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Abstract—Near-optimal unit commitment (UC) scheduling is
a practical reality in wholesale electricity markets. This paper
revisits previous work that has found that minor differences in
cost among near-optimal schedules can result in a large redis-
tribution of market payments (i.e., changes in generator profits
and consumer surplus). It has been believed that this instability
is unavoidable, but previous studies have only calculated prices
using what we call the Restricted pricing model. This paper
compares previous results to three additional models that are
based on integer relaxation, and which we call the Partial, Tight,
and Loose Dispatchable pricing models. Results are presented for
a suite of test cases, including four ISO-scale cases. Similar to
previous findings, the Restricted and Partial Dispatchable models
both result in large payment redistributions among alternative
solutions. In contrast, theoretical and experimental results for the
Tight and Loose Dispatchable models show that pricing models
with unconditional integer relaxation will have bounded payment
redistributions, and, further, this bound can become quite small
by tightening the UC problem’s convex relaxation. In the presence
of market power, stable financial outcomes may improve market
efficiency by reducing incentives to bid strategically.

Index Terms—Unit commitment, nonconvex pricing, mixed
integer programming, market design

I. INTRODUCTION

CHANGES to traditional pricing methodologies in elec-
tricity markets continue to stir controversy. Wholesale

electricity markets are often conceptualized as a uniform price
auction, such that setting the price equal to the marginal
system cost provides the correct incentives for all participants
to produce and consume electricity at their socially efficient
levels. However, the optimization problem used to schedule
market participants, called unit commitment (UC), includes
important nonconvexities in the production capabilities of
many generating facilities. Uniform prices are not guaranteed
to clear the market in this circumstance [1]. The market settle-
ment often includes side-payments to ensure that generators do
not suffer financial losses by following the socially efficient
schedule [2] as well as rules to discourage production from
generators who are not part of the least-cost schedule.

Thus, the crux of the pricing controversy is whether to
adhere to the usual marginal pricing policy, or if an alternative
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pricing scheme with somehow better incentives can be formu-
lated and adopted. These pricing schemes are implemented by
first obtaining a physical schedule (i.e., production quantities)
and then executing a separate pricing model. Most ISOs now
have implemented some version of this two-step procedure.
This paper illustrates how different pricing models affect the
market settlements of sub- and near-optimal UC schedules.

Price formation issues attracted interest from FERC follow-
ing severe weather events in the winter of 2014-2015. Those
events highlighted the role of prices in aligning dispatch incen-
tives, maintaining reliability, signaling efficient investments,
and maximizing the market surplus [3]. A subsequent Notice
of Proposed Rulemaking (NOPR) highlighted the inclusion
or exclusion of nonconvexities in pricing methodologies, i.e.,
start-up and no-load operating costs, minimum output levels,
and minimum run times.

This NOPR proposed to create uniform “fast-start” pricing
rules for resources with quick response times [4]. Such re-
sources are typically “block-loaded,” operated at full capacity
or not at all, and thus unable to set prices when the normal
marginal cost criterion is used. All ISOs currently implement
some form of fast-start pricing, but to varying degrees based
on their resource mix and compatibility with existing ancillary
service markets [4]–[10]. Rather than pursuing uniform rules
in all six ISOs and RTOs under FERC’s jurisdiction, FERC
concluded the NOPR by opening new dockets to examine
specific pricing rules for New York Independent System Op-
erator (NYISO), PJM Interconnection (PJM), and Southwest
Power Pool (SPP) [4]. While these issues are relevant in
both the US and Europe, US markets solve nonconvexities
in a centralized fashion whereas European markets require
participants to internalize nonconvexities in their offer (with
some exceptions, e.g., minimum income constraints in the
Spanish electricity market [11]). This paper focuses on the
treatment of nonconvexities as now undertaken in US markets.

The main contribution of this paper is to relate Gribik,
Hogan, and Pope’s initial paper on convex hull pricing [12]
to an issue first discussed by Johnson et al. [13], and later
by Sioshansi et al. [14], concerning the stability of financial
outcomes in markets based on centralized UC. This paper
measures stability, or rather instability, by the sum of absolute
deviations of generator profits and consumer surplus compared
to what would have occurred in an optimal UC schedule.
This sum is referred to as the payment redistribution quantity
throughout the paper. We address a previously unappreciated
property, that convex hull pricing minimizes a bound on this
redistribution quantity and thus stabilizes financial outcomes.
Our results have significant implications in the ongoing elec-
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tricity pricing debate and, to our knowledge, have not been
recognized previously in the convex hull pricing literature.

The paper is organized as follows. Section II provides addi-
tional background about the UC problem and then formulates
a standard UC model and four pricing models. Section III
derives upper bounds on the payment redistribution quantity
that applies to two of the pricing models. Section IV illustrates
these bounds in a simple example, and Section V demonstrates
that the theoretical results are meaningful for a suite of larger
test cases. Section VI concludes the paper.

II. UNIT COMMITMENT AND PRICING

Fast-start pricing [4] is a specific instance of the nonconvex
pricing problem, for which there is generally no completely
accepted method for pricing and settlements. Difficulties in
resolving nonconvex pricing issues stem from the presence of
lumpiness or indivisibilities in the production sets of electric
generators [1]. Examples of common instances include:
• has a minimum output constraint such that it cannot

feasibly produce power at a level less than some threshold
value, unless it produces exactly zero,

• incurs fixed costs that are required to begin producing
power but are otherwise independent of the amount of
power produced, or

• must remain on-line or off-line for a specified amount of
time before shutting off or coming back on-line.

