Besides, our method can be used to evaluate active learning op-
portunities by applying a weight of zero to the first stage reduction in
the objective, so that the objective of the planning problem only focuses
on the second stage reduction and considered the first stage decision as
representing possibilities for active experiments. As an example, we
modify the TI model, changing the technology improvement assump-
tion to increase the effectiveness of GI , GI1 2 and GI3 by 60%, 20%, and
0%, respectively. Then the model would suggest a Stage I investment
portfolio of $5M, $8M, and $15M for GI , GI1 2 and GI3, respectively, for
a risk-neutral decision maker, but in the risk-averse case would re-
commend decreasing the investment in GI3 because of its high un-
certainty (Case 1 in Fig. 11). If the learning assumption is changed to
increase the effectiveness of GI , GI1 2 and GI3 by 60%, 30%, and 10%,
respectively, then the model would suggest investing $8M and $15M in
GI2 and GI3, respectively, in Stage I for a risk-neutral decision maker,
but would recommend adding an investment of $5M in GI1 for a risk-
averse decision maker (Case 2 in Fig. 11). GI1 is not included in the risk-
neutral case because of its low efficacy without learning but is added in
the risk-averse case because of its low uncertainty and improved effi-
cacy in the second stage. Thus, whether risk aversion results in adding
or subtracting types of investments from the first stage decisions de-
pends on the magnitude of technology improvement in the learning
assumptions.

Fig. 9. Results of 100 Monte Carlo simulation runs of the ML model for solution stability analysis.
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6. Conclusion and final remarks

We have presented a new class of methods for adaptive stormwater
management incorporating decision maker's risk attitudes and learning
followed by a hypothetical numerical example. Although the stochastic
programming-based method is developed for stormwater management,
it can also be applied to other adaptive management problems invol-
ving uncertainty and learning, e.g., natural resources management and
climate change.

We have described the general model set-up above, with detailed
formulations in the Appendix. Two different models are presented,
which reflect two distinct assumptions about the effect of learning: the
multi-level learning (ML) model which assumes learning can only re-
duce variance, and technology improvement (TI) model which assumes
learning would also improve the overall performance of GI. Then the
models are tested in the numerical example where the numerical results
show that four basic types of investment strategies could be optimal
(Figs. 6 and 8): all-in (invest all the budget in the first planning stage in
one technology); greedy investment with deferral (invest most budget in
one technology in the first stage and save a small amount of budget for
the later uses); mixed investment with deferral (having a mix of invest-
ments in the first stage to achieve partial or full learning (PL and FL)
and saving a portion of the budget for the later stage to take advantage
of the learning outcomes); and learn-and-adjust (early investment
mainly for learning PL and/or FL to defer the major decisions to the
second stage when the learning outcomes are revealed).

In the results from the TI model (Fig. 8), we see that possible
technology improvement can provide additional incentive to invest in
learning early (Stage I) and invest in technologies that have potential to
improve their effectiveness. However, the optimal investment strategy
would depend on the decision maker's risk attitudes, the learning as-
sumptions, and the particular parameter values. Finally, we show that
the solutions of the first-stage investments and the resulting CVaR es-
timates can be sensitive to sampling error in choosing scenarios. Solu-
tion stability analyses (5.1) can provide the decision makers more in-
formation concerning the risks (VaR and CVaR) associated with the
recommended GI portfolios.

Future work includes a more realistic case study where in which the
learning assumptions and the prior distributions of the GI performance
are derived from discussions with the experts and stakeholders. Another
future direction could be to improve the computation efficiency by
applying heuristic search or scenario s reduction methods.
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Appendix A. Model Formulations

We now present the technical details of the model. Following Rockafellar and Uryasev (2000) CVaR modeling method, we discretize continuous
random distributions by taking a sample of realizations and assigning a probability to each realization. Unfortunately, to represent many possible
degrees of learning under a continuous learning curve function, an impractically large number of samples is required. Therefore, to avoid the
resulting computational problems, we use step functions to approximate the learning curves so that we only need to generate a reasonably number of
realizations of future scenarios, one set of realizations per step. For clarity, our model denotes random variables with a tilde ( ∼ ).

