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Linear Complementarity Models of Nash–Cournot
Competition in Bilateral and POOLCO Power

Markets
Benjamin F. Hobbs, Member, IEEE

Abstract—Two Cournot models of imperfect competition
among electricity producers are formulated as mixed linear
complementarity problems (LCPs), and a simple example is
presented to illustrate their application. The two models simulate
bilateral markets. The models include a congestion pricing scheme
for transmission, but other transmission pricing approaches can
also be represented in this framework. The two models differ
from each other in that one has no arbitrage between nodes of the
network, while in the other model, arbitragers erase any noncost
based differences in price. The latter bilateral model turns out
to be equivalent to a Cournot model of a POOLCO. The models
differ from other Cournot market models in that they include
both of Kirchhoff’s laws via a DC approximation; can include
arbitragers; possess unique solutions; and are readily solved by
efficient LCP algorithms. The key assumption that permits their
formulation as LCPs is that each producer naively assumes that
its output will not affect transmission prices.

Index Terms—Complementarity, Cournot, electricity competi-
tion, electricity generation, market models, strategic pricing.

I. INTRODUCTION

RESTRUCTURED power markets take a wide variety of
forms. Their design and structure differ in many important

ways, such as how transmission is priced, and whether gen-
erators sell to a central auction (POOLCO) or bilaterally to
customers [1]. These and other differences affect the nature and
outcome of competition among power producers; therefore,
market models should reflect those differences.

A wide range of models are proposed for simulating the
interaction of competing generation companies who price
strategically [2]–[4]. Such models can be used to identify how
market power might be wielded in restructured power markets
and the impacts of proposed mergers. This paper presents
two specific models, that like some previous models [5]–[7],
adopt a Nash–Cournot game theoretic framework [8]–[14]
and represent transmission constraints by a linearized DC
network. Unlike previous models, however, the formulations
presented here account for arbitrage, readily lend themselves
to computation even for large markets with hundreds of
transmission interfaces and nodes, and guarantee the existence
of unique price equilibria. With very few exceptions [7],
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other applications of Cournot models are to small networks of
3–7 busses and potentially have either no price equilibria or
many equilibria [15].

The two models presented here are based on the following
market assumptions. They address a bilateral market in which
imperfectly competitive generators purchase transmission
services from an ISO who prices scarce transmission capacity
in order to ration it efficiently. In the first model, there is no
arbitraging between different locations in the network; this
allows noncost based price differences to arise, so that gener-
ators can raise prices where competition is weak or demand
is inelastic while competing more intensely elsewhere. In the
second model, there are arbitragers/marketers who eliminate
price differences between locations that are unjustified by cost
[16]. This is shown below to be equivalent to a POOLCO-based
system using locational marginal pricing.

In terms of strategies, each generating company in both
models plays a Nash game in quantities sold. This is equivalent
to each generation company assuming that other firms will not
alter their outputs—a Nash–Cournot game. In addition, each
generator naively assumes that its outputs will not significantly
affect transmission prices. In game theoretic terms, this a
Bertrand game with respect to transmission. This belief about
transmission diverges from the Nash–Cournot models in [5],
[6]. In the latter models, sophisticated producers recognize
transmission limits and correctly predict the effect of their
decisions on the transmission prices. However, such models
are not numerically tractable for large systems. In contrast,
the Bertrand assumption does not permit simulation of some
strategies for manipulating transmission; however, the resulting
models are solvable for realistically large systems. Thus, the
use here of a Bertrand game for transmission is a compromise
between the objectives of:

• realism in representation of strategic behavior,
• realism in representation of physical constraints, and
• computability.

Given the above market and strategy assumptions, both
models calculate a market equilibrium for generation and
transmission. A market equilibrium is defined as a set of
prices, generator outputs, transmission flows, and consumption
that simultaneously satisfy each market participant’s first
order conditions for maximization of its profit while clearing
the market (supply demand). A solution satisfying those
conditions possesses the property that no participant will want
to alter its decisions unilaterally: a Nash equilibrium. Smeers
[17] concludes his survey of gas and electric market models by
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arguing that explicit statement and solution of equilibrium con-
ditions is a promising theoretical and computational approach
to modeling strategic behavior.

Such equilibrium conditions are obtained here by deriving
first order and market clearing conditions and solving them
simultaneously. The first order (Kuhn–Karesh–Tucker/KKT)
conditions for a constrained optimization problem MAX

subject to , , are:

where and are the dual variables for constraintsand ,
respectively. The equations associated with the nonnegative
variables and are called complementarity conditions.
The models of this paper are created by combining the KKT
conditions for all the market participants and then adding
equality conditions to represent clearing of the market. The
resulting problem involves both equality and complementarity
conditions, and is termed a mixed complementarity problem
(MCP). A general MCP is defined as follows: find vector
given functions and such that , ,

, and , where , , and are
vectors. If and are affine, then this is a mixed linear
complementarity problem, or a mixed LCP.