Rather than being rare or pathological examples, the above
features are common to most thermal generating units. These
nonconvexities can cause the need for side-payments, called
“make-whole” payments, that are paid to participants who
are part of the optimal UC schedule but do not recover their
offered cost through the uniform energy price.

The standard market settlement, formally presented in [2],
includes a locational marginal price-based energy payment and
a make-whole payment to ensure recovery of as-bid costs. This
has been called the “Restricted” model [12] since the marginal
price is calculated by the dual problem of a linear program
that fixes all binary variables to their value in the optimal UC
schedule. One of the objections to this approach is that it may
result in large make-whole payments, which is believed to
distort market entry incentives [15]. Side-payments may also
present incentives to distort supply offers, such as the well-
known exercise of market power by JP Morgan in California
that resulted in a $410 million settlement [16].

Reduction or elimination of these side-payments (which
may be make-whole payments or may fall into a broader
category of “uplift” payments) has been proposed through
various optimization models [17]–[21] and equilibrium models
[22]–[24]. Some of these methods ensure that the optimal
primal solution is supported, but others can result in a changed
and possibly suboptimal schedule [23], [24]. Market efficiency
is a primary goal of federal policy, so US regulators are
unlikely to approve schemes of the latter sort.

Of the alternatives to the Restricted model, convex hull
pricing has attracted the most attention. This approach aims to
minimize uplift payments payments that are based on lost op-
portunity costs and defined by individual profit maximization

subproblems. These payments can are minimized by solving a
computationally intensive Lagrangian dual problem [12], but it
is not clear whether the minimization of wake-whole payments
or lost-opportunity cost payments necessarily improves market
efficiency [25].

Schiro et al. [25] describe hurdles to implementation of
convex hull pricing. For example, its properties cannot be
guaranteed because the convex hull prices are difficult to
calculate accurately in realistic market scheduling problems
[25]. Instead of solving the Lagrangian dual directly, we
use a computationally efficient primal approach by imple-
menting tight UC constraints from [26]–[29]. Tightening the
UC problem to approach a primal convex hull formulation
can become increasingly complex as additional time periods
and resource details are considered. Examples of such details
include combined cycle gas turbine (CCGT) transitions, time-
dependent start up costs, hot- and warm-start-up types, and
other operational details that won’t be the focus of this paper.
Ref. [30] discusses UC formulations in more detail.

The computational complexity of the UC problem often
prevents ISOs from providing a provably optimal UC schedule.
Pricing issues stemming from sub-optimal UC solutions were
first identified by Johnson et al. [13], which shows that solving
the UC schedule by Lagragian relaxation could result in
multiple near-optimal UC schedules, each with significantly
different prices. Sioshansi et al. [14] showed that the same
problem occurs in more efficient mixed integer programming
software, similar to what markets use today. Both papers
question if this undermines incentives for participation in
centralized UC since the financial outcomes can be heavily
influenced by an arbirtrary choice made by the ISO [13], [14].

Good market design is multifaceted and requires careful
analysis and balancing of a wider range of issues than are
discussed here. The primary market design objective is usually
to maximize social welfare (i.e., market surplus) [3]; any other
objective is difficult to justify since the potential benefits
may entail reducing social welfare. Efficient market design
maximizes social welfare and depends largely on the incentive
properties of the pricing mechanism, including short-term
incentives for participation in day-ahead and real time markets
as well as long-term incentives to retire old resources or invest
in new ones. Additional design objectives might be important
but are difficult to quantify, such as transparency, simplicity,
fairness, or other stakeholder concerns. To date, there is
no consensus that any centralized UC pricing mechanism
performs best in all relevant design criteria [19]–[21], [25].

This paper does not propose a new market design, but
rather contributes to the understanding of the properties of
convex hull pricing and the effect of recently proposed pricing
methodologies on the problems described by Johnson et al.
[13] and Sioshansi et al. [14]. In particular, both papers state
that the problems in electricity pricing stem from the use of
centralized UC to achieve an efficient schedule. Our analysis
shows that the magnitude of this problem depends crucially on
the pricing methodology employed and is not an immutable
property of centralized UC itself.
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A. Models

The scheduling software used by ISOs solves a MIP for a
near-optimal UC schedule. Each day, ISOs collect bids and
offers that define consumer valuations and producer costs,
respectively, and are used to calculate price and quantity
schedules. Demand is commonly assumed to be fixed, in which
case minimizing production costs is equivalent to maximizing
the market surplus. The UC model below follows this conven-
tion, but easily generalizes to include the case where demand
plays an active role in the market.

min z = c>p+ f>u (1a)
s.t. Ap ≥ d (1b)

Bp+Du ≥ b (1c)
u ∈ {0, 1} (1d)

The model (1) minimizes total production costs z, given
system constraints (1b) and generator constraints (1c) and
(1d). Constraint (1b) is formulated so that all theoretical
results in this paper can accommodate any linear equality (e.g.,
energy balance) or inequality (e.g., transmission and ancillary
service) system constraints. Decision variables are generation
quantities, p; and binary commitments, u. Parameters include
marginal costs, c; fixed costs, f ; system constraint matrix,
A; energy demand and transmission capacity, d; generator
constraint matrices, B and D; and generator limits, b. Price-
responsive demand can be included by allowing some entries
of p to be negative and defining the respective entries of c and
f to be the marginal and fixed value of energy consumption,
respectively. In that case, the model is equivalent to maxi-
mizing the market surplus. The index n ∈ G may be used to
reference the vector and matrix entries that refer to individual
generators. Feasible integer solutions to (1) will be denoted
by (ps, us), s ∈ S, and s = ∗ will denote an optimal solution.