A.1. Overall model formulation

The proposed method allows us to build models under various assumptions about learning to assess whether considering learning could sig-
nificantly change optimal “here-and-now” decisions. However, the exact formulation depends on the learning assumptions. As examples, Sections
A.2 shows the formulation of a Multi-level Learning (ML) model which assumes that learning can only reduce the uncertainty of GI performance,
whereas the Technology Improvement (TI) model in Section A.3 assumes that learning can reduce uncertainty and, meanwhile, stimulate im-
provement in the expected performance. The TI model can be viewed as an extension of the ML model since it has the assumption that learning

Fig. 10. Results of 100 Monte Carlo simulation runs of the ML model for the first-stage investment of {$0M, $15M, $30M}.

Fig. 11. Stage I investment portfolios for two alternative learning assumption cases.
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would improve overall GI performance in addition to the uncertainty reduction. Both models are applied to solve the hypothetical problem in Section
4.

A.1.1. Prior and posterior distributions
Following the terminology of Bayesian statistics, the distribution of the GI performance in Stage I (representing our current understanding about

the technology) is called the prior distribution, and the updated distribution in Stage II (representing our new knowledge given the experience
learned from the Stage I investment) is called the posterior distribution. In probability theory, the posterior distribution is defined as the conditional
probability given what is learned. The proposed method assumed that distribution parameters (e.g., mean and variance) of the posterior are
functions of the Stage I investment, which can be derived from the data and experts’ judgments. The assumptions come from the idea that more
experience with GI would reduce the uncertainty of its performance (we are interested in the overall performance of many GI practices but not the
performance of individual GIs) and could result in better designs and installations and therefore more reduction of stormwater. These functions are
named learning curve functions.

A.1.2. Learning curve functions
The prior distributions, denoted CI , are assumed normal distributions with a mean µ and a variance 2 (µ and 2 are vectors whose elements, µi

and i
2, i {1,2,3}, are the mean and variance of the three GI practices). The variance is the measure of uncertainty applied in this example. The

learning curve function for uncertainty (variance) reduction is in the form of a two-step function (see Fig. 3) indicating which of the three learning
cases (no learning (NL), partial learning (PL) and full learning (FL)) would happen, given an investment. The learning curve function for uncertainty
reduction of a GI type (denoted G x( )I , xI being the Stage I investment in that GI) is defined as follows for both ML and TI models.

=
>

<G x
if Th x NL takes place

if Th x Th PL takes place
if Th x FL takes place

( )
, ( )

, (0,1), ( )
0, ( )

I

PL
I

PL
I

FL

FL
I

2

2

(A.1)

where is a user specified number to represent the variance reduction under PL, andThPL andThFL are the thresholds for investments needed for the
PL and FL cases, respectively. For example, the two-step function in Fig. 3 has = = =Th Th0.25, 8, and 15PL FL . The function says that if the
investment is higher than the learning threshold of FL (ThFL), the variance of the posterior distribution is reduced to 0 (certainty). If the investment is
between the investment thresholds of PL and FL, then the variance is reduced to 2. Otherwise, the variance of the posterior distribution remains the
same as the prior.

Meanwhile, the learning curve function for mean improvement used in the TI model, denoted H x( )I , is assumed to have only one level in the
hypothetical example (Section 4) with a threshold equal to the threshold for PL, ThPL, as shown as below.

=
>

<
H x

µ if Th x
µ if x Th

( )
, 1,
,I

PL
I

I
PL (A.2)

where is scaling constant that adjusts the posterior mean. The function says that if an investment exceeds the threshold for PL (Th )PL , the average
performance would increase to µ. In a more general case, G(xI) could have more than one PL option representing different levels of variance
reduction, and H x( )I could have multiple levels as well.