The models of this paper are mixed LCPs as a result of
using linear demand functions and marginal generation costs.
However, the models can be generalized to the nonlinear case,
yielding nonlinear complementarity problems, NCPs. Direct
solution of the market equilibrium conditions by complemen-
tarity methods has important computational advantages. Mixed
LCPs involving thousands of variables and complementarity
conditions can be solved using available LCP software, such
as implementations of Lemke’s algorithm [18] and the MILES
and PATH solvers within GAMS [19]. This permits application
of strategic market models to large systems with thousands
of power plants and hundreds of constrained transmission
interfaces.

In the next section, previous models that are based upon
explicit statement and solution of equilibrium conditions
are reviewed. Then, the assumptions of the two models are
summarized. A presentation of the two models follows, along
with illustrative results for a simple three-bus system.

II. RELATED MODELS

A number of power market models are proposed in the litera-
ture that calculate price equilibria in two steps: 1) formulation of
a set of conditions that directly state the market equilibrium con-
ditions of profit maximization and market clearing; and 2) nu-
merical solution of those equations. These conditions are most
commonly phrased as a MCP.

In an early paper, Schmalensee and Golub [20] calculate a
Cournot equilibrium in each of 170 US market areas, consid-
ering power producers who own 871 generating plants. In their
model, the equilibria are calculated for each area separately

without considering interactions with other areas, and transmis-
sion is represented assuming tariffs and losses are proportional
to distance. “Pseudosupply functions” are derived for privately
owned sellers based upon the first-order conditions for profit
maximization by a Cournot producer; i.e., a producer who im-
plicitly assumes that other producers will not alter their sales.
These conditions are solved for all firms at once—but only for
one market at a time—and then the well-known Herfindahl con-
centration index is calculated for each market area.

Later work based on equilibrium conditions attempts to make
market simulations more realistic by considering all markets
simultaneously while recognizing transmission capacity lim-
itations. Several power market models of this type in which
producers behave competitively rather than strategically have
appeared. One is PMDAM [21] which iteratively adjusts prices
at nodes in the network for all periods until the market clears;
very large systems, such as the entire western US, have been
solved in this way. Another is Qi and Harker [22]. They solve a
NCP in which power producers in eastern North America com-
pete to supply power in an aggregate 12 link—9 node transporta-
tion network in which Kirchhoff’s voltage law is not imposed.
The model is nonlinear because demand curves were assumed
to be of the constant elasticity form ( ). Existence of an
equilibrium is proven. Finally, Boucher and Smeers [23] derive
equilibrium conditions for several variations of POOLCO and
bilateral markets under the assumptions of perfect competition
and efficient rationing of transmission capacity. They prove that
the alternatives yield the same market prices and efficiency, con-
firming earlier assertions by others e.g., [24]. Their models im-
pose general linear constraints upon transmission flows, which
include DC load flow models and nomograms or other reliability
constraints as special cases. The result of Section IV-B, below,
that POOLCO and bilateral (with arbitrage) markets yield the
same equilibrium for Cournot generators can be viewed as an
generalization of their results to imperfect competition.

The remainder of the models reviewed in this section, as well
as the models proposed in this paper, consider the possibility of
strategic behavior by power producers. Jing-Yuan and Smeers
[11] present a model that directly solves the equilibrium con-
ditions for a bilateral power market on a radial network. Each
Cournot producer assumes that other producers will not change
their output, sales, or the flows they induce on the network,
while recognizing the presence of transmission constraints.
Transmission tariffs can be set by a regulated body to recover
grid costs using either distance-dependent or postage-stamp
fees. The authors point out that such a system can have multiple
equilibria with widely diverging effects on the profits and
outputs of individual firms. That is, their MCP generally has
multiple solutions.

However, Jing-Yuan and Smeers [11] use a variational in-
equality (VI) solution approach to solve for one of the possible
equilibria. They prove that a VI solution exists and is unique,
even if, as Stoft [15] shows, there are actually multiple Cournot
equilibria. In contrast, the mixed LCP models defined in this
paper and [7] yield unique solutions, implying that the market
equilibria are unique. This is made possible by making the sim-
plifying Bertrand assumption that each generator does not an-
ticipate how its actions will affect congestion and transmission
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prices. One of the reasons for this result is that in order to repre-
sent the effect of generation decisions on transmission prices, it
is necessary to embed the KKT conditions for the grid operator’s
optimal power flow problem within each generator’s optimiza-
tion problem [4]–[6]; the resulting “mathematical program with
equilibrium constraints” is highly nonconvex and could have
multiple local optima. In contrast, the Bertrand transmission as-
sumption means that the generator’s model is much simpler. It
includes just linear terms for transmission costs in the objective
function.