Given the time constraints of setting up and running a day-
ahead market, the ISO’s scheduling software either terminates
as soon as a solution is proven to be within a tolerance of
the optimal solution, and/or after it reaches a maximum time
limit. The optimality tolerance is determined by a lower bound
on the optimal solution’s cost, zLB ≤ z∗. A solution to (1)
is optimal if zs = zLB or near-optimal if zs ≤ (1 + α)zLB ,
where α > 0 can be any pre-determined optimality tolerance.
It is often impractical for the software to verify optimality, so
it is possible that a near-optimal solution could be optimal. We
define the optimality gap δsopt and MIP gap δsmip as follows.

δsopt := zs − z∗ ≤ zs − zLB =: δsmip (2)

Since problem (1) is a MIP, there is no standard dual
problem definition to calculate shadow prices [31]. Instead,
ISOs calculate prices using convexified versions of (1). This
paper compares prices from four convex pricing models,
which we call Restricted (r), Partial Dispatchable (pd), Tight
Dispatchable (td), and Loose Dispatchable (ld).

Each pricing model differs in constraints (1c) and (1d),
as shown in Table II-A. Tight implementations for (1c) in-
clude minimum up-time and down-time [26], two-period ramp
inequalities [27], variable upper bounds [28], and a convex

TABLE I
PRICING MODEL DEFINITIONS

Model Description (1c) Formulation (1d) Substitution

r Restricted [26]–[29] u = us

pd Partial Dispatchable [26]–[29] 0 ≤ u ≤ us
td Tight Dispatchable [26]–[29] 0 ≤ u ≤ 1
ld Loose Dispatchable [32] 0 ≤ u ≤ 1

envelope of the cost function [29]. The formulations in Ref.
[32] do not affect the feasible region of (1) if u is binary,
but could result in a larger feasible region if a continuous
relaxation is applied to u. The r model results in the same
prices for either of these two formulations.

Prices in the four convex primal models are given by the
dual variables to (1b), λ. In addition, we will denote ch
for the true convex hull price derived by the Lagrangian
dual formulation proposed in [12], and we denote each price
by λms,m ∈ {r,pd,td,ld,ch}, respectively. The dual
problem of each pricing model constrains λ ≥ 0 [33], but note
that generator n’s energy payment, λ>Anpn, and consumer i’s
energy charge, λidi, could be either positive or negative.

Prices are set by by the marginal cost of online resources in
the r model. By relaxing u’s binary constraints, the pd model
extends price-setting to reflect fixed costs of online resources,
while td and ld models extend price-setting to include the
fixed costs of all resources, regardless of commitment status in
the selected schedule. Each of the pricing models are convex,
but only the td and ld models are convex relaxations of (1).

The r model, formally described in [2], is considered stan-
dard practice in day-ahead markets. The td and ld models are
two implementations of the ‘Dispatchable’ model introduced
in [12], but they differ in how closely the generator constraints
approximate the convex hull of the UC problem. The most
notable adoption of this type of pricing is the Extended
Locational Marginal Price (ELMP) in MISO [7], [25], which
only permits price-setting by uncommitted resources in a
narrow set of circumstances [7], and therefore resembles the
pd model. The effect on market outcomes of conditional
or unconditional integer relaxation has not previously been
discussed in the literature and is part of our motivation for
comparing these four pricing models.

A comprehensive review of various convex hull pricing
implementations is beyond the scope of this paper, but ref-
erences [25] and [29] provide overviews of convex hull
pricing formulations and properties. The rules of each ISO
market include many idiosyncrasies and are reviewed in [34].
Additional pricing proposals from the academic literature are
reviewed in [21].

B. Side-Payment Policies

In the absence of side-payments, generators receive quasi-
linear1 profits πmsn , also referred to as “linear” profits.

πsn(λ) = (A>n λ− cn)>psn − f>n usn (3)

1Quasi-linearity denotes that revenues, (λms)>pn, are linear and and costs,
cnpn + fnzn, are nonlinear, both with respect to production level pn.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 17,2020 at 19:06:05 UTC from IEEE Xplore.  Restrictions apply. 



0885-8950 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2947400, IEEE
Transactions on Power Systems

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. XX, NO. X, MMM YYYY 4

Due to the non-convex nature of UC, it often occurs that a
generator’s socially optimal schedule does not maximize its
linear profit [1]. That is, given a UC solution s and a price
vector λ, generator n may incur a lost opportunity cost, Usn(λ),
defined by the following profit maximization problem.

Usn(λ) = sup
(pn,un)∈χn

{(A>n λ− cn)>pn − f>n un} − πsn(λ)

(4)

where χn := {Bnpn +Dnun ≥ bn, un ∈ {0, 1}} is the set of
generator n’s internal constraints.

The derivation of convex hull pricing is based on minimiz-
ation of the sum of lost opportunity cost payments [12]. An
important rationale for paying lost opportunity costs to market
participants is to ensure that the optimal commitment and
dispatch are supported, i.e., that generators cannot profitably
deviate from the ISO’s schedule. However, consumers may
have reasonable objections to being charged for lost oppor-
tunity costs. Lost opportunity costs payments may become
very large if the market contains large nonconvexities [35]
or if the convex hull price is poorly approximated [25],
and such payments could go to unscheduled generators [25].
Unfortunately, a perfect resolution of all market participant
desires may be unattainable in nonconvex markets [1].

The standard practice in ISOs is does not pay full lost
opportunity costs, but only the portion of any scheduled
generator’s as-bid costs that is in excess of its energy market
revenues. The make-whole payment, µsn(λ), is defined as
follows.

