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Abstract— National energy models produce aggregate scenarios of  

generation capacity, energy output, and emissions. However, we 

need finer scales to study the impact of resource use and air pol-

lution because timing and location determine impacts on sensitive 

ecosystems and human populations.  

We present a framework for disaggregating emissions projec-

tions to a scale compatible with air quality simulation models. The 

framework comprises three models that site new power plants 

consistent with historical patterns while recognizing water, 

transmission, fuel, and other factors that constrain siting, and then 

dispatches them consistent with those constraints. The resulting 

hourly emissions from individual plants are consistent with mete-

orology, in that peak demands and emissions occur during those 

hours when temperatures associated with such demands occur. 

Further, annual emissions vary in a way consistent with 

year-to-year changes in weather.  

An application of the framework disaggregates 2030 NOx 

emissions from a national electricity model in an eight-state region 

under two climate scenarios: no climate change (“1990s”) and 

accelerated change (“2050s”). Between-year variations in emis-

sions patterns under a particular climate exceed differences be-

tween average patterns of the two scenarios. This is in part be-

cause NOx emissions are capped; thus, the total cannot change, 

only its distribution over time and space. 

 

Index Terms—Environment, air pollution, climate change, 

power plant siting, Haiku, generation expansion, dispatch.  

 

I. INTRODUCTION 

ong run models of power sector investment and operations are 

widely used to project how the power sector could evolve in 

response to changes in technology, policy, climate, and 

economic conditions.  Notable are the IPM [29] and Haiku 

[21] power models and the electricity module of NEMS [27].  

Users of are interested in how different assumptions affect the 

mix and cost of generation; market prices; resource use, such as 

water, fuel, or land; and impacts of so-called “conventional” 

pollutants (particulates, SO2, NOx) and greenhouse gasses.  

As an example of such analyses, it has been predicted that 

climate warming would increase electricity use [e.g., 1,10], 

decrease hydropower availability, and increase thermal gen-

eration and associated emissions [26,31].  For instance, we have 

estimated short run sensitivities of summer electricity demand to 

temperature (on the order of 4%/
o
C for the mid-Atlantic region) 

[5]; long run sensitivities are even greater, as climate warming 

would increase investment in air conditioning.  Even if legislation 

caps annual emissions (as in the case of SO2 and NOx in much of 

the US), their impacts could change.  In particular, shifts in 

emissions timing (more during summer, coinciding with 

weather conducive to ozone episodes) and location, together 

with changed meteorology, could significantly affect tropo-

spheric ozone levels and their health impacts [2,16,18].  

However, with the exception of greenhouse gases, the impact 

of a ton of pollution or the consumption of a unit of water de-

pends on where and when those emissions and consumption 

take place.  For instance, air pollution is transported downwind, 

and is subject to complex transformations that are time and 

space dependent.  (For example, although NOx emissions usu-

ally enhance tropospheric ozone formation, under some condi-

tions NOx can instead be inhibiting [e.g., 32].)  Further, the 

health effects of the resulting ambient concentrations of pollu-

tion depend on population location, activity, and susceptibility.  

For example, a national model may project X MW of coal-fired 

plant in PJM, but its health impact depend on whether emissions 

take place close to population concentrations on the eastern 

seaboard or further upwind in the midwest [e.g., 17].  Thus, full 

understanding of the effects of a power sector scenario requires 

site- and hour-specific emissions projections. 

This requirement does not imply that accurate forecasts are 

needed.  Rather, emissions from alternative climate, policy, 

economic, and technology scenarios need to be downscaled in a 

consistent, logical, and convenient way so that possible impacts 

can be explored using air quality models.  No particular scenario 

should be taken as a precise prediction; rather, the goal is insight 

about trends and potential effects. 

Our purpose here is to present a modeling framework for cre-

ating geographically and temporally disaggregated emissions 

scenarios for the power sector on a multidecadal time-scale for 

use with air quality models such as Models-3 CMAQ [28].  The 

intent is to provide a theoretically defensible, transparent, and 

practical method for downscaling emissions from national energy 

models such as IPM, Haiku, and NEMS.  

The framework uses a sequence of models representing mar-

ket-driven electricity supply and facility location constrained by 

land use and policy-based emissions limits.  First, a national 

electricity model (here, Haiku [21]) is used to solve for regional 

technology, demand, and emissions totals for each of several 

multistate regions in the US. Then in the downscaling step, a 

series of three finer-scaled regional models allocate specific 

generation facilities to the county level and simulate their opera-

tion for specific hourly sequences of weather consistent with 

assumed climate scenarios, using the regional technology, energy, 

and emissions totals as boundary conditions.  A similar but sim-
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pler two-step approach has been used for environmental analysis 

of national energy policies since the 1970s National Coal Utili-

zation Assessment [e.g., 3], which assessed the local air pollution 

and other impacts of greater coal use.   That study used plant 

siting models (such as [20] for the northeastern US) to disaggre-

gate results of national energy scenarios.  However, unlike our 

study, it did not consider transmission constraints in a realistic 

fashion, nor did it produce hourly emissions that are consistent 

with how loads vary with weather.      

Of course, the amounts, locations, and timing of power sector 

emissions are sensitive to economic and technological assump-

tions.  This has two implications.  First, a transparent, theoreti-

cally defensible, and flexible method is needed to create emis-

sions scenarios.  Transparency results from a logical and readily 

understood connection between assumptions and results. Theo-

retical defensibility means that the methodology provides a co-

herent and acceptable framework for representing the market and 

policy drivers of power plant location and operation. Flexibility is 

required so that the implications of alternative assumptions can be 

readily explored.  Consistent with the worldwide trend towards 

liberalization of power markets, we use the concept of a com-

petitive market equilibrium, constrained by emissions policy and 

siting restrictions, as the organizing principle for spatially and 

temporally disaggregating power sector emissions.  This para-

digm is consistent with frameworks used by most national electric 

power sector models [e.g., 29].  