The multiple solutions of the formulation in [11] underlie
much of the debate between Oren [5] and Stoft [15] about
i) the realism of this type of Cournot model and ii) its apparent
implication that Cournot generators will eliminate congestion
in order to force transmission congestion charges to zero, even
if there are very many producers. As Stoft [25] points out, this
lack of uniqueness occurs in formulations such as [11] because
of the absence of markets for transmission capacity. However,
in our models and those in [7], creation of a competitive market
for transmission services yields a unique price equilibrium.
Basically, the eliminated equilibria are solutions in which the
marginal valuations by different firms of the same transmission
capacity diverge.

Smeers and Jing-Yuan [7] present a model equivalent to that
of Section IV-A below in which there are markets for energy and
transmission capacity, generators adopt Cournot strategies in
the energy market, transmission capacity is rationed efficiently,
power flows over a linearized DC network, and no arbitragers
exist to erase noncost-based differences in energy prices be-
tween different locations. This model, like [11], also includes
the possibility of generation capacity expansion. Smeers and
Jing-Yuan prove existence and uniqueness of a market solu-
tion, which they obtain by VI methods. Presently, the model
is being applied to the EU power system, and includes thou-
sands of variables and equilibrium conditions. The models of
Section IV-B below can be regarded as an extension of this ap-
proach to POOLCO and arbitraged bilateral power markets.

Two proposed market models explicitly include the first
order conditions for Cournot producers for intertemporal power
production decisions while omitting transmission constraints.
Bushnell [10] considers how Cournot producers would allocate
hydropower over time. An iterative price-adjustment approach
similar to PMDAM [21] is used. He finds that Cournot
producers produce less on peak (thus raising prices at that
time) and more off-peak compared to producers who behave
competitively.

The second such model, the dynamic model of Ramoset al.
[12], instead focuses on unit commitment over a 24 hour plan-
ning period. Their model is the only Cournot equilibrium model
that includes integer variables, which represent commitment de-
cisions. Firms are Cournot producers. Their profit-maximizing
behavior is cleverly captured in the model by a constraint that
the marginal revenue MR earned by a generating unit in a given
hour must be at least equal to its marginal running cost MC if the
unit is committed, while MC can exceed MR for uncommitted
units.

Their formulation is correct for a single hour commitment
problem; however, it can cause difficulties for multiperiod

problems. In real power systems, prices and thus MR often fall
below MC for committed units during low load periods because
its owner decides it is more profitable to keep the unit com-
mitted rather than to turn it off and then later ramp it back up.
However, this difficulty can be handled by defining additional
integer variables that would relax the MR MC constraint
when plant output is at its minimum run level. Alternatively,
the objective function of the model could be modified in the
manner proposed at the end of Section IV-A, below. A second
difficulty with the model is that the added realism represented
by integer variables unfortunately implies that existence or
uniqueness of Cournot equilibria may be impossible to prove.
Indeed, the infamous “duality gap” of unit commitment models
can mean that, in general, no market clearing equilibrium exists
even for perfect competition (nonstrategic) models of this type.

A model that focuses on the role of imperfectly competitive
arbitragers is Smeers and Jing-Yuan [14]. Their model assumes
that generators behave competitively, but that each arbitrager as-
sumes that rival arbitragers will not alter the amounts they buy
and sell and the resulting DC power flows—a Cournot assump-
tion. In contrast, the model of Section IV-B, below, represents
strategic generators, while low barriers to entry imply that arbi-
tragers behave competitively. But like the models of this paper,
[14] assumes that transmission rights are traded in a market and
that market participants believe that they cannot affect the prices
of those rights. Numerical examples in [14] indicate that prices
are likely to converge to competitive levels as the number of ar-
bitragers grows.

III. M ODEL ASSUMPTIONS

Each producer owns power generating facilities
located at nodes of the network.

The indices and designate nodes. is the per MWh cost
of power generation , in MW. The capacity of a generator
is MW.

Consumers at a nodeconsume MW, which is price re-
sponsive. In order to use the LCP framework, we assume linear
demand functions $/MWh, with
$/MWh and MW being the price and quantity intercepts, re-
spectively. Nonlinear demand functions (as in [22]) would yield
a NCP, which generally are more difficult to solve. It is assumed
that this is a bilateral market, in which MW is the quantity
sold by producer to consumers at node. Assuming market
clearing and no arbitrage, . If there is arbitrage,
then , where MW is the net amount of
power sold by arbitragers to node. The generators determine
the level of sales to each node, and then request transmission
service from the grid. An energy balance is imposed on each
firm: .

There exist a variety of transmission pricing policies that
could be simulated. In these models, it is assumed that trans-
mission is priced using a congestion pricing scheme [26], or its
functional equivalent, a Chao–Peck [27] market for interface
capacity. The owner of the grid charges a congestion-based
wheeling fee $/MWh for transmitting power from an
arbitrary hub node to node. For simplicity, it is assumed that
there is neither generation nor consumption at the hub. Because
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of the linearity of the DC network [26], all generation and
sales can be modeled as being routed through the hub node. A
firm pays to get power to the hub from a generator at
and then pays to convey power for sale from the hub to
customers at. Thus, the total cost of transmitting power from
a generator at to the point of sale at is .