µsn(λ) = max{0,−πsn(λ)} (5)

Since producing nothing is a feasible solution to (4),
0 ≤ µsn(λ) ≤ Usn(λ). Actual profits will be distinguished from
linear profit with a tilde.

π̃sn(λ) = πsn(λ) + µsn(λ) (6)

An additional component of uplift, called Product Revenue
Shortfall (PRS), can be required if the sets of binding inequal-
ity (e.g., transmission and/or ancillary services) constraints are
different in the dispatch and pricing models [25], [36]. PRS
charges perform a similar function to make-whole payments,
preventing the underfunding of ancillary service providers
and Financial Transmission Rights (FTR) holders [36]. This
component is equal to λ>(Ap − d) and is nonnegative since
λ ≥ 0 (from the pricing model dual) and Ap ≥ d (from (1)).

The following results will assume that charges for all
generator side-payments and PRS will collected pro rata from
consumers. Section III assumes only that 0 ≤ µsn(λ) ≤ Usn(λ),
so the theoretical results will apply to a very generic side-
payment policy. Numerical results in Section V will reflect
side-payments only from the make-whole definition (5), con-
sistent with current practice in most ISOs.

III. THEORETICAL RESULTS

This section introduces bounds on the stability of individual
profits when computational constraints prevent the calculation
of an optimal UC schedule. We first prove a theorem that
applies to any class of pricing mechanisms that uses the same

price vector λ to settle both the optimal and near-optimal UC
schedule. A corollary applies to any pricing model that is
a convex relaxation of (1), such as the td and ld pricing
models. Like [13], [14], we are unable to determine stability
bounds for pricing models that depend upon the UC solution.
Thus, the following theoretical results do not generally apply
to the r and pd pricing models unless both UC solutions are
known to result in the same λ, as shown in Section IV.

Changes to prices, commitment decisions, and make-whole
payments all affect the change financial outcomes due to the
suboptimality of the UC solution. We will assume that (1)
accurately portrays the optimal operation of the power market.
In actual operations, however, market operators will often
manually adjust market schedules due to renewable energy
forecast uncertainty or in order to satisfy reliability concerns,
and such adjustments may complicate the market settlements
even further [37].

The change in generator profits δmsn , consumer surplus δmscs ,
and the solution cost δmsobj are related by the balance equation.∑

n

δmsn + δmscs + δsobj = 0 (7)

where,

δmsn := π̃sn(λms)− π̃∗n(λm∗) (8a)

δmscs := (Ap∗)>λm∗ − (Aps)>λms

+
∑
n

(µ∗n(λms)− µsn(λm∗)) (8b)

δsobj := zs − z∗ (8c)

The quantity δmscs reflects not only changes to the consumer’s
direct energy payment, λ>d, but also changes to the PRS
and any make-whole payments since these items are typically
assumed to be allocated pro rata to consumers. The payment
redistribution quantity, ∆ms, is defined below.

∆ms :=
∣∣δmscs

∣∣+
∑
n

∣∣δmsn ∣∣ (9)

The Lagrange function plays a key role in the theoretical
results, and is defined below.

L(λ) = inf
(p,u)∈χ

{c>p+ f>u+ λ>(d−Ap)} (10)

As shown in pages 28-29 of [12], the Lagrange function is
directly related to the total lost opportunity cost and PRS of
any arbitrary integer UC solution, derived as follows.∑

n

Usn(λ) + λ>(Aps − d) (11a)

= sup
(p,u)∈χ

{(A>λ− c)>p− f>u}

− (A>λ− c)>ps + f>us + λ>(Aps − d)
(11b)

= sup
(p,u)∈χ

{(A>λ− c)>p− f>u}

+ c>ps + f>us − λ>d
(11c)

= − inf
(p,u)∈χ

{c>p+ f>u+ λ>(d−Ap)}+ zs (11d)

= zs − L(λ) (11e)
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Convex hull prices are defined by λch := arg maxλ L(λ)
to minimize the sum of generator uplifts, Usn(λ), and the
PRS [12]. The resulting prices are inherently independent of
the UC solution. The td and ld pricing models are convex
relaxations of (1) and therefore share this second property,
even if they do not calculate the true convex hull price. The
following lemma and theorem apply to any two UC schedules
with market settlements determined by the same λ.

Lemma 1. Let (ps
′
, us

′
), s′ ∈ {s, ∗}, be a near-optimal

and an optimal solution to (1), and let λ be a single price
vector of appropriate dimension. Suppose generator profits are
π̃s

′

n (λ) = πs
′

n (λ) +Us
′

n (λ) and the total consumer payment is
λ>Aps

′
+
∑
n U

s′

n (λ). Then, the redistribution quantity ∆ms,
(9), is exactly the cost gap with the optimal solution, δsobj.

Proof. From the definition of lost opportunity cost (4),

πsn(λ) + Usn(λ) = sup
(pn,un)∈χn

{(A>n λ− cn)>pn − f>n un}

(12)

The RHS is independent of the UC solution, so
∑
n |δmsn | = 0.

Since δsobj ≥ 0, then (7) implies the following.∣∣δmscs

∣∣ = δsobj (13)

Consequently, ∆ms is simply δsobj.

The next lemma calculates bounds for ∆ms if market settle-
ments include payment of any portion of the lost opportunity
cost, such as the make-whole payments defined by (5) or any
policy such that 0 ≤ µsn(λ) ≤ Usn(λ).

