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|. The problem
— CAISO TEAM method
ll. Cooptimize gen & discrete lines: MILP
~ 7zone UK
— 17 zone WECC
— 240 bus WECC
lll.Cooptimize gen & continuous line

capacity: Successive LP
— EU 26 model: COMPETES
— Demand response
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' Consider Generator Investment Response
in_ Transmission Planning wadetar. 2010

bl CALIFORNIA ISO Integrated economic benefits method:

1. Benefits framework: Many
perspectives

2. Full network (linearized dc)
3. Market-based pricing
* Recognize how upgrade mitigates

Transmission Economic market power

Assessment Methodology 4. Recognize uncertainty

(TEAM) ¢ Transmission insures against extreme
events

5. Resource (supply/DSM) substitution

e Simulate gen operations & investment
response to changed prices

* Account for savings in all resource
costs

California Independent Sysiem Operaior
Jume 2004
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Cooptimize with Discrete Lines

m Generation representation

e Continuous investment & output

 Regional correlations of wind/load (100-700 h/yr)
e Hydro pre-dispatch

m Transmission representation
» Discrete circuits
 Linearized dc load flow

m Uncertainty
* Here-and-now decisions (e.g., 2010)
e Wait-and-see scenarios (decisions e.g., 2020,30)

m MIP solved with AIMMS/CPLEX
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Two-stage Stochastic Approach

“Here & Scenarios
Now”
O<D
[
O<D
[
e Transmission « $ Fuels
» Generation e $ Technology
e Policies
* |mports
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UK Analysis (Radial-DC Model: MILP)

(van der Weijde & Hobbs, 2012)

Various new/ ‘ Subsea
upgrades Tl HVDC
£353M £829M
Subsea HVDC
£805M Onshore

HVDC

Various new/
upgrades
£286M
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7 scenarios, 3 stages, 700 hrs - 500,000 variables
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CAISO 17 Zone Test Case

(Munoz, Hobbs, Kasina 2012)

CAISO 17

Generator data from WECC 225-bus system
(Price et al. 2011)

24 corridors

5 Import buses

Time Series

Demand (CAISO)
Wind (NREL)
Solar (NREL)
Hydro (EIA)

Sample of 100 hrs/yr + 2 Stages + 3 Scenarios
-> 200,000 variables + 300,000 constraints

JHU E28HII

Generator Response 2021
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'ﬁ Stochastic vs. Deterministic

Deterministic Scenario Analysis

Stochastic Status Quo Techno Electrification
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Can we make a recommendation based