The total transmission service that the grid provides for power
transferred from the hub to a nodeis defined as MW, which
may be negative. Consistent with the linear DC approximation
[26], flows through interfaces are modeled using power trans-
mission distribution factors; i.e., the net MW flow throughis

. The lower and upper bounds on real power flows
through an interface are and . We assume no losses
and that congestion is only basis for pricing. However, more
general assumptions can be accommodated in a LCP e.g., see
[11]. For instance, zonal pricing or transmission path pricing can
be imposed. However, in order to respect physical constraints, it
would be necessary to assume that the grid operator in addition
imposes an efficient nonprice mechanism to relieve congestion
similar to the UK constrained-on and constrained-off approach.

The owner of the grid is assumed to ration limited interface
capacity to maximize the value of the transmission services,
as expressed by generators’ willingness to pay. This behavior
can be shown to be equivalent to having the grid choose values
of to maximize its revenue as if the are fixed,
while respecting interface constraints. It is also equivalent to a
competitive market for transmission rights in which generators
do not exercise market power [7], [25], [27].

A final assumption concerns arbitragers. As in [7], they are
presumed to be absent in the first model; consequently, the dif-
ferences between prices at nodesand can diverge from the
cost of transmitting power fromto . This is termed
“spatial price discrimination.” A firm can then optimize sales to
each node without worrying about how those sales will affect
its sales or prices at other nodes. The no-arbitrage model is con-
ceptually related to the continuous spatial competition model
of Greenhut and Greenhut [28]. There, separate Cournot equi-
libria are calculated for each demand point among spatially sep-
arated producers (but unlike [20], these equilibria are calculated
simultaneously). As a result, spatial price differences do not nec-
essarily reflect transport cost differentials. Hashimoto [29] and
Kolstad and Abbey [30] implemented that general approach for
network-based coal market models. Schmalensee and Golub’s
[20] Cournot analysis of power markets implicitly embodies the
assumption that price discrimination can persist over space. But
these analyzes did not consider link capacity limits or networks
that adhere to Kirchhoff’s voltage law, unlike [7].

The second model presented below recognizes that arbitrage
will occur. Arbitragers are also explicitly considered in Qui and
Harker’s [22] perfect competition model and Jing-Yuan and
Smeers’ [14] model of strategic power marketers. The arbitrage
model assumes that arbitragers are price takers, and will sell
power from to as long as . Thus,
in equilibrium, , the hub
price. Generators are assumed to recognize that this will occur,
so that if firm shrinks its sales at node, then the resulting
increase in ’s price will create arbitrage opportunities; when
arbitragers exploit these opportunities, prices and quantities

demanded will be affected at other nodes. This yields different
behavior and price equilibria than the nonarbitraged model, as
Section V’s application shows.

IV. THE MODELS

A. No-ArbitrageModel

We first present the producers’ and grid owner’s optimiza-
tion problems; combining their KKT conditions with the market
clearing condition then yields a mixed LCP.

1) Producers: The producer’s equilibrium conditions result
from the KKT conditions for the following quadratic program.
This model states that producerchooses generation and
sales in order to maximize profit ($/hr), equal to revenue
minus transmission and generation costs:

MAX

subject to:

is the dual multiplier for the generator capacity constraint,
while is the dual for the energy balance, interpretable as’s
marginal cost at the hub. Note that all for are assumed
fixed—the Nash–Cournot assumption.

Of course, the above model of dispatch is simplistic. How-
ever, the mixed LCP can accommodate more realistic assump-
tions, such as increasing marginal costs, minimum run levels,
fuel choice options, emissions allowances and tonnage limits,
and energy storage. Generation capacity expansion can also be
modeled, if capacity is represented as a continuous variable with
no scale economies, as in [7], [11].

The KKT conditions for generator’s problem are:

• For :

• For :

• For :

• For :

2) Grid Owner: The grid’s equilibrium conditions result
from the KKT conditions of the following LP. The grid chooses
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y; to maximize its profit from bilateral transactions, adopting
the naive Nash–Bertrand assumption that it cannot affect the
fees it gets for providing transmission:

MAX

s.t.

.

The s are the duals associated with the interface constraints.
The KKT conditions defining the optimal solution are:

• For :

(G1)

• For :

(G2)

• For :

(G3)

3) Market Clearing: The total transmission service de-
manded by generators from the hub to anymust equal the
transmission service the grid provides between those nodes:

(MC1)

Solution Approach:Gathering the producers’ and grid’s
KKT conditions and the market clearing equations results
in a (perhaps very large) set of conditions [ – , ;
(G1)–(G3); and (MC1)]. The resulting problem is a mixed LCP.
Solving these equations simultaneously for the following primal
and dual variables produces an equilibrium to the no-arbitrage
market game: . Note
that the transmission prices are variables in the LCP, not
fixed parameters—even though each generator’s optimization
problem – and the grid’s problem (G1)–(G3) naively
presume they are fixed. The LCP algorithm solves for the
that clear the market for transmission services.