Our downscaling framework is a generalization of early linear 

programming-based regional power plant siting methods devel-

oped to spatially disaggregate emissions [e.g., 6,7,20, reviewed in 

11].  Our models assume that producers behave competitively and 

minimize the cost of the investments and dispatch needed to meet 

demand.  The framework attempts to provide more realistic pro-

jects of emissions patterns than previous regional emissions al-

location methods by adding the following features that the earlier 

generation of models lack: 

• Unlike transshipment or transportation load flow formulations 

of previous downscaling methods, we represent the power 

grid as a linearized dc load flow with losses [24]. 

• New power plants are allocated to counties within a subregion 

consistent with siting probabilities estimated using statistical 

models that relate past siting decisions to county-specific 

factors.  Furthermore, the amounts of capacity added are 

multiples of typical unit sizes, avoiding the unrealistically 

small plants that some previous downscaling methods yielded 

(e.g., nuclear facilities of 10 MW) [11]. 

• Hourly load profiles are produced that are consistent with 

hourly meteorology, in the sense that weather conditions that 

are known to produce higher loads (hot weather in the sum-

mer) actually yield greater demands and emissions.  This is 

important because such conditions favor ozone formation. 

Other recent downscaling models have some but not all of these 

features; for instance, [31] includes load flow constraints when 

projecting emissions in the Western US under climate change. 

The organization of the paper is as follows.  In Section II, we 

briefly summarize the downscaling framework, as well as the 

national energy model we use in the application (Haiku).  Section 

III presents the formulations of the three models that make up the 

framework.  Section IV provides illustrative downscaling results 

for a case study: 2030 demand and supply conditions in an eight 

state region in the eastern US under two alternative climate sce-

narios.  We offer some conclusions in Section V. 

II. FRAMEWORK SUMMARY 

Three new models (Figure 1) are used to downscale the ag-

gregate outputs of a national electricity model.  These outputs 

define “boundary conditions” (regional capacity, energy output, 

and emissions) which are spatially- and temporally-aggregated 

totals that the downscaling analysis is to disaggregate to particular 

locations and hours.  Boundary conditions for a particular sce-

nario year can be obtained from any national model; here, we use 

the electricity market model Haiku.  Haiku’s structure as well as 

supply and demand assumptions are documented elsewhere [e.g., 

4,21,22], so we only briefly summarize the model here. 

 

Fig 1.   Flow Chart for Downscaling Framework 

 

Haiku calculates electricity demand, electricity prices, the 

composition of electricity supply, inter-regional electricity trad-

ing activity among 21 regions, and emissions of NOx, SO2, mer-

cury and CO2.  Demand functions and supply curves are calcu-

lated for four time periods (super-peak, peak, shoulder, and 

baseload hours) in each of three seasons (summer, winter, and 

spring/fall). Hence, 12 market equilibria are identified for each 

simulation year, in each of 21 linked regions of the country.  

Haiku’s electricity supply depends on the type of generation 

technology as well as the cost and characteristics of fuels, and 

environmental and economic regulations.  Generation technology 

is represented by about 50 categories of generation facilities, 

distinguished by fuel type and vintage, in each of the 21 model 

regions. Investment in new capacity and retirements are deter-

mined endogenously. The model includes fuel market modules 

for coal and natural gas, and calculates prices that are responsive 

to factor demand. Fuel price forecasts are calibrated to match 

other forecasts including the US EIA Annual Energy Outlook 

[27]; demand growth assumptions are also consistent with [27].  

Demand is modeled as a partial adjustment demand system with 

elasticities specific to customer class, region, and season.  Na-

tional averages of the short run elasticities are –0.11 to –0.16, and 

long run elasticities are three times larger [22]. 

   EDM2:  

EDM3: 

 EDM1:  
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The first of our three models (EDM1, for “Emissions Down-

scaling Model 1”) allocates Haiku regional capacity to multi-

county subregions within states, and simultaneously dispatches 

that capacity on a detailed temporal basis for an average year.  An 

“average year” is represented by the average load duration curve 

expected under a given climate.  EDM1 considers an aggregated 

version of the grid, demand locations, fuel price differences, and 

locations of existing plants.  

The second model, EDM2, takes EDM1’s new capacity by 

subregion and allocates new generation facilities in realistic sizes 

to individual counties. We use an empirical (regression) siting 

model (one per generation technology) to calculate the probabil-

ity of siting new facilities in a county as a function of population, 

non-attainment status (under air pollution laws), and other char-

acteristics.  An integer program then assigns capacity to counties 

in approximate proportion to those probabilities, while respecting 

the constraint that plants must be realistically sized. 

The final model, EDM3, translates the average annual pattern 

of EDM1 emissions to source-specific hourly emissions for a 

particular meteorological year.  It does this by decomposing the 

annual average load duration curve (and associated plant opera-

tion and emissions) into particular hours within each modeled 

year.   (For instance, within a “2050s” climate scenario, the results 

of climate simulations may show that one particular year has a 

large share of peak temperature hours; EDM3 would then assign a 

proportionate number of the high demand/emissions hours to the 

high temperature hours of that year.)  The result is variation in 

emissions among years, but averages over the years that are con-

sistent with Haiku regional emissions results.   

III. FORMULATIONS OF EMISSIONS DOWNSCALING MODELS   

A. EDM1: Subregion Location & Mean Conditions Dispatch  

The function of this model is to take the boundary conditions 

from Haiku for a given power market, distribute new capacity 

among multicounty subregions in that market, and finally dispatch 

all capacity to meet an average year’s or ozone season’s loads, 

subject to a linearized dc load flow and assumed demand distri-

butions.  For instance, in our application in Section IV, we use 

Haiku energy and emissions for four summer demand periods 

within an eight state region as boundary conditions, allocate new 

Haiku capacity among subregions in that region (e.g., from the 

Maryland region of Haiku to four subregions within that state), 

and finally dispatch all the capacity against a more finely-defined 

load duration curve (here having 16 periods).  EDM1’s outputs 

are further disaggregated in space by EDM2 and time by EDM3 

(Figure 1). 