Theorem 1. Let (ps
′
, us

′
), s′ ∈ {s, ∗}, be a near-optimal

and an optimal solution to (1), both feasible, and let λ
be a single price vector of appropriate dimension. Suppose
generator profits are π̃s

′

n (λ) = πs
′

n (λ) + µs
′

n (λ), such that
0 ≤ µs

′

n (λ) ≤ Us
′

n (λ), and the total consumer payment is
λ>Aps

′
+
∑
n µ

s′

n (λ). Then, the redistribution quantity ∆ms

is upper bounded by 2δsobj + 4 (z∗ − L(λ)).

Proof. The net change in generator profits,
∑
n δ

ms
n , is first

decomposed, resulting in the following equality.∑
n

δmsn

=
∑
n

λ>An(psn − p∗n)− c>(ps − p∗)

− f>(us − u∗) +
∑
n

(µsn(λ)− µ∗n(λ))
(14a)

= λ>A(ps − p∗)− δsobj +
∑
n

(µsn(λ)− µ∗n(λ)) (14b)

Then, substituting from (7) and (14b) to rewrite |δmscs |,∣∣δmscs

∣∣ =
∣∣δsobj +

∑
n

δmsn
∣∣ (15a)

=
∣∣∑
n

(µsn(λ)− µ∗n(λ)) + λ>A(ps − p∗)
∣∣ (15b)

Bounds for |δmscs | come from applying the triangle inequality
and adding λ>d− λ>d = 0 to the last quantity,∣∣δmscs

∣∣ ≤∑
n

|µsn(λ)− µ∗n(λ)|

+ |λ>(Aps − d)− λ>(Ap∗ − d)|
(15c)

Since make-whole payments and PRS are both nonnegative,
the triangle inequality implies that,∣∣δmscs

∣∣ ≤∑
n

(µsn(λ) + µ∗n(λ))

+ λ>(Aps − d) + λ>(Ap∗ − d)

(15d)

Finally, µsn(λ) ≤ Usn(λ), which leads to the following simpli-
fication from (11).∣∣δmscs

∣∣ ≤∑
n

(Usn(λ) + U∗n(λ))

+ λ>(Aps − d) + λ>(Ap∗ − d)

(15e)

= zs + z∗ − 2L(λ) (15f)

The absolute change in profits can be calculated with respect
to the conditions in Lemma 1, using similar steps as before.∑

n

∣∣δmsn ∣∣
=
∑
n

∣∣0 + (µsn(λ)− Usn(λ))− (µ∗n(λ)− U∗n(λ))
∣∣ (16a)

≤
∑
n

(∣∣µsn(λ)− Usn(λ)
∣∣+
∣∣µ∗n(λ)− U∗n(λ)

∣∣) (16b)

≤
∑
n

(Usn(λ) + U∗n(λ)) (16c)

= zs + z∗ − 2L(λ) (16d)

Combining (15f) and (16d),

∆ms ≤ 2δsobj + 4(z∗ − L(λ)) (17)

Given any solution to (1), δsobj is fixed, so convex hull pricing
will minimize bound in (17). However, computing convex hull
prices by minimizing L(λ) is computationally difficult and
may be impractical [12], [25]. Instead, a corollary of Theorem
1 provides bounds that can be computed without calculating
either an optimal UC solution or the Lagrangian dual.

Corollary 1. Let (ps, us) be a primal solution to (1) with a
MIP gap δsmip = zs − zLB ≥ zs − z∗, and m be a convex
relaxation of (1) with a dual solution λ and integrality gap
δmint = zs−zm. Then, the payment redistribution ∆ms is upper
bounded by 2δsmip + 4δmint.

Proof. The new bound can be found by substitution from (17).
Strong duality and the convex hull price definition imply that
zch = L(λch), where zch is the maximal objective function of
the all convex relaxations of (1). Since zLB ≤ z∗ ≤ zs and
zm ≤ zch, all of which are true by definition, then ∆ms is also
bounded by the following.

∆ms ≤ 2(zs − zLB) + 4(zs − zm) (18)
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The theoretical results are summarized as follows. Lemma
1 shows that the redistribution quantity will be exactly equal
to the cost gap if prices are independent of the UC solution
and the market pays all lost opportunity cost payments.
Meanwhile, Theorem 1 is a more general result that derives
bounds on the redistribution quantity given any side payment
definition up to the full lost opportunity cost, e.g., the typical
make-whole payment policy. Finally Corollary 1 provides a
relaxed bound that can be easily computed.

Following the convention of previous works [13], [14], the
redistribution quantity is defined in terms of comparing a
suboptimal UC solution with an optimal one. However, the
same arguments in Lemma 1, Theorem 1, and Corollary 1
can also be immediately applied to the redistribution between
any arbitrary pair of UC solutions by making the appropriate
substitutions. That is, none of the steps rely on the optimality
of z∗, but only on the fact that z∗ ≤ zs.

Theorem 1 applies to any general price vector λ so long as
it determines market settlements in both alternative schedules.
In addition, it implies that a redistribution of payments may
only arise if there is a nonzero optimality gap and/or duality
gap. If there is only an optimality gap, then changes in
payments are easy to identify from the difference in generator
costs. When there is a duality gap, then the redistribution
of payments comes from a reshuffling of commitment and
dispatch decisions which will benefit some generators while
disadvantaging others. The latter case is more difficult to detect
because there may be no change in the schedule’s total cost.

When convex relaxations of (1) (such as td and ld) are
used as pricing models, Corollary 1 states that tightening the
convex relaxation will also tighten the payment redistribution
bound. In contrast to Theorem 1, the only information about
the optimal UC solution required by Corollary 1 is a lower
bound on the cost of the optimal UC schedule, zLB , and it
also does not require an evaluation of the Lagrange function,
L(λ), which is a large but decomposable MIP problem.

