

Outline

- I. Why power?
- **II. Example models**
- **III. Model uses**

ELECTRICITY-Ready to Serve You/ Have a Contractor Wire Your Home THE EDISON ELECTRIC ILLUMINATING COMPANY OF BOSTON

- IV. Examples of wrong & useful models
- V. Two modeling needs & some results
 - -- Better game models
 - -- Stochastic decision models

Definition of Electric Power Models

Models that:

- simulate or optimize ...
- operation of & investment in ...
- generation, transmission & use of electric power ...
- and their economic, environmental & other impacts ...
- using mathematics &, perhaps, computers

Focus here: "bottom-up" or "process" engineering economic models

- Technical & behavioral components
- Used for:
 - firm-level decisions
 - e.g., MAX profits
 - policy-analysis
 - simulate reaction of market to policy

1. Why Power & Power Models?

- Why is modeling electricity fun?
 - Mathematically/computationally challenging
 - Interesting economic behavior
 - Lots of data
 - Prediction is so hard
 - Practically important: Big stake decisions
 - Done wrong, it hurts the economy & environment
 - Done right, it could help to create a more efficient & cleaner future

Why Power? (1) Economy's Lynchpin

Economic impact

- ~50% of US energy use
- >\$1000/person/y in US (~oil)
 2.5% of GDP (10x water sector)
- Most capital intensive

Consequences when broken

- 2000-2001 California crisis
- Chronic third-world shortages

Ongoing restructuring

- Margaret & Fred
- Spot & forward markets
- Horizontal disintegration, mergers
- Vertical disintegration
 - Generation—transmission—distribution
 - Access to transmission

- Headaches: Fuel depletion, nuclear waste
- But could solve problems e.g., electrify vehicles

Why Power? (4) Dumb Grids Physics of networks

- North America consists of 3 synchronized machines
- What you do affects everyone else ⇒ must carefully control to maintain security.
 - E.g., parallel flows due to Kirchhoff's laws

Valveless networks

- St. Fred's dream remains just that
 - Broken demand-side of market

dinternational.com/produc

Oil/Gas Coal

2007 2009

Operations Math Program (MP)

MIN Variable Cost = $\Sigma_{i,t}$ CG_{it} g_{it}

subject to:

 $\Sigma_{i} g_{it} = D_{t} \forall t$ Dual is marginal price **Meet load: Respect plant limits:**

> $0 \leq g_{it} \leq CAP_i$ ∀i,t $\Sigma_{t} g_{it} \leq CF_{i} * T * CAP_{i} \quad \forall i$

Towards a Smart Grid: Price Responsive Demand in an Operations MP MAX Net Benefits from Market = $\sum_{t} \int_{0}^{d_{t}} \mathbf{P}_{t}(x) dx - \sum_{i,t} \mathbf{CG}_{it} g_{it}$ subject to: $\Sigma_{i} g_{it} - d_{t} = \mathbf{0} \quad \forall \mathbf{t}$ $0 \leq g_{it} \leq CAP_i$ ∀i,t $\Sigma_{\rm t} g_{it} \leq {\rm CF_i 8760 \ CAP_i} \quad \forall i$ ("Smart Grid" also involves better state estimation, & control of flows on grid)

findcheapgas.co.uk/category/saving-elecricity

Let's Learn a Little about Power Before Having Fun...

needcowbell.blogspot.com/2007_10_01_archive.html

Linearized Transmission Constraints: <u>The Optimal Power Flow Problem</u>

 g_{int} = MW from plant *i*, at "bus" *n*, during *t* z_{nt} = Net MW injection at *n*, during *t*

MIN Variable Cost = $\Sigma_n \Sigma_{i,t} CG_{int} g_{int}$

subject to:

Net Injection:	$\Sigma_{i} g_{int} - D_{tn} = z_{nt}$	∀ <i>t,n</i>
GenCap:	$0 \leq g_{int} \leq CAP_{in}$	∀ <i>i,n,t</i>
Hub Balance:	$\Sigma_n z_{nt} - Losses = 0$	∀t
Transmission:	$\Sigma_{n} \operatorname{PTDF}_{nk} Z_{nt} \leq \operatorname{Transcap}_{k}$	∀ <i>k,t</i>

Investment Analysis: MP Snap Shot AnalysisLet generation capacity cap_i now be a
variable, with:• (annualized) cost = CRF [1/yr] * CCAP_i [\$/MW]MIN $\Sigma_{i,t} CG_{it} g_{it} + \Sigma_i CRF*CCAP_i cap_i$ $s.t. \Sigma_i g_{it} = D_t \quad \forall t$ $g_{it} - cap_i \leq 0$ $\forall i, t$ $\Sigma_i g_{it} - CF_i 8760cap_i \leq 0$ $\forall i$ $\Sigma_i cap_i \geq D_{PEAK} (1+M)$ ("reserve margin" constraint) $g_{it} \geq 0$ $\forall i$

Company Decisions Made Using Process Models, Cont.