Finally, note that the number of conditions (complemen-
tarity conditions and equality constraints) equals the number
of variables. This can be seen by considering the fact that
one set of KKT conditions results for each of the variables

, while there is one market
clearing equation for each . This “squareness” condition is
needed for mixed LCP algorithms to find a solution. In contrast,
the NCP in [11] has more variables than conditions, implying
existence of multiple equilibria.

There are two general advantages to phrasing the problem as
a mixed LCP. First, using theoretical results [31], it is possible to
determine if this system of equations satisfies certain sufficient
conditions for existence and uniqueness of the solution. Second,
efficient mixed LCP solvers, such as those in GAMS, can be
used.

Hashimoto [29] points out that a Cournot equilibrium on a
transportation network can be calculated by solving a single QP
under two conditions:

• supply and demand functions are linear; and
• transportation costs are proportional to flows on the net-

work, and there are no flow limits.
Below, an analogous QP is formulated in which the network is
instead governed by both of Kirchhoff’s laws and there are line
flow limits. The KKT conditions for this QP are precisely the
same as [ – , (G1)–(G3), (MC1)]. Consequently, this QP
can be used to derive the no-arbitrage equilibrium. Further, as
long as the feasible region is nonempty, a solution will exist;
moreover, it can be shown that the concavity of the objective
function implies that the resulting market equilibrium prices and
profits for each firm are unique [32]. However, the plant outputs

might not be unique. For example, two plants at the same
bus owned by the same firm might have identical marginal
costs, and so there may be alternative dispatches that yield the
same cost and outputs for.

The QP is as follows. Choose , , and to solve:

MAX

s.t.

Note that the dual variables for the market clearing constraint
are the transmission fees . This QP can be solved by standard
nonlinear optimizers or specialized QP codes [18].

There is one important difference between the QPs objec-
tive function and the social welfare objective used in perfect
competition models. The difference is the addition of the term

. Adding this term ensures that KKT con-
ditions correctly calculate marginal revenue for, accounting
for how expansion of sales would depress prices.

Two other observations are worth making about the
no-arbitrage model. First, the difficulty in the model of [12]
with low price periods can be corrected if the above QP objec-
tive is substituted for their linearized social welfare objective,
and their equilibrium constraint (MR MC) is dropped.
Second, the no-arbitrage model yields a value of sales of each
firm at each node. That makes it possible to calculate equivalent
Herfindahl indices at each.

B. Arbitrage/POOLCO Model

In this model, generators recognize that marketers/arbitragers
will buy and resell power where price differences exceed the
cost of transmission. It is assumed here that there are many arbi-
tragers and that they behave competitively, so it is unnecessary
to develop individual models for each arbitrages, unlike [14].
Instead, the equilibrium condition that price differences reflect
transport cost differences can be directly imposed upon the other
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players, as reflected in the following models for the generators
and grid owner.

1) Producers: The producer’s model can be formulated as a
generalization of the no-arbitrage case, incorporating variables
representing arbitrage transactions along with two additional set
of constraints. This generalization is implemented as follows:

i) Substitute for as the quantity consumed
in the inverse demand function at each node, and

ii) Add two arbitrage constraints: for all nodes
(where is the price at the hub bus, which is treated

as a decision variable in’s model) and . The
first constraint forces differences in node prices to equal
transmission cost, while the second compels arbitragers
to be neither net producers nor consumers.

The resulting producer model is as follows:

MAX

s.t.:

Note, once again, that the for are not decision vari-
ables in this model. The primal decision variables are’s gen-
eration and sales, the arbitrage transactions, and the hub price.
Note too that and are indexed by firm ; this indicates
that the firm views them as being affected by its actions. How-
ever, in a market equilibrium, these variables will be equal for
all firms. New dual variables and are introduced for the
two arbitrage constraints.

Because of the no-discrimination constraint ,
this model is equivalent to a POOLCO model in which each gen-
erator sells power to the grid at the prevailing price at its bus,
and not to individual customers at other nodes. That is,in the
presence of arbitrage,Cournot competition in a bilateral market
yields the same equilibrium as Cournot competition among gen-
erators in a POOLCO.

This assertion can be proven by starting with any optimal so-
lution to the above problem. Say that salesin such a solution
are being made to a node in an amount different from’s gen-
eration at that node . By increasing by an amount

and decreasing by the same amount, and si-
multaneously decreasing and increasing by that same
amount for some other node, sales and generation can be made
equal at . Such a change would not affect the firm’s revenues
net of its transmission costs because:

• the price received for sales atnet of is the same as
the price at net of —i.e., both equal ; and

• the firm’s total sales are unchanged.
Further, such a change will not alter the firm’s generation costs,
because the variables are unaffected. Thus, profit is the
same. Finally, the new solution is feasible because generation
and delivered prices are unchanged, and the arbitrage energy
balance remains satisfied. Therefore, this new solution must also

be optimal. Because , it must be possible to
arrange a set of such adjustments such that , .
This solution is equivalent to each generator selling its output at
its bus at the bus’s prevailing price.