Table A.1
Priors and posteriors of ML and TI models in NL, FL and PL cases assuming that priors and posteriors are normal distributions

Learnings Prior/NL (Posterior) FL (Posterior) PL (Posterior)

Multi-level Learning (ML) Model C (µ, )I 2 CIIFs (certainty) C C( , )IIPs IPs 2

Technology Improvement (TI) Model C (µ, )I 2 CIIFs TI, (certainty) C C( , )IIPs TI IPs TI, , 2

Table A1 illustrates how the posteriors change with the learning assumptions. CIIPs and CIIPs TI, denote the posterior (Stage II) distributions
learned in the PL case for the ML and the TI models, respectively. CIIFs and CIIFs TI, denote the Stage II realized performance value learned in the FL
case for the ML and the TI models, respectively, andCIPs andCIPs TI, denote the expected values of the posterior distributions in the PL case for the ML
and the TI models, respectively. The values ofCIIFs,CIIFs TI, ,CIPs, andCIPs TI, are random samples generated consistent with the assumptions concerning
the prior and posterior distributions.

The notation for the realized values and distributions are scalars for one GI and are vectors for multiple GI types, as in the formulations of the ML
and TI models. More details of the sampling processes are presented with the model formulations in Section A.2 and A.3.

A.2. ML model

The ML model maximizes the probability-weighted annualized stormwater reductions over the entire time horizon (million gallon/year, MG/yr),
subject to resource constraints (e.g., budget), logical constraints (“learning” and “auxiliary” constraints) that relate the amount of learning (NL, PL,
or FL) for each GI type to the amount of the first stage investment xI in that GI, and the CVaR constraints that place a lower bound upon the annual
stormwater reduction in the second stage resulting from all GI investments that have been made, representing the risk of failing to meet the
management goal. Note that the mathematical notation of the model formulations is in vector form instead of scalars.

A.2.1. Scenarios and random sample sets
Instead of directly working with the probability density functions and solving a non-linear programming problem, the proposed method uses

scenarios to approximate the random distributions so that the problem could be solved by linear programming. The random variables in the
hypothetical example are the GI performance in stormwater reduction per $M investment per year, and the scenarios are the possible outcomes of the
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random GI performance in the learning cases in Stage I and II. A scenario consists of a set of values representing a possible outcome, which are the
realized GI performance in Stage I and II, for each GI technology and each of the learnings (i.e., NL, PL and FL cases). The performances of the GI
practices are assumed to be statistically independent. That is, the performance of one GI gives us no information about the performance of the other
GI. The sampling procedure is described as follows:

1. Stage I: mI samples are drawn from CI (the prior distribution vector of the GI performance, in which the elements are the prior distributions of
each GI), denoted CIs , = …S ms {1,2, , }I I , for the realizations of performance for each GI resulting from Stage I's investment.

2. Stage II:
• The NL case: The sampling process for each scenario s is the same as described in Stage I (since the posterior and prior distributions are the
same), and the samples are denoted by CIINs r, , = …s S m{1,2, , }I I , r = …S m{1,2, , }II II .
• The FL case: The assumption of no uncertainty in Stage II means one realization per scenario (denoted CIIFs), unlike the NL case where mII
realizations are needed to represent the posterior uncertainty.
• The PL case: The generation of posterior realizations is more complex in PL case. The posterior distributions in the PL case, denoted C ,IIPs is
assumed to have a reduced variance ( , (0,1)2 ) according to the learning curve, G x( )I and a mean of µ (the prior mean). From the Law of
Total Variance, the prior variance must equal the preposterior variance: = +Var C E Var C Var E C( ) [ ( )] ( [ ]).I IIPs IIPs From this we can derive
that =Var E C( [ ]) (1 ) , (0,1)IIPs

2 . Similarly, from the Law of Total Expectation, we can derive = =E C E E C µ[ ] [ [ ]]I IIPs , as it should
be if there is no technology improvement considered. Therefore, the posterior mean E C[ ]IIPs of Stage II realizations CIIPs r, for the PL case given
scenario s is itself a random variable with mean equal to µ and variance equal to (1 ) 2, denoted CIP. This allows us to generate realizations
of CIIPs for each scenario s by first drawing a posterior mean, denoted CIPs, for that scenario s from C .IP Then a sample set of realizations of
individual C r S,IIPs r II, can be drawn from a distribution with mean CIPs and variance C r S, denoted , .IIPs r II

2
, This process is repeated for

each scenario s.