Since we assume demands are fixed (based on Haiku’s val-

ues), we can take advantage of the result that a market equilibrium 

is equivalent to minimizing cost (e.g., [12]).  So we formulate 

EDM1 as a cost-minimizing linear program (LP): 

Choose the values of the following decision variables:  

• ( , , )capn r m i : MW of new generation capacity of each type m 

at each node i in each Haiku region r in the study region;  

• 
1
( , , )x k s t , 

2
( , , , , )x r m i s t :  MW energy produced by existing 

plant k and new generation capacity of type m located at (r,i), 

respectively, in each load period p and season s; and 

• ( , , , )f i j s t : MW transmission flow from node i to node j on a 

linearized dc network.  

… In order to minimize annualized cost, including:  

• operating costs of existing and new capacity, accounting for 

differentials in fuel, emissions permits, and other costs across 

subregions; plus  

• the annualized capital cost of new generation facilities, when 

differing acoss subregions, 

… Subject to the following constraints:   

• generation for each generator and time block and season is 

limited by its capacity, derated for outages; 

• boundary conditions that require that appropriate sums of 

variables across subregions, generators, and model time pe-

riods be consistent with Haiku’s totals.  These can include 

total generation by each Haiku plant type for each Haiku pe-

riod; total emissions for each Haiku region and period; and 

total new generating capacity of each type by Haiku region; 

• linearized dc load flow constraints, including energy balances 

at each node (subregion) in each period and season; flows 

proportional to voltage angle differences between nodes; 

losses; and flows limited by transmission capacity; and 

• siting constraints that limit where new plants can be put, con-

sidering land, water, and fuel transport availability.   

The general structure is similar to that used in other regional 

energy facility location models that have been used for power 

system planning, geographical downscaling of national energy 

scenarios, and analyses of environmental and economic regula-

tory issues [e.g., 9,11,14,20]. However, EDM1 is unique in in-

cluding all these features simultaneously.   

The basic structure of EDM1 also resembles LP-based ca-

pacity expansion models commonly used in the industry 

[12,25].  But there are four key differences between EDM1 and 

such expansion models.  These include boundary conditions, 

siting limitations and costs, and the representation of transmis-

sion and loads. 

 1. Boundary Conditions.  The most important difference is 

the boundary conditions.  Three types are given below in 

(1)-(3): the appropriate sums of disaggregated energy genera-

tion, new capacity construction, and emissions are consistent 

with the Haiku aggregate values.  

      1( ), ( , )
( , ) * ( , , )

k k m t t s p
H s t x k s t

∈ ∈∑   

 2( , ), ( , )
( , )* ( , , , , )

i i r m t t s p
H s t x r m i s t

∈ ∈
+∑   

 (1 ) ( , , , )TGEN TGEN r m s pθ≥ − and  

 (1 ) ( , , , )TGEN TGEN r m s pθ≤ +  , ( ), ,r m m r s p∀ ∈   (1) 

  2( , )
( , , ) ( , )

i i r m
capn r m i TCAP r m

∈
=∑    , ( )r m m r∀ ∈  

 (2) 

  1 1( ), ( , )
( , )* ( , )* ( , , )

k k r t t s p
H s t E k s x k s t

∈ ∈∑

 2 2( ), ( , ), ( , )
( , )* ( , , )* ( , , , , )

m m r i i r m t t s p
H s t E r m s x r m i s t

∈ ∈ ∈
+∑   

    (1 ) ( , )
TNOx x

TNO r pθ≥ −  and 

    (1 ) ( , )
TNOx x

TNO r pθ≤ +    , ,r s p∀        (3) 

The index sets we use are defined as follows: 

i(r,m) Set of nodes i in region r in which new plants of type m 

can be sited (given availability of land, water, and fuel).  

k(m)  Set of existing generators k that are included in Haiku 
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model plant m.   Note that each k is associated with a 

unique node i 

m(r)  Set of Haiku model plants m associated with region r, 

with each m associated with only one region. 

t(s,p)  Set of time blocks t that are within Haiku period p = 

1,2,3,4 and season s ∈ {summer, winter, spring/fall}. 

The parameter used are: 

θTGEN, θTNOx   Relaxation parameters for energy and emissions 

boundary conditions [dimensionless]. 

1( , )E k s  NOx emission rate of existing plant k [tons/MWh].    

Values of E1 and E2 are the same as Haiku data. 

2 ( , , )E r m s  NOx emission rate of new plant ),( mr  

[tons/MWh]. 

( , )H s t  Length of EDM1 time block t in season s [hours/yr]. 

TNOX(r,p) Total NOx emissions for Haiku region r during 

Haiku period p [tons/period/yr]. 

TCAP1(k)  Existing capacity of plant k [MW]. 

TCAP2(r,m)   Total capacity of new plant (r,m)  [MW]. 

TGEN(r,m,s,p)   Total generation by plant (r,m) in season s and 

Haiku time block p [MW]. 

The user has discretion about which of these conditions to 

enforce.  Since our application below is focused on calculating 

disaggregated emissions, we only impose the new capacity and 

emissions boundary conditions (2), (3) and omit the energy 

conditions (1).   That is, we site new capacity such that the total 

new capacity across all subregions in a Haiku region equals the 

regional total for each type, and dispatch all capacity so that the 

NOx emissions across all plants in a Haiku region within each 

Haiku season and period are consistent with the Haiku aggre-

gate value for that region, season and period.  However, we 

allow individual generation totals to differ because transmission 

losses and flow limits mean that it may not be feasible to exactly 

match the energy outputs of each plant type.   