This result means that generator’s model can be simplified
by eliminating the variables as follows:

MAX

s.t.:

The KKT conditions for this model are as follows:

• For , :

( 1 )

• For , :

( 2 )

• For :

( 3 )

• For , :

( 4 )

• For , :

( 5 )

• For :

( 6 )

Two implicit assumptions of the above model are that all nodes
(except the hub) have a demand curve, and that the equilibrium
price never exceeds its choke price at any . More general
assumptions can also be handled by a LCP.

2) Grid Owner: The grid model corresponding to the full
producer model is identical to the no-arbitrage case.

3) Market Clearing: For an arbitrage model solution to rep-
resent an equilibrium, the following balances must be main-
tained between the transmission services provided by the grid
and the services demanded by the arbitragers:

(MC1 )
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TABLE I
PRICES AND PROFITS, THREE BUS EXAMPLE

TABLE II
GENERATION, SALES, AND TRANSMISSION FORTHREE BUS EXAMPLE (MWh)

Furthermore, the hub prices assumed by the firms must be con-
sistent, resulting in of the following equations, where
is number of firms:

(MC2 )

4) Solution Approach:The arbitraged market equilibrium
problem can be solved by gathering the producers’ KKT con-
ditions ; the grid owner’s KKT conditions
(G1)–(G3); and the market clearing conditions (MC1), (MC2 ).
The resulting mixed LCP can be solved for the equilibrium
values of .

But this system cannot be solved directly, since there are more
conditions than variables. This occurs because there are more
market clearing conditions (MC1), (MC2 ) than transmission
prices . There are such conditions, but only
prices, where is the number of nodes other than the hub. Thus,
there are equations too many. However, it turns
out that precisely this number of conditions are redundant. In
particular:

• equations ( ) can be dropped [because those
that correspond to are equivalent to those for ,
given (MC1), (MC2 )], and

• equations ( ) can be deleted [as (MC1) implies
that the ( ) for are redundant to ( ) for ].

Omission of those equations yields the required “square” MCP
system, with the number of conditions equaling the number of
variables.

By formulating an equivalent , Metzler [32] shows that
this MCP has a solution, and that the prices and profits resulting

from that solution are unique. She also formulates alternative
models that yield equivalent solutions, including one in which
arbitrage constraints and variables are removed from each
producer ’s model. There, she defines a separate set of KKT
conditions which derives from a single arbitrager’s profit
maximization problem. These conditions force uneconomic
price differences among locations to disappear in equilibrium.

V. EXAMPLE

This simple example illustrates the application of the above
models, and is designed to permit verification by the reader.
There are three busses, , each of which has cus-
tomers. However, generation occurs only at busses .
Each pair of busses is interconnected by a single transmission
line; all three lines have equal impedances. The demand func-
tions are , and

$/MWh. These functions imply that demand is more
elastic at the demand-only node (bus 3). There are two producers

, each with one generator. Firm 1’s generator is sited
at , while 2’s is at . Both generators have unlim-
ited capacity, and a constant marginal cost: $15/MWh for firm
1, and $20/MWh for firm 2. The only transmission cost arises
from congestion.

Two different transmission systems are considered below:
one without congestion—infinite transmission capacity—and
one with congestion on a single interface between
busses 1 and 2 MW). For each case, Tables I
and II show the results for each of three types of competition:
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perfect competition, Cournot competition/no-arbitrage, and
Cournot competition/arbitrage. Perfect competition is simu-
lated by a model that maximizes social welfare, defined as
the sum of generator profit, grid owner profit, and consumer
surplus. This solution is equivalent to marginal cost pricing by
generators.

An obvious difference among the solutions is the effect of
imperfect competition. Perfect competition yields much lower
prices and higher welfare than the Cournot solutions. Without
transmission constraints, the cheapest firm serves the
entire demand at all nodes under perfect competition. But under
imperfect competition, prices climb enough to allow the more
costly firm to enter. When the 25 MW interface con-
straint is imposed, firm 2 generates even under perfect compe-
tition, as firm 1 cannot ship enough power to meet all of
and 3’s demand.

Another difference between the solutions is the impact
of arbitrage. Without arbitrage, Cournot prices can differ
significantly among nodes even in the absence of transmission
constraints. Further, these price differences may bear little
relationship to the costs of transmission (as reflected in the).
In particular, because node 3’s demand is relatively elastic,
its no-arbitrage prices are lower than the other nodes’, even
though power flows to that node from nodes 1 and 2. Thus,
power seems to flow the wrong way, from high priced nodes to
the low priced node. Compare, for instance, nodes 1 and 3. The
congestion charge associated with moving power from 1 to 3
is 1.4 $/MWh . However, the price at node 3
is lower, rather than higher, than that at 1. This is because the
node 3’s elasticity motivates generators to cut delivered prices
there, and there are no marketers to arbitrage away the ensuing
noncost based price difference.