The bounds in Theorem 1 and Corollary 1 do not apply
to pricing mechanisms that are in any way dependent on the
UC schedule, such as for the r and pd pricing models. For
such models, we were unable to define bounds that could
be computed without first solving an optimal UC schedule.
However, results in Sections IV and V demonstrate that the
actual redistribution quantities of the r and pd pricing models
are often larger than upper bounds that can be calculated for
the td and ld pricing models.

IV. EXAMPLE

This section presents a simple example to illustrate how
scheduling changes with little or no effect on total costs
can disproportionately affect financial outcomes of market
participants, that is, because there is a nonzero payment
redistribution quantity (9). The example consists of three
types of generators that have each been replicated five times,
shown in Table II. The demand quantity is 225 MWh, plus
a small perturbation ε > 0 to prevent degeneracy. Let G
be the set of generators of each type n ∈ {1, 2, 3} and

TABLE II
GENERATOR ATTRIBUTES, SIMPLE EXAMPLE

Gen. k ∈ {1, . . . , 5} Min, Bnk Max, Bnk Cost, Cnk
Type 1 Output, p1k 25 MW 25 MW $15/MWh
Type 2 Output, p2k 0 25 10
Type 3 Output, p3k 0 25 25

replication k ∈ {1, . . . , 5}. The single-period UC problem that
implements (1) is written below.

min z =
∑

(n,k)∈G

Cnkpnk (19a)

s.t.
∑

(n,k)∈G

pnk = 225 + ε (19b)

Bnkunk ≤ pnk ≤ Bnkunk, ∀(n, k) ∈ G (19c)
unk ∈ {0, 1}, ∀(n, k) ∈ G (19d)

The optimal UC is simple enough to solve by hand. There
are five optimal solutions; each entails scheduling four of the
five Type 1 generators to their maximum output and scheduling
the remaining Type 1 generator to zero. Prices are also easy to
obtain by fixing or relaxing the appropriate binary constraints.
The r and pd models set the price based on an ε dispatch from
a Type 3 generator, so λr,s = λpd,s = $25/MWh. The td and
ld models set the price based on an ε dispatch from a Type
1 generator. In fact, both the td and ld models calculate the
exact convex hull price since the problem has strictly linear
costs and there are no intertemporal constraints [29], so λtd =
λld = λch = $15/MWh. In each pricing model, the prices are
constant across all five optimal solutions.

When the price is $25/MWh, Type 1 generators make
a profit of $250 if committed or $0 if left uncommitted.
Type 2 generators each make a profit of $375, and Type 3
generators break even or are not dispatched. As a result, the
r and pd pricing models both result in profit redistribution
quantities of $500 because each alternative solution entails
the the redistribution of profits from one Type 1 generator
to another. Thus, the redistribution quantities are significant,
being of the same order of magnitude as the profits themselves,
in this case.

On the other hand, a $15/MWh price causes Type 1 genera-
tors to make $0 whether committed or not, Type 2 generators
each make $125 profit, and Type 3 generators receive, in total,
a small make-whole payment of $25ε to cover the cost of their
physical dispatch. The cost of each solution is the same, and
all market participants receive the same profit regardless of
which schedule is selected by the ISO.

Since the r and pd models compute the same prices for
each schedule, Theorem 1 implies that the resulting redistri-
bution quantities are only possible because there is a nonzero
duality gap when the price is λ = $25/MWh. At this price,
the redistribution upper bound in (17) is $1000. If the price
is instead set to $15/MWh (as in the td or ld pricing
models), then the upper bound is $40ε, i.e., arbitrarily small.
The example therefore demonstrates that a redistribution of
payments is possible even between two solutions with the same

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 17,2020 at 19:06:05 UTC from IEEE Xplore.  Restrictions apply. 



0885-8950 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2947400, IEEE
Transactions on Power Systems

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. XX, NO. X, MMM YYYY 7

cost and same price vector, but only if that price vector results
in a nonzero duality gap.

The redistribution of payments could plausibly influ-
ence bidder behavior. All ISO markets today allow self-
commitments, i.e., allowing generators to pre-specify that they
will be committed in the solution to (1). Solving a mixed
strategy Nash equilibrium for the market described in Table II
shows that td and ld models result in no strategic behavior,
but the r and pd pricing models incentivizes strategic behavior
that increases the schedule’s cost by 1.4%, in expectation.
Details are provided in an online expansion of this paper [38].

Small example problems like (19) can be helpful to illustrate
concepts but can also be misleading or deliver contrived
results. The small example in this section contains many
identical generators and a negligible minimum duality gap, so
it is admittedly susceptible to this objection. Accordingly, the
following section presents similar results for a suite of more
realistic test cases.

V. TEST CASES

Unit commitment, pricing, and market settlements were
solved for a suite of test cases, listed in Table III. The first
set (rts), from the IEEE 1996 reliability test sysem [39],
[40], consists of 96 generators, and 24-hour load shapes for
spring, summer, and winter (sp-,su-,wi-), and weekdays
and weekends (-d,-e). It was solved with and without
transmission limits (tx,no), for a total of 12 rts test cases.
The second set (pjm), made available by FERC [32], consists
of two 24-hour snapshots of the PJM day-ahead from summer
and winter of 2009 (su,wi), each including about 1,000
generators. It was also solved with and without transmission
limits (tx,no), for a total of four pjm test cases.