 In our experience, in order to obtain feasible solutions, it has 

also been necessary to slightly relax the included boundary 

conditions in some cases.  This may indicate that subregional 

constraints are such that EDM1 yields a more realistic solution 

than the national model.   However, we assume that the purpose 

of the framework is to disaggregate regional totals, not modify 

them.  Thus we express (1) and (3) as a pair of inequalities that 

force the downscaled energy and emissions to be within a pre-

specified range of the Haiku values.  When this has been a 

problem, we have found that values of the parameters θTGEN, 

θTNOX on the order of 1% suffice to yield a feasible downscaling.  

When applying EDM1, the robustness of the downscaled results 

to those parameters should be evaluated; ideally, the patterns of 

emissions would only change insignificantly. 

 2. Siting Limitations and Spatially Differentiated Costs.  New 

power plants of each type can only be built in a subset of loca-

tions.  For instance, air quality rules prevent use of coal in some 

areas.  Baseload plants use large amounts of cooling water, so 

they need to be near the coast or large rivers. 

   The cost of building and operating plants can also vary within 

a Haiku region.  For instance, mine-mouth plants in western 

Pennsylvania have lower coal costs than plants further east, due 

to the need for rail transport of coal to the latter.  However, 

Pennsylvania defines a single Haiku region. On average, our 

downscaling model uses the same variable costs C1 and C2 as 

Haiku, but we differentiate those costs among a Haiku region r’s 

subregions i, increasing them for subregions further from fuel 

sources and decreasing them for subregions that are closer, 

based on typical fuel transport costs.    

We also differentiate plant construction costs among subre-

gions.  Because land is costly in urban areas (such as northern 

NJ), so construction costs there will be higher.  Yet as total new 

capacity of each type is a fixed boundary condition (2), only 

differences in capital costs among subregions matter.  Thus, the 

cost of new capacity only has to represent the increment relative 

to a baseline, instead of the total cost.   

3.  Transmission Representation.  We use a linearized dc load 

flow model, modified to represent quadratic power losses [24].  

To preserve the linearity of the model (so we can use efficient 

LP solvers), the load flow model uses an iterative approach 

based upon a Taylor’s series approximation of the quadratic loss 

terms [13].  In that approach, an initial solution without any is 

inserted in a first-order Taylor’s series expression for losses, 

and a new set of flows obtained by solving EDM1.  This process 

can be repeated until results converge, which occurs within two 

or three iterations [13].  Alternatively, a nonlinear solver could 

be used instead of the iterative LP. 

We do not represent transmission expansion decisions 

endogenously, however.  This is because expansion of the grid 

for a linearized dc load flow results in integer variables (for new 

corridors) and nonlinear expressions for the voltage-flow con-

straints (since reactance is a function of capacity) [e.g., 19].  

Instead, we use an exogenously specified transmission grid.  If 

instead a transshipment (path-based) formulation of load flow is 

used, then transmission variables could be included [25], but 

this would be at the expense of realism of the load flow.   

4.  Load Representation.  In order to perform the temporal 

downscaling, EDM1 has more time blocks than the 12 blocks 

per year in Haiku.  For instance, in the example later in this 

paper, EDM1 has four time periods t for each of the four Haiku 

periods p during the summer season, or 16 blocks total.  Figure 

2(a) compares stylized summer load duration curves implied by 

the Haiku and EDM1 load representations.  Linear models such 

as Haiku and EDM1 (and LP generation models in general [25]) 

approximate load duration curves by a series of steps, one per 

load period with a constant MW load in each period.  An in-

terpolation/smoothing procedure is used to define EDM1 

blocks whose total energy sum to the Haiku energy in each 

associated p while providing a better approximation of the 

underlying smooth load duration curve. Figure 2(b) shows the 

resulting curves for our 2030 market simulation under the two 

climate scenarios used in the case study of Section IV. 

The load duration curves in Haiku and EDM1 represent ex-

pected annual load duration curves, averaged over the possible 

yearly load distributions that vary from year to year because of 

meteorology.  As Section III.C explains, hourly time profiles of 

emissions for particular years are derived by EDM3 from the 

average output of EDM1 by associating particular hours in each 

meteorological year with the EDM1 load blocks. 

Since air quality models need specific facility locations, we 

could have formulated EDM1 as a mixed integer program that 

sites realistically sized plants at a finer scale.  However, such a 

model is more difficult to solve, and would assume that all siting 

considerations can be captured in a cost function.  Instead, we 
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developed EDM2 to capture empirical patterns of siting while 

disaggregating EDM1 results to the county level. 

 

 
 

 
 

Fig. 2.  (a)  Schematic of Haiku 4-block (p=1,..,4) (solid lines) and EDM1 

16-block (t=1,..,16) (dashed lines) approximation of summer load duration 

curve used in application.  (b) Comparison of  “1990s Climate” and “2050s 

Climate” load duration curves for year 2030 market simulations 

B. EDM2: County-Level Siting of New Capacity  

These models allocate new subregional capacity capn(m,r,i) 

to the county level in reasonably sized generation units.  This 

allocation is done in two steps in EDM2.  First, we calculate the 

expected probability of siting of each particular plant type in 

each county based on the county’s characteristics.  Then an 

optimization model attempts to allocate plants as consistently as 

possible with those probabilities, as gauged by a squared de-

viations objective.  The regression models used by EDM2 are 

described in detail elsewhere [5].  In essence, the probability 

p(m,c) of siting one or more new generation units type m in 

county c is estimated as a function of independent variables Y = 

{y(n,c), n=1,2,..} using a log logit formulation: 
 

log [p(m,c)/(1- p(m,c))] = a(m) + Σn b(m,n)y(n,c)     (4) 
 

where a(m) and b(m,n) are estimated coefficients.  This standard 

transformation takes any variable that is confined to the range 

(0,1) (such as probability) and converts it to a variable on the 

real line [8], thereby ensuring that any calculated p(m,c) will be 

in that range.  Future research could test nonlinear relationships, 

such as saturation effects, in which the presence of capacity 

increases the probability only up to a point. 