It is worth noting that the above process implies that mean performance of the posterior CIPis statistically independent of the observed Stage I GI
performance, CIs , in that scenario. This represents the situation in which experience with implementation results in learning not only in the form of
observations of the performance of Stage I investments, but also concerning the hydrological characteristics and installation and maintenance costs
for the remaining candidate sites. For example, the managers and engineers may develop new GI siting strategies and designs based on the new
knowledge of the watershed which improves the performance of GIs, or they may realize that the remaining GI candidate sites have poor soil
properties which would lower the overall GI performance. Alternatively, it is possible to assume nonzero or even perfect correlation of Stage II
performance with what is observed in Stage I, in which case the main information obtained in Stage I is the observed performance of that stage's
investments.

A.2.2. Mathematical formulation
The ML model formulation, which is a specific implementation of the general model in Section 4.2, is as follows.Decision variables. xI : the Stage I

investment vector whose elements xI i, , = …i N n{1,2, , } represent the investment in n GI types, ×x RI
n1 xIINs: the Stage II investment decision

vector for the NL case in scenario s whose elements xIINs i, represent the investment in n GI types, ×s S x R,I IINs
n1 xIIPs: the Stage II investment

decision vector for the PL case in scenario s whose elements xIIPs i, represent the investment in n GI types, ×s S x R,I IIPs
n1 xIIFs: the Stage II

investment decision vector for the FL case in scenario s whose elements xIIFs i, represent the investment in n GI types, ×s S x R,I IIFs
n1 LF : a binary

vector whose elements LF i, indicate whether (=1) or not (=0) FL occurs for each of the n GI types, ×L RF
n 1LP: a binary vector whose elements

LP i, indicate whether or not PL occurs for each of the n GI types, ×L RP
n 1LN : a binary vector whose elements LN i, indicate whether or not NL occurs

for each of the n GI types, ×L RN
n 1 : an auxiliary variable used to calculate VaR , Rzs r, : the stormwater reduction below in scenario s,

= …s S r S m, {1,2, , }I II II , z Rs r, Constants. A: a matrix of resource (land, budget, etc.) consumption rates per unit of investment in each GI type
for each of k resource constraints, ×A Rk nB: resource upper bounds. B Rk µ: the mean of the prior distribution of stormwater reduction rates for
the n GI types at Stage I. =µ E C[ ]I , ×µ R n1 CIs: the realization of the stormwater reduction rate in Stage I in scenario s for s SI , ×C RIs

n1 CIPs: the
expected value of the posterior of the stormwater reduction rate for the PL case in scenario s for all ×s S C R,I IPs

n1 CIIFs : the second stage
realization of the stormwater reduction rate for the FL case in scenario s for s SI , ×C RIIFs

n1 CIINs r, : the second stage realization of the stormwater
reduction rate for the NL case in scenario (s, r) ×s S r S C R, and ,I II IINs r

n
,

1 CIIPs r, : the second stage realization of the stormwater reduction rate
for the PL case in scenario (s, r) ×s S r S C R, and ,I II IIPs r

n
,

1 CVaR : the user-specified tolerable risk level for the second stage annual storm-
water reduction, (0,1). CVaR R

M: a large number (e.g., =M 106).
T T,I II : the number of years in the planning horizon of Stages I and II, respectively, T T R,I II Th Th,FL PL: the investment thresholds for FL and

PL, respectively, ×Th Th, RFL PL 1 n. = …Th Th i N nand , {1,2, , }i
FL

i
PL are the elements of their respective vectors.Objective and constraints.