Each test case was either solved to a 0% optimality tolerance
or terminated after a 1,000 second time limit. All feasible
integer solutions found during the MIP solver’s algorithm were
saved if they met a 0.1% optimality tolerance at the end of
the algorithm’s execution, resulting in 164 rts solutions and
71 pjm solutions. In the following results, it will be assumed
that z∗ denotes the cost of the best known solution for test
cases in which the MIP solver terminated before an optimal
solution could be verified.

For computational efficiency, test cases with transmis-
sion limits were formulated using transfer distribution factor
(PTDF) transmission constraints [41]. Transmission limits in
the rts cases were reduced to 90% of their nominal values in
order to induce transmission congestion. The last four columns
of Table III show the average number of binding transmission
constraints in each test case and pricing model.

A. Results Overview

Fig. 1 shows load-weighted hourly prices in each of the four
pjm cases. The mean of those prices across all solutions is
shown for all four pricing models, and bars for coefficient of
variation (c.v.) are shown for the r and pd pricing models (c.v.
is zero for the td and ld models). The summer and winter
price curves are both typical for each respective season. Price
variation tends to be highest near peak periods in both the

TABLE III
TEST CASE SUMMARY

Num. Min. Mean # Binding Flow Limits

Test Case Solns.
δsmip
zLB r pd td ld

rts/spd/no 21 0.040% 0 0 0 0
rts/spe/no 21 0.050% 0 0 0 0
rts/sud/no 9 0.029% 0 0 0 0
rts/sue/no 2 0.014% 0 0 0 0
rts/wid/no 11 0.030% 0 0 0 0
rts/wie/no 19 0.046% 0 0 0 0
rts/spd/tx 20 0.046% 4.0 4.0 0 0
rts/spe/tx 12 0.057% 7.8 7.8 8 0
rts/sud/tx 10 0.029% 3.3 3.8 1 0
rts/sue/tx 6 0.021% 16.0 16.3 16 0
rts/wid/tx 12 0.033% 0.3 0.3 0 0
rts/wie/tx 21 0.061% 6.0 6.0 5 0
pjm/su/no 23 0% 0 0 0 0
pjm/wi/no 16 0% 0 0 0 0
pjm/su/tx 17 0% 399.6 392.6 393 326
pjm/wi/tx 15 0% 146.0 144.0 142 143

r and pd pricing models. However, price variations can also
persist throughout the day, as in Fig. 1a.

The ld model tends to result in lower prices than the other
three models despite allowing prices to be set by fixed costs.
On the other hand, r, pd, and td pricing models result in
very similar prices on average, especially in the summer cases.
Morning and evening peak prices diverge more significantly
among the four pricing models, but without an obvious pattern.
In the pjm test cases, the average energy payments by load
were 1.76, 1.79, 1.76, and 1.71 times system cost for the r,
pd, td, and ld models, respectively, leading to differences
short-run generator profits.

Fig. 2 shows potential side-payment quantities for the
rts and pjm cases, with make-whole payments (MWP, (5))
displayed as a fraction of the total lost opportunity cost (LOC,
(4)). The various pricing models based on integer relaxation
(pd, td, and ld) are often motivated by the desire to lower
make-whole payments, and indeed, the pd and td models are
mostly successful on this front. On average, although the ld
model lowers the total make-whole payments in the rts cases,
it increases total make-whole payments in the pjm cases due
to the fact that it has lower prices in each of those cases, as
Fig. 1 shows.

In both the pjm and rts test case sets, the td model
lowers the mean total lost opportunity costs (and by extension,
make-whole payments) to less than the make-whole payments
resulting from the r pricing model. Lowering lost opportunity
costs is an expected outcome for pricing models based on
convex hull pricing [12]. An unexpected outcome is that the
lowering of lost opportunity costs also has the effect of limiting
the redistribution of payments that occur among near-optimal
solutions, as shown in the next section.

B. Payment Redistributions

Because sub- and near-optimal solutions are a practical
reality in ISO markets, market designers may prefer to adopt
pricing models that redistribute less of the market surplus
due to negligible cost differences in the chosen schedule.
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(a) Case pjm/su/no price mean and c.v.
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(b) Case pjm/wi/no price mean and c.v.
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(c) Case pjm/su/tx price mean and c.v.
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(d) Case pjm/wi/tx price mean and c.v.

Fig. 1. ISO-scale test cases from the pjm data set. Mean prices are similar in many hours, but r and pd include significant inter-solution variablity.
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Fig. 2. Make-whole payments, MWP=
∑
n µ

s
n(λ), and lost opportunity costs,

LOC=
∑
n U

s
n(λ).

Or, put differently, there may be good reason to consider
whether the pricing model may cause some market participants
to be significantly worse off because of small scheduling
inefficiencies, among other market design considerations.

The redistribution of payments between near-optimal solu-
tions can become very complex; it is affected not only by
changes to the price vector, but also changes to generator
schedules, side-payments, and, as shown in Section III, the
presence of a duality gap. According to (7), payments may be
redistributed from consumers to generators, from generators to
consumers, and possibly from generators to other generators.

Table IV shows the average value of ∆ms, (9), for all
pjm and rts test cases. The payment redistribution quantities
in the rts cases were much larger than in the pjm cases,
on average. However, in both sets of test cases, td pricing
model’s bounds from (18) are relatively tight and thus the
payment redistribution quantities are quite small.

The td pricing model’s theoretical bounds from (18), re-
produced here, can be used as a common basis of comparison
of the other pricing models.