 The values of the coefficients are estimated using a maximum 

likelihood method from historical siting decisions in the period 

1995-2004, using all continental US counties as the database.  

The independent variables include presence of existing gen-

erators, ozone attainment status, population variables, state 

utility deregulation status, and median income.   The equation is 

estimated separately for m = coal-fired baseload plants, com-

bined cycle plants, and combustion turbines.   

 Given the estimated coefficients, the values of p(m,c) are 

calculated using (4) for each county c in the region modeled.  

Sample values are provided in Section IV.C, below.   The next 

step is to use those probabilities to allocate new capacity 

capn(m,r,i) in subregion i to counties c∈ c(i,m), where c(i,m) is 

the set of counties in subregion i in which plants of type m can 

be sited.  EDM2 does this by trying to distribute capacity to 

counties in proportion to their p(m,c), while respecting the 

constraint that only integer numbers of units can be sited.    

The formulation is presented after defining notation: 

U(m)  Standard generating unit size for generating unit type m, 

in MW (e.g., coal steam = 600 MW). 

capn′(m,r,i) = capn(m,r,i) − [capn(m,r,i) MOD U(m)] (i.e., the 

capacity of the the largest integer number of generating 

units whose capacity is no more than capn(m,r,i).    

N(m,r,i) = capn′(m,r,i)/U(m) 

ns(m,c)  The number of generating units of type m sited in 

county c.     

p′(m,c) = p(m,c)/ Σ c∈ c(i,m) p(m,c)    For each subregion i, the 

rescaled probability for county c and plant type m. 

The model is then: 
 

MIN     Σ c∈ c(i,m) [ns(m,c) − p′(m,c)N(m,r,i)]
2
      (5) 

Subject to: 

All plants are sited:   Σ c∈ c(i,m) ns(m,c) =N(m,r,i)  (6) 

Only integer numbers of plants are sited: 

    ns(m,c) ∈ {0,1,2,….}    ∀ c∈ c(i,m)    (7) 
 

A challenge in solving (5)-(7) is that it the model is a nonlinear 

integer program, which can be hard to solve to optimality.  

Heuristic methods that yield good but not necessarily optimal 

solutions can also be applied.  

 The resulting solution is then translated into the amount of 

new capacity capnco(m,c) of type m in each county c as follows.   
 

For each subregion i:  

 capnco(m,c) = ns(m,c)U(m) + [capn(m,r,ic(c)) MOD U(m)] 

  for c∈ c(i,m) having the highest p′(m,c) in that subregion 

 capnco(m,c) = ns(m,c)U(m)  for all other c∈ c(i,m) 
 

In words, ns(m,c) generating units of size U(m) are assigned to 

county c.  The only exception is the county with the highest 

probability, which is also allocated the remainder capacity that 

cannot be assigned as an integer unit.  For the purposes of air 

quality simulations, all new capacity in a county c is assumed to 

be sited at its geographic centroid.  

 Geographic downscaling of emissions can then be completed 

by taking EDM1’s total emissions for a subregion i’s capacity of 

type m for each period, and dividing it among the existing and 

new generators of that type in proportion to their capacity in i, 

while accounting for meteorology.  This is described next. 

C. EDM3: Allocation of Emissions to Hours 

However, to perform an air quality simulation, further tem-

poral downscaling is required.  In particular, emissions must be 

specified on an hourly basis, consistent with the chronology of 

temperatures and other meteorological variables.   For instance, 

(a) 

(b) 
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higher air conditioning loads and, thus, higher NOx emissions is 

associated with hotter and stiller meteorology that, in an un-

happy coincidence, also increases the likelihood of smog epi-

sodes.  Thus, the probability of extreme pollution concentra-

tions increases compared to the naïve assumptions that power 

plant emission rates are unaffected by weather (as assumed, e.g., 

in SMOKE [28]) or vary independently of weather.  If climate 

warming occurs, it would increase the frequency of hot days, 

running the risk of increased frequency of ozone episodes, even 

if seasonal or annual NOx emissions are capped. 

Therefore, we developed EDM3 to distribute the average 

annual emissions resulting from EDM1 among hours in par-

ticular years consistent with the meteorology in those years.   

The assumption is that the annual load duration curve used in 

EDM1 (Figure 2) can be viewed as being assembled from the 

actual load duration curves of a sample of years by ordering all 

hourly loads from all years from most to least MW, and then 

rescaling the hours axis.  To allocate emissions to individual 

years, we reverse this assembly process after solving EDM1; 

this reversal simply notes the specific hours of each year that 

occur in each of EMD1’s load blocks t in Figure 2, and then 

assigns the EDM1 emissions to those hours.  So, for instance, if 

“2055” is a particularly hot year in the “2050s” scenario, then it 

will have more hours occurring in the peak block (far left of 

Figure 2) than, say, “2054” if the latter is a relatively cool year.   

The “2054” peak block loads might occur (say) between 16:00 

and 19:00 on July 23, so the EDM1 emission rates for the peak 

block would be assigned to those hours. 

The EDM3 procedure follows the below three steps, yielding 

an hourly time series of emissions for each power plant. 

Step 1.  For a sample of Y years (for instance a decade), obtain 

hourly temperature data for a selection of weather stations in the 

region being modeled.  The data could be from historical re-

cords, or could be generated by climate simulation models.  In 

our application, we use the MM5 module to downscale multi-

year climate scenarios generated by the GISS global circulation 

model (as in [15,33]).  We accessed GISS simulations for two 

different “climates”: a “1990s” climate, representing average 

climate conditions in that decade, and a “2050s” climate, rep-

resenting conditions under a doubling of atmospheric CO2 

concentrations.  Note that these data are simulations, and not 

actual observations.  We compare the distributions of emissions 

resulting from those two decades in Section IV. 