The ability to arbitrage alters those price differences. Ar-
bitrage aligns bus prices with transmission costs ; thus,
when there are no transmission limits, price differences are com-
pletely eliminated. Note also that the arbitrage solutions yield
higher welfare than the no-arbitrage cases because arbitrage
eliminates unjustified price differences. This, however, is not
necessarily a general result [33].

In [34], results are shown for a two node system, including
a counter-intuitive outcome that reduced transmission capacity
increaseswelfare in some cases. This occurs there because im-
perfect competition reverses the direction of flows relative to
perfect competition, and tighter limits lessen these inefficient
flows.

VI. CONCLUSION

Nash–Cournot models are popular although not necessarily
realistic methods for modeling strategic interactions in power
markets. However, previously proposed Nash–Cournot models
either ignore the grid or represent it as a simple radial network,
or they pose computational difficulties for large networks, such
as nonexistence or nonuniqueness of equilibria. The models
proposed here are able to compute imperfectly competitive
equilibria for networks including hundreds or even thousands
of control areas or busses and similarly large numbers of
interfaces. An immediate task is the application to such systems

in the context of merger evaluation and other market power
studies. We have obtained initial results for the UK and Eastern
Interconnection [35], [36].

Another question that should be addressed is: how do the
model results compare to solutions from other proposed market
models? Examples include Cournot models in which producers
correctly anticipate how changing output affects congestion [5],
[6], [11] or the Cournot and supply function equilibria models
surveyed in [2], [3]. Such models may yield more realistic equi-
libria if the behavior they represent is more representative of
how producers behave. However, most of those models are more
difficult to compute than the models presented here and have ex-
istence and uniqueness problems [4], [15].

Finally, versions of the models including other transmission
pricing systems, including zonal and FERC Order 888-type
pricing, should be formulated and implemented. As Harvey and
Hogan suggest [37], alternative transmission pricing schemes
could have important implications for the exercise and effects
of market power.

ACKNOWLEDGMENT

U. Helman, C. Day, W. Stewart, R. O’Neill, M. Rothkopf,
Y. Smeers and the reviewers provided helpful comments. Spe-
cial thanks are due to C. Metzler and J.-S. Pang whose encour-
agement, criticisms and proofs have been particularly valuable.
Opinions and errors are the responsibility of the author.

REFERENCES

[1] M. Ilic, F. Galiana, and L. Fink,Power Systems Restructuring: Engi-
neering and Economics. Boston: Kluwer, 1998.

[2] “Game theory tutorial,” inIEEE Winter Power Meeting, H. Singh, Ed.,
New York, Feb. 1, 1999.

[3] E. Kahn, “Numerical techniques for analyzing market power in elec-
tricity,” The Elect. J., pp. 34–43, July 1998.

[4] B. F. Hobbs, C. Metzler, and J. S. Pang, “Strategic gaming analysis for
electric power networks: An MPEC approach,” IEEE Trans. Power Sys-
tems, to be published.

[5] S. S. Oren, “Economic inefficiency of passive transmission rights in con-
gested electricity systems with competitive generation,”The Energy J.,
vol. 18, pp. 63–83, 1997.

[6] J. Cardell, C. Hitt, and W. Hogan, “Market power and strategic interac-
tion in electricity networks,”Resources and Energy Econ., vol. 19, pp.
109–137, 1997.

[7] Y. Smeers and W. Jing-Yuan, “Spatially oligopolistic model with oppor-
tunity cost pricing for transmission capacity reservations—A variational
inequality approach,” Universite’Catholique de Louvain, CORE Disc.
Paper 9717, Feb. 1997.

[8] S. Borenstein, J. Bushnell, and S. Stoft, “The competitive effects of
transmission capacity in a deregulated electricity industry,” University
of California Energy Institute, Berkeley, CA, PWP-040R, 1998.

[9] S. Borenstein and J. Bushnell, “An empirical analysis of the potential
for market power in California’s electricity industry,” University of Cal-
ifornia Energy Institute, Berkeley, CA, PWP-0448, 1998.

[10] J. Bushnell, “Water and power: Hydroelectric resources in the era of
competition in the western US,” U. Ca. Energy Inst., Berkeley, 1998.

[11] W. Jing-Yuan and Y. Streets, “Spatial oligopolistic electricity models
with Cournot generators and regulated transmission prices,”Operations
Res., vol. 47, no. 1, pp. 102–112, 1999.

[12] A. Ramos, M. Ventosa, and M. Rivier, “Modeling competition in elec-
tric energy markets by equilibrium constraints,”Util. Policy, vol. 7, pp.
233–242, 1998.

[13] B. Andersson and L. Bergman, “Market structure and the price of elec-
tricity: An ex anteanalysis of deregulated Swedish markets,”Energy 1,
vol. 16, no. 2, pp. 97–109, 1995.

[14] Y. Smeers and W. Jing-Yuan, “Do we need a power exchange if there are
enough power marketers?,” Universite’ Catholique de Louvain, CORE
Disc. Paper 9760, Aug. 1997.