∆̂s := 2(zs − zLB) + 4(zs − ztd) (20)

TABLE IV
MEAN PAYMENT REDISTRIBUTION

Mean ∆ms/zLB , (%)
Test Case Subset r pd td ld

rts cases 10.1% 25.1% 0.12% 2.28%
pjm cases 0.80% 0.48% 0.01% 0.02%

While only the td pricing model will guarantee ∆ms ≤ ∆̂s,
comparing all pricing models to the td model’s bound
provides for a comparison that controls for the possibility
that the redistribution of payments may be larger in lower
quality solutions. The proportion of solutions that satisfy
some multiple of this bound, τ∆̂s, for some τ > 0, is then
used to compare each pricing model’s relative effect on the
redistribution of payments. This proportion will be called
∆m(τ) and is calculated as follows,

∆m(τ) = (1/S)
∑
s

1{∆ms≤τ∆̂s} (21)

where S is the number of sampled solutions and 1{·} is a
counting operator.

Fig. 3 shows the proportion of solutions that satisfy the
bound τ∆̂s. As must be the case, td model satisfies the bound
in all solutions (shown by the vertical line at τ = 1), and in
fact its redistribution quantities are about 10% of the bound,
at most. On the other hand, the majority of redistribution
quantities from r and pd pricing models, which are not
bounded Theorem 1 or Corollary 1, do not even satisfy the
td model’s worst case bound (at τ = 1) and some are up to
10-100 times higher than the td model’s bound.

Although the ld and fd models are both convex relaxations
of (1), they result in very different payment redistribution
quantities in the rts case. Corollary (1) suggests that pricing
models that are looser relaxations of (1) can result in larger
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Fig. 3. Payment redistribution incidence compared to multiples of the
theoretical guarantee of the td model.

payment redistributions. Indeed, the td model’s average in-
tegrality gap was quite small, 0.28% when averaged across
all solutions in the rts cases, and the ld model’s average
integrality gap was significantly larger, at about 30%. Accord-
ing to Corollary 1, many of the redistribution quantities for
the ld model would not be possible but for this difference
in integrality gaps. No analysis was performed to determine
which constraints (from [26]–[29]) were most responsible for
the difference in integrality gaps, but an implication remains
that achieving a tight relaxation of (1) is not a trivial task.

C. Effects on Individual Market Participants

Next, we show that the redistribution of payments does not
affect all market participants evenly, but tends to have the
largest effect on the profits of a small subset of participants.

To assess the variability of individual generator profits, we
compute the coefficient of variation (c.v.) of each generator’s
profits. Sample mean and variance are computed from the
pool of near-optimal solutions. Let π̄mn =

∑
s π̃

s
n(λms)/S

and (σmn )2 =
∑
s(π̃

s
n(λms)− π̄mn )2/(S − 1) be the mean and

variance, respectively, of generator n’s profit when prices are
determined by pricing model m. The profit c.v. is defined as
ρmn = σmn /π̄

m
n , and we define the test case sample cumulative

distribution as follows.

ρm(x) =
∑
n

1{ρmn ≤x}/
∑
n

1{π̄m
n >0} (22)

Cumulative distributions of the c.v. of generator profits are
shown in Fig. 4 for each pricing model. Profit variation is
consistently low for settlements determined by the td pricing
model. The ld model resulted in consistently low profit
variation in the pjm cases but less so in the rts cases. The
pd model produced high levels of profit variation in the rts
cases, some exceeding 1 (i.e., standard deviation greater than
mean profits).

Because ISO markets are nonconvex, a single generator’s
profitability can be highly dependent on the characteristics of
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Fig. 4. Fraction of generators with profit c.v. ≤ x.

other generators in the market. Some generators may be com-
plements, in that one is likely to be profitable when the other
is also profitable, or they may be substitutes if the opposite
occurs. However, knowing which generator characteristics will
be associated with higher or lower profit variability requires
a detailed analysis of a large number of UC solutions, and is
left for future work.

VI. CONCLUSION

It has long been recognized that sub-optimal solutions
can have significant distributional implications in markets
with nonconvexities, and unit-commitment based electricity
markets in particular [13], [14]. What hasn’t been explored
is whether those implications are very different among altern-
ative methods for determining prices and settlements in such
markets.

Results in this paper demonstrate that, indeed, different
pricing models can result in payment redistributions that are
significantly different in magnitude. This was shown for a
suite of test cases, showing that some pricing models can
result in a sizable redistribution of payments, but, unlike
previous analyses, other pricing models often result in almost
no redistribution of payments compared to settlements in an
optimal UC schedule. In particular, the td pricing model, a
tight convex relaxation of the UC problem (1), resulted in
almost no redistribution of payments in any of the test cases
that were attempted.

The paper’s theoretical contributions show that such results
should be expected for any pricing model that is a tight
convex relaxation of the UC problem. More specifically, if
energy prices are determined by a convex relaxation of the
UC problem, then a redistribution of payments can only occur
if there is an optimality gap and/or duality gap, and the
magnitude of the redistribution can be bounded by a weighted
sum of these two quantities. These bounds remain valid for a
broad range of side-payment policies, including make-whole
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payments or any portion of lost opportunity costs, that might
accompany market settlements.

The paper’s theoretical results do not apply to pricing
models that are dependent on the UC schedule, such as the
r and pd pricing models. In that case, we were unable to
define bounds that could be calculated without first solving
the optimal UC schedule, and test case results were consistent
with previous analyses.

A larger question is whether the adoption of a new pricing
policy is likely to improve market efficiency. To help answer
this question, Theorem 1 and Corollary 1 in this paper may
be useful tools for future analyses of equilibria in electricity
markets, as the payment redistribution bound also places an
upper bound on the incentives for certain types of strategic
behavior. Further analysis is required to determine if this
strategic behavior is actually possible or likely in a realistic
test case.
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