… … … = +
+

+ +
=

( )Maximize f x x x x x x x µx T
T T m

µx C x C x, , , , , , , , , 1 ( )I I IIN IINm IIF IIFm IIP IIPm I
II

I II
I s

m

IINs IIFs IIFs IPs IIPs1 1 1
1

I I I

I

(A.3)

Subject to:

+ + +A x x x x B s S( ) 0, , (Resource Constraints)I IINs IIFs IIPs I (A.3.1)

+
+

+
+ + =

x Th L
x Th L

x ML Th
x M L L Th

L L L

u n

0
0

( )
1

, {1,2, .., }, (Learning Constraints)

I i i
PL

p i

I i u
FL

F i

I i F i i
FL

I i P i F i i
PL

N i P i F i

, ,

, ,

, ,

, , ,

, , , (A.3.2)
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x ML
x ML
x ML

u n s S
0

0
0

, {1,2, .., }and (Auxiliary Constraints)
IINs i N i

IIPs i P i

IIFs i F i

I

, ,

, ,

, , (A.3.3)

= =

z f x x x x s S r S

z CVaR

( , , , ), ,
, (CVaR Constraints)

s r IIs r I IINs IIFs IIPs I II

m m s
m

r
m

s r

, ,
1

(1 ) 1 1 ,I II
I II

(A.3.4)

= + + +f x x x x C x C x C x C x s S r S( , , , ) , ,IIs r I IINs IIFs IIPs Is I IINs r IINs IIFs IIFs IIPs r IIPs I II, , , (A.3.5)

x x x x s S, , , 0, (Non negativity)I IINs IIPs IIFs I (A.3.6)

The objective A.3 maximizes the expected annual average stormwater reduction over the entire time horizon, with the second stage reduction
being discounted by the ratio of the second stage planning horizon to the total planning years. Constraint A.3.1 sets a lower bound for the resources,
e.g., budget and suitable sites. Constraints A.3.2 and A.3.3 are logical constraints that identify which learning type happens in the second stage by
setting the upper bound of the corresponding second stage decision variable to M while restricting the upper bounds of the other second stage
decision variables to zero. Constraints A.3.4 enforce a lower bound on CVaR, which requires the evaluation of the stormwater reduction in each
scenario (s,r) by Eq. (A.3.5). Finally, constraints A.3.6 force the investment decisions to be non-negative.

A.3. The TI model

We assume that the investment could result in a technology improvement which increases the mean of the posteriors. Therefore, the realized
reduction in Stage II in the FL case (denoted CIIFs TI, ) should be sampled from a distribution with mean µ, >1 to account for “improvement by
learning.” In the PL case, the posterior mean CIPs TI, for each s is generated from CIP TI, , where =CVar( ) (1 )IP TI,

2, (0,1) and
=E C[ ] µIP TI, , denoted CIPs TI, . The random second stage samples in the PL case are generated from C C( , )IIs TI IPs TI, ,

2 . The objective fI(A.3) and
fIIs r, (A.3.5) in the ML model are revised as follows while the form of the constraints remains unchanged.

Objective:

… … … … … … =

+
+

+ +
=

( ) ( )Maximize f x x x x x x x Maximize f x x x x x x x µx

T
T T m

µx C x C x

, , , , , , , , , , , , , , , , , ,

1 ( )

I I IIN IINm IIF IIFm IIP IIPm I I IIN IINm IIF IIFm IIP IIPm I

II

I II
I s

m

IINs IIFs TI IIFs IPs TI IIPs

1 1 1 1 1 1

1
, ,

I I I I I I

I

(A.4)

= + + +f x x x x C x C x C x C x s S r S( , , , ) , for all ,IIs r I IINs IIFs IIPs Is I IINs r IINs IIFs TI IIFs IIPs r TI IIPs I II, , , , , (A.4.1)
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