Pricing Decisions

- <u>Bidding</u> (1 hr \leftrightarrow 5 yrs)
- <u>Market clearing price determination</u> (15 min \leftrightarrow day ahead \leftrightarrow years ahead)

Policy Uses of Process Models

Use models of *firm*'s decisions to simulate *market*

Approaches

- Via single optimization (Paul Samuelson): MAX {consumer + producer surplus}
 - ⇔ Marginal Cost Supply = Marg. Benefit Consumption
 ⇔ Competitive market outcome
 - Other formulations for imperfect markets
- Attack equilibrium conditions directly

Uses

- Project effects of policies / market design / structural reforms upon ...
- ... market outcomes of interest (costs, prices, emissions & impacts, income distribution)

IV. Predicting Twists & Turns with Models

"Prediction is very difficult, ... especially about the future." --Neils Bohr on Prediction

I think there is a world market for maybe five computers." -- Thomas Watson, IBM, 1943

"There is no reason anyone would want a computer in their home."

--Ken Olsen, Digital Equipment Corporation, 1977

www.blogcatalog.com/blog/joy-in-the-rain/70f370e405178aa7b352a4cf2384fd7e & http://www1.secam.ex.ac.uk/famous-forecasting-quotes.dhtml

Figure 1 Projections of total U.S. primary energy use from the 1970s. The figure is redrawn from a Department of Energy report (3) and simplified from a summary of dozens of forecasts.

Source: P.P. Craig, A. Gadgil, and J.G. Koomey, "What Can History Teach Us? A Retrospective Examination of Long-Term Energy Forecasts for the United States," Annual Review of Energy and the Environment, <u>27</u>: 83-118

Poor Predictions, Continued

- California dreaming, 1995: Restructuring unanimously passed by legislature
- California scheming, 2000-2001: Design proven uncrashworthy by "7 plagues"
 - demand growth (+13.7% 6/99-6/00)
 - drought (-23% hydropower), pipeline explosion power line fires, kelp, NO_x permits shortage
 - alleged manipulation (maintenance)
- Consequences:
 - Prices \$100-\$200 typically (400% higher than before),
 - Cost of power: 1999 \$7B; 2000 \$28B

V. Fun with Models

Fun ≡ Conclusions that surprise & overturn policy beliefs

V.A Strategic Market Modeling

Market Power = The ability to manipulate prices persistently to one's advantage, independently of the actions of others

Digression: History Quiz

What was the profession of John Nash's father?

Electric power engineering

2 Stage Closed-Loop Game (EPEC): Capacity, then Operations

Sonja Wogrin, Ben Hobbs, & Danny Ralph, WP, Comillas Pontifical University, Madrid, 9/2010

2 Stages:

1st: Capacity decisions taken independently by each generator, correctly anticipating effect on ...
 2nd: Short-term market operations & prices

Interesting because:

- Computational, analytical challenges
 - Nonconvex firm problem; equilibrium may not exist
- Unexpected economic result
 - Short run oligopoly can be better than competition
- Practically important
 - Ireland, other markets try to force short-run competition

Let X₁= {x₁₀ ∀f}, X₁,-₅ = {x₁₅, ∀f'≠f}, X₂= {x₂₅, ∀f}
Short-Run Equilibrium Problem SR(X₁): Find X₂ that solves:

KKT₁₅(x₂₅, λ₂₅ /x₁₅), ∀f
Market clearing conditions

f's 1st stage problem LR₅(X₁,-₅) is an MPEC: MAX π₁₅ = π₂₅(x₂₅ /x₁₅) - C₁₅(x₁₅) {x₁₅ x₂₅, x₂,-₃} SR Gross Margin - Investment Cost s.t. x₁₅ ∈ G₁₅ SR(X₁)
LR Equilibrium is a (tough) EPEC:

• Find \underline{X}_1 =that simultaneously solves $LR_f(\underline{X}_{1,-f}), \forall f$

The problem

Transmission planning

- Generators respond: multi-level
- Decisions can be postponed: multi-stage
- Uncertainties & variability: stochastic

Important questions:

- Optimal strategy under uncertainty?
- Value of information? (EVPI)
- Cost of ignoring uncertainty? (ECIU)
- Option value of being able to postpone?

Deterministic planning can't answer these!

• Stochastic can! (Fun)

later

Value of perfect information

 How much average savings if we knew which scenario would happen?
 1.Solve stochastic model
 2.Solve deterministic model for each scenario
 3.Compare objectives (1) and (2)

Results:

- For gen & transmission: £3,729M (3%)
- For trans alone £101M (0.1%)

Cost of ignoring uncertainty

- How much do costs go up if we naively plan for one scenario but other scenarios can happen?
 - 1. Solve stochastic model
 - 2. Solve naïve (deterministic) model for each scenario
 - 3. Solve stochastic model, imposing 1st stage naïve transmission decisions
 - 4. Compare objectives (1) and (3)

53

Cost of ignoring uncertainty (for Transmission Planner only)

Scenario planned for	Cost of Ignoring Unc.	
	(Present worth)	
Status Quo	£111M 😁	
Low Cost Distributed Gen	£4M 🤭	
Low Cost Large Scale Gree	en £4M 遵	
Low Cost Conventional	£487M 🙆	
Paralysis	£4M 🥘	
Techno+	£7M 🥘	
Average	£103M (0.1%)	

Conclusions

- > Power problems are only going to get more important
 - Get competition's benefits while moving towards sustainability
 - Planning & operations to include lots of renewables and demand response -- reliably & economically

> Fun with Multilevel games:

- Nonconvex problems!
- Counter-intuitive results
- Help understand how markets can be gamed

> Fun with Stochastic optimization:

- Big problems!
- Ignoring risk has quantifiable economic consequences
- Useful for planning