Step 2.  Develop a statistical short-run load forecasting model 

that projects hourly load for a given subregion or collection of 

subregions based on historical data.  For the application below, 

we used a simple model specification that is quadratic in tem-

perature and uses dummy variables for day of the week and hour 

of the day: 
 

L(i,y,h) = AL+BT1(i,y,h)T(i,y,h) + BT2(i,y,h)T(i,y,h)
2
 

+ BWDW(y,h) + Σh′ = 2,..,24Bh’Dh(h, h’)        (8) 
 

where: 

L(i,y,h)  Load in subregion i in hour h of year y [MW] 

T(i,y,h)  Temperature in subregion i in hour h of year y [
o
C] 

DW(y,h)  Dummy variable, indicating whether the hour occurs 

during a weekday (1) or weekend (0)  

Dh(h, h’) Dummy variable, with a 1 indicating that the hour h is 

associated with hour h′ ∈ {2,..,24}.  (The dummy is 

zero for the first hour h′ = 1.) 

AL, BT1 , BT2 ,BW, Bh   Regression coefficients, which are specific 

to the subregion whose loads are modeled. 

Other more sophisticated time series, neural network, or other 

models can instead be used (as in [5]), as long as the input vari-

ables are available from the meteorological simulation. 

 Step 3. For all hours h =1,2,.., H, in all years y in the time 

period under consideration (e.g., the “2050s”), rank the hours in 

decreasing order according to the total estimated regional load 

Σi L(i,y,h), with the rank of the h
th

 hour being Rh(h).  (For in-

stance, if Y =10 years, then there would be H = 87,600 hours, 

ignoring Feb. 29 in leap years.  If h =10,367 is the highest load 

hour, then Rh(10,367) = 1.  In that case, if h = 23,998 is the 

lowest load hour, then Rh(23,998) = 87,600.)   With T being the 

total number of time blocks in EDM1, let Rt(t,s) be cumulative 

number of hours of all load blocks that have a load equal or 

exceeding load block t in season s.   (E.g., if t=1, s=summer and 

t=2, s=summer have the first and second highest loads, respec-

tively, and each lasts 16 hours per year and Y = 10 years, then 

Rt(1,summer) =160 and Rt(2,summer) =320.)  Let XEDM1(t,s)  = 

{ 1( , , )x k s t , 2 ( , , , , )x r m i s t , ∀ r,m,i,k} be the vector of EDM1 

generation variables for season s and period t .   Finally, let 

{t(h),s(h)} be the value of  the vector {t,s} in which hour h 

occurs; i.e., this is the value of {t,s}such that Rt(t,s) is the lowest 

possible value that still exceeds Rh(h).  Then dispatch 

XEDM1(t(h),s(h)) and its associated emissions are assigned to 

hour h.   This assignment is repeated for all h in the years of 

interest.  The resulting hourly series of geographically disag-

gregated emissions would then be used in the air quality model 

by assuming that all plants of a given type m in a given subre-

gion i have the same emissions rate per MW of capacity. 

 An important assumption in EDM3’s procedure for allocat-

ing emissions among years is that banking of NOx allowances is 

allowed (as it is under US present law), and that generators have 

perfect knowledge of the price of and need for allowances.  In 

particular, we assume that emissions can be shifted from low 

demand years to high demand years such that the price of al-

lowances is the same in all years.   

IV. APPLYING THE FRAMEWORK: PJM-ECAR 2030 UNDER 

TWO DIFFERENT CLIMATES 

The downscaling modeling framework EDM1-EDM3 has 

been implemented for the eight states shown in Figure 3.  This 

region includes the original PJM market plus the coal generat-

ing states of Ohio and Indiana, which we call the “PJM-ECAR” 

region.   We illustrate the use of our framework by downscaling 

year 2030 emissions from two Haiku market solutions: one 

under a “present climate” scenario (“1990s”) and the other 

under an accelerated warming scenario representing a doubling 

of CO2 concentrations (“2050s”).    

A. Assumptions 

We simulate power markets for the year 2030 because it is the 

last year considered by Haiku.  We consider the extreme cases 

of no climate change (“1990s climate”) and a doubling of CO2 

(“2050s climate”) to show how climate can affect the results.  In 

the “1990s” Haiku solution, all demand and fuel price assump-

tions are consistent with USEIA [27] projections.  However, in 
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the “2050s” scenario, heating- and cooling-degree days in the 

United States are assumed to change in a linear fashion over the 

Haiku solution years (2005, 2010, …) until 2030, at which time 

they are assumed to be consistent with the average values cal-

culated from the GISS “2050s” scenario.   For instance, the 

“1990s” average summer temperature of 72.9 
o
F in Pennsyl-

vania would, under the GISS scenario, warm to 75.5 
o
F by 2030.  

Summer warming varies from 1.5 to 2.5 
o
F among the states in 

the study region, while winter warming is approximately twice 

as much.   

This warming affects electricity consumption (through 

Haiku’s demand functions which depend on heating- and 

cooling-degree days) and thus electricity prices and capacity.   

Haiku projects that overall US energy generation and prices in 

2030 are a total of 2% higher, on average, in the warming 

scenario (“2050s climate”) relative to the unchanged climate 

scenario (“1990s climate”), while capacity increases by 8% to 

accommodate summer peaks.  Figure 2(b) shows the summer 

load duration curve for the Haiku regions including the 

PJM-ECAR study region, revealing the higher demands under 

the “2050s” climate.  No national CO2 legislation is assumed to 

be in place (consistent with USEIA [27] assumptions), so CO2 

emissions increase under the warmer climate. But regional SO2 

and NOx caps mean that annual emissions of those pollutants in 

the eastern US change little, although their timing can change 

because of shifts in demand patterns.  The stress that higher 

temperatures place on  markets is evidenced by higher NOx 

prices; the 2030 summer NOx price is almost three times higher 

in the “2050s” scenario than in the “1990s” scenario. 