202 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 2, MAY 2001

[15] S. Stoft, “Using game theory to study market power in simple networks,”
in IEEE Winter Power Meeting, H. Singh, Ed., Feb. 1, 1999.

[16] R. Rajaraman and F. L. Alvarado, “Managing transmission risk: The
theory of spatial hedging, and arbitrage,”PSERC Publication 98-32,
Nov. 1998.

[17] Y. Smeers, “Computable equilibrium models and the restructuring of
the European electricity and gas markets,”Energy J., vol. 18, no. 4, pp.
1–31, 1997.

[18] C. E. Lemke, “Bimatrix equilibrium points and mathematical program-
ming,” Manage. Sci. II, vol. 7, 1965.

[19] General algebraic modeling system [Online]. Available:
www.gams.com.

[20] R. Schrnalensee and B. Golub, “Estimating effective concentration in
deregulated wholesale electricity markets,”Rand J. Econ., pp. 12–26,
1985.

[21] E. G. Cazalet, “Power market decision analysis model methodology re-
port,” Report to BPA, Consulting Decision Analysts, Los Altos Hills,
CA, 1991.

[22] R. Qi and P. Harker,Generalized Spatial Price Equilibria with Semi-
Contiratous Market Structures: University of Pennsylvania, 1997.

[23] J. Boucher and Y. Smeers, “Alternative models of restructured electricity
systems1: No market power,” Université Catholique de Louvain, March
1999.

[24] S. Hunt and G. Shuttleworth,Competition and Choice in Electricity, NY:
Wiley, 1996.

[25] S. Stoft, “Financial transmission rights meet Cournot: How TCC’s curb
market power,”The Energy. J., vol. 20, no. 1, pp. 1–23, Jan. 1999.

[26] F. C. Schweppe, M. C. Caramanis, R. D. Tabors, and R. E. Bohn,Spot
Pricing of Electricity. Boston: Kluwer, 1988.

[27] H. P. Chao and S. Peck, “A market mechanism for electric power trans-
mission,”J. Regul. Econ., vol. 10, no. 1, pp. 25–59, July 1996.

[28] J. Greenhut and M. L. Greenhut, “Spatial price discrimination, compe-
tition, and locational effects,”Economica, vol. 42, pp. 401–419, 1975.

[29] H. Hashimoto, “A spatial Nash equilibrium model,” inSpatial Price
Equilibria: Advances in Theory, Computation, and Application, P. T.
Harker, Ed: Springer-Verlag, 1985.

[30] C. Kolstad and D. Abbey, “The effect of market conduct on international
steam coal trade,”Euro. Econ. Rev., vol. 24, pp. 39–59, 1984.

[31] R. W. Cottle, J. S. Pang, and R. E. Stone,The Linear Complementarity
Problem. Boston: Academic Press, 1992.

[32] C. B. Metzler, “Complementarity models of competitive oligopolistic
electric power generation markets,” Ph.D. dissertation, Dept. Mathemat-
ical Sciences, The Johns Hopkins University, Baltimore, MD, May 2000.

[33] B. F. Hobbs, “Mill pricing vs. spatial price discrimination under Bertrand
and Cournot spatial competition,”J. Indust. Econ., vol. 35, pp. 173–192,
1986.

[34] , “LCP models of Nash–Cournot competition in bilateral and
POOLCO-based power markets,” inProc. IEEE Winter Power Meeting,
NY, Feb. 1, 1999.

[35] U. Helman, B. F. Hobbs, J. B. Cardell, T. Luong, and M. T. Wander,
“Modeling strategic pricing in bilateral and Poolco electricity markets:
A Nash–Cournot approach with applications to US eastern interconnec-
tion,” in INFORMS National Meeting, Philadelphia, Nov. 7–10, 1999.

[36] C. J. Day and B. F. Hobbs, “LCP models of Nash–Cournot competition
in the England and Wales electricity market,” inINFORMS National
Meeting, Philadelphia, Nov. 7–10, 1999.

[37] S. M. Harvey and W. W. Hogan. (2000) Nodal and zonal congestion
management and the exercise of market power: Further comment. [On-
line]. Available: http://ksgwww.harvard.edu/people/whogan/zonal_Febl
l.pdf

B. F. Hobbs is Professor of Geography and Environmental Engineering and of
Mathematical Sciences (Joint) at The Johns Hopkins University, and an Adjunct
Professor of Electrical Engineering and Computer Science at Case Western Re-
serve University. He consults with FERC and the USDOE Energy Information
Agency. He earned a Ph.D. in environmental systems engineering from Cor-
nell University in 1983. He was with Brookhaven National Laboratory from
1977–1979 and Oak Ridge National Laboratory 1982–1984. From 1984 to 1995,
he was on the Faculty of the Departments of Systems Engineering and Civil En-
gineering at CWRU. Among his research interests are simulation of deregulated
power markets and ecosystem management under risk and multiple objectives.