 
Fig. 3.   Study region for downscaling, along with EDM2 siting results for 2030 

under two climate scenarios 

 

Haiku results for the two scenarios are downscaled to the 

eight state region in Figure 3 using a version of EDM1 that 

provides considerable detail on the summer ozone season (May 

- Sept.).  A total of 500 Haiku model plants m are considered, 

representing 3719 individual existing plants k as well as new 

capacity.  Each Haiku summer load block p (Figure 2(b)) is 

divided into four EDM1 load blocks t, for a total of 16 summer 

blocks with the following number of hours in each: 

t = 1-4: 9 hours/block;         t = 5-8: 37 hours/block; 

t = 9-12: 229 hours/block;  t = 12-16: 643 hours/block 

The total number of summer hours are 3672 hours.  Thus, we 

provide more detail for the peak blocks when emissions (and 

their impacts, due to hot weather) are likely to be highest.   

 Our approximation of the transmission network in the 

eastern part of the study region is shown in Figure 4.  

 
Fig. 4.   Assumed transmission grid and EDM1 allocation of new Haiku 

capacity among subregions (OH, IN, WV, SW PA capacity shown together) 

 

B. EDM1 Results: Average NOx Emissions Distributions 

Figure 5 shows emissions duration curves that result from 

EDM1 for the summer ozone season in the eight states based on 

the average load duration curves for 2030 (Figure 2(b)).  One 

curve is shown for each climate scenario.  The total emissions 

under each curve is equal, consistent with the assumption of a 

cap-and-trade policy.  However, the distributions within the 

season differ, especially during the peak, when the 2050s cli-

mate yields higher peak emissions (by about 3%).   This may 

understate the actual increase that would result from climate 

warming, since Haiku’s present demand model does not change 

the within-season load shape, even though more air condition-

ing would take place.  (Other energy models can account for 

load shape changes due to changes in mixes of energy-using 

equipment, such as NEMS [27], which was used in the down-

scaling study by Chen et al. [5].)  

But to judge whether these differences are significant, we 

need to consider the variation of curves from year to year within 

a climate scenario. We do this in Section IV.D, below. 

It is possible that a greater concentration of emissions into 

certain hours under the “2050s” scenario could provoke a re-

action by local authorities.  Yet, consistent with the philosophy 

of national energy models, e.g., NEMS, we take as given the 

present national and state regulatory structure.  It would be 

interesting to postulate changes in local rules in response to 

shifts in emissions locations or timing.  However, endogenizing 

rules would involve making arbitrary assumptions about future 

political attitudes and their translation into rule changes; this 

would introduce complexity and reduce model transparency. 
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Fig. 5.   Mean 2030 NOx emissions duration curves from EDM1 for study 

region for “1990s” and “2050s” climate scenarios 

 

Figure 4 shows how EDM1 distributes the new generation 

capacity created by Haiku by the year 2030 in response to de-

mand growth.  Individual 600 MW baseload units are shown as 

separate circles, while a single square indicates a region where 

combined cycle capacity is sited (with the number of 400 MW 

units being indicated within the square).  (Not shown in the 

figure is the modest amount of combustion turbine capacity that 

is also sited in northern NJ.)  These additions are over and above 

those that have already been announced by generation compa-

nies.  The figure reveals that baseload coal plants dominate in 

mid- and northwest PA, while integrated gasification-combined 

cycle facilities are more important further west.  Gas-fired 

combined cycle plants are the major type of new plant sited in 

the east.  The figure shows “1990s” climate additions in circles 

or squares with a black border; in most cases, the “2050s” cli-

mate adds that capacity plus the additional capacity shown in 

circles or squares without a border.   Thus, the “2050s” climate 

has more baseload capacity in the west, and eight more com-

bined cycle units in northern NJ.  

C. EDM2 Results: Siting Scenarios by County 

The regression models (4) used by EDM2 show the prob-

ability by county of siting baseload, combined cycle, and 

peaking power plants, based on historical siting patterns.  The 

range of results for each state is shown in Table 1.  For instance, 

Montgomery Co., PA has about four times the probability of 

hosting a new baseload power plant as Cameron Co., PA. 

The results of solving the integer programming problem 

(5)-(7) with a heuristic are shown in Figure 3, above.   The new 

plants whose location by subarea are shown in Figure 4 are 

allocated to counties in Figure 3 with the highest siting prob-

abilities within each subarea.  Consistent with historical pat-

terns, baseload plants are sited mainly in the coal-bearing areas, 

while combined cycle and peaking units are located closer to 

load centers in the NJ-MD urban corridor. 

D. EDM3 Results: Chronologic Hourly Emissions Scenarios 

EDM1 produces average annual emissions duration curves 

for individual generating facility classes m by subregion; EDM3 

dissaggregates those curves to produce hourly sequences for 

particular years of emissions by generating facility that can then 

be used in air quality simulations. 

 
TABLE I.   MODEL EDM2 INPUT: COUNTIES WITH LARGEST AND SMALLEST 

PROBABILITIES OF NEW PLANT SITING BY STATE 

State 
Min or 

Maxa 

County (Baseload 

Plant Probability) 

County (Combined 

Cycle Probability) 

Min Sussex  (.26) Sussex (.09) 
DE 

Max New Castle (.43) Kent (.42) 

Min Tipton (.06) Orange (.01) 
IN 

Max Marion (.54) Allen (.18) 

Min Queen Anne (.12) Baltimore City (.04) 
MD/DC 

Max Anne Arundel (.54) Montgomery (.77) 

Min Sussex (.16) Passaic (.10) 
NJ 

Max Middlesex (.57) Hunterdon (.48) 

Min Union (.13) Athens (.04) 
OH 

Max Hamilton (.69) Cuyahoga (.64) 

Min Cameron (.14) Cameron (.05) 
PA 

Max Montgomery (.57) Montgomery (.51) 

Min Morgan (.06) McDowell (.01) 
WV 

Max Monongalia (.21) Grant (.05) 
aFor baseload plants, these exclude counties with high population density or 

inadequate water supplies where such plants are unlikely to be sited. 

 

For instance, Figure 6 shows the total regional emissions 

profiles for two relatively hot weeks based on the 2030 Haiku 

results, one from the “1990s” climate (end of July in GISS 

simulation year “1997”) and one from the “2050s” climate (end 

of July in GISS simulation year “2055”).  The average tem-

peratures are shown below the emissions, illustrating the strong 

relationship between the two.  For instance, the first day in the 

1990s week has a peak temperature of 27.3 
o
C, and has higher 

emissions than the third day, whose peak temperature is only 

24.1 
o
C.  The week from the 2050s climate is an example of an 

even stronger variation in emissions among weekdays.   

Consistent with Figure 5, Figure 6 shows that peak emissions 

from the 2050s climate are approximately 10 tons/hour higher 

than the peak emissions for the 1990s climate as a result of the 

higher peak demands under the former climate.  This occurs 

even though total NOx during the ozone season (averaged over 

the years within the scenario) must be the same due to the 

cap-and-trade system. 

Figure 7 shows the average diurnal emissions pattern for the 

days comprising a five week period in each of the two climate 

scenarios based upon EDM3’s processing of the 2030 Haiku 

projections.  The “2055” climate results shows higher total 

emissions, despite the same cap being imposed in both climate 

scenarios, perhaps because this is a hotter than average year for 

the “2050s” scenario, and also because the emissions pattern is 

“peakier” under a warmer climate (consistent with Figure 5).   

The figure also shows the breakdown in emissions between 

plants that were built by 1999 (the NEI01 units that are in 

USEPA’s inventory for 2001 [30]), newer actual plants, and 

Haiku-created capacity.  By far, most emissions are from ex-

isting facilities, since new plants must comply with stringent 

New Source Performance Standards.  This is so even in 2030 

and in spite of Haiku assuming much tighter emissions caps than 

are in place today.  (Haiku’s regulatory assumptions are con-

sistent with USEPA’s Clean Air Interstate Rule.) 

 From each year’s hourly emissions, we can assemble 

emissions duration curves for each year and compare them to 

assess the effect of year-to-year meteorological variability on 

emissions.   Figure 8 shows a comparison of eight years of NOx 
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emissions under the “1990s” climate scenario (again, consistent 

with the 2030 Haiku projections).  We enlarge the peak emis-

sions, which, unfortunately, are most likely to occur during hot 

days in ozone episodes.  The curves show that “1997” (a rela-

tively hot year in the GISS simulations of the “1990s” climate) 

has appreciably higher peak emissions than “1992” (a cool 

year).   The difference is about 10%.  However, total emissions 

during the ozone season (the integrals of the duration curves) do 

not vary as much among years. 

 

 
Fig. 6.   Two weeks of NOx emissions from “1990s” and “2050s” scenarios 

 

The 10% range in peak emissions among years in a scenario 

is greater than the difference between average peak emissions in 

the “1990s” and “2050s” scenarios shown in Figure 5.  This 

suggests that year-to-year variability in weather could impact 

peak emissions more than climate warming.  However, more 

analysis is needed to confirm that conclusion.  This is because it 

depends critically on the effect of climate warming upon de-

mand patterns within the day, which, as mentioned above, may 

change in ways not presently captured by Haiku’s demand 

models.  Chen et al. [5], using a different national model 

(NEMS) and a different downscaling technique found more of 

an impact of climate on average emission patterns. 

V. CONCLUSION 

In downscaling future emissions scenarios, it is important to 

remember that models of economic response to climate change 

“are for insights not numbers” [23] and that “it’s tough to make 

predictions, especially about the future” (attributed to Yogi 

Berra).  The purpose of our downscaling framework is not to 

make specific forecasts about plant siting or environmental 

impacts at particular locations.  This is because of large un-

certainties in future policy, technology, economic, and envi-

ronmental conditions, and because particular decisions of par-

ticular market participants cannot be predicted.   
 

 
Fig. 7.   Diurnal NOx emissions patterns for two five-week periods 

 

 
Fig. 8.   Regional NOx emissions duration curves based on 2030 market con-

ditions for individual years in “1990s” climate scenario 

 

    Rather, the intent is to develop scenarios of emissions that are 

consistent with market mechanisms for planning and dispatch, 

and both average and hour-to-hour weather patterns.  The use of 

optimization to determine least cost operations and plant siting 

subject to environmental and technical constraints is consistent 

with the operation of competitive markets.  The generation of 

hourly emissions patterns consistent with both general climate 

trends and hourly weather is important to capture the correlation 

between high emissions rates and conditions favorable to smog 

formation.  This is accomplished by using scenarios from na-

tional energy models that represent the effects of climate upon 

generation mix and emissions, as well as hourly meteorological 

simulations to generate hourly demand patterns, power genera-

tion, and emissions. 

 Detailed air quality modeling requires hourly emissions for 

particular stacks, and we have demonstrated how an optimiza-

tion-based downscaling method can provide that information.  

Our downscaling framework is most useful for comparing 

broadly different scenarios, and provides a logically consistent 
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approach to deducing the implications of different assumptions 

upon the general effects on the spatial and temporal pattern of 

pollution.  To the extent that future conditions deviate from 

those assumed, particular quantitative conclusions are uncer-

tain.  Nonetheless, the framework can be used to explore how 

robust qualitative conclusions (such as the peakier emissions 

projected for a warmer climate) are to changed assumptions. 

    Future research should apply this framework to address how 

alternative technology and economic trends could affect the 

power sector’s environmental impacts.  It is also desirable to 

validate the model by evaluating how well the framework would 

have predicted the patterns of power generation development in 

the recent past.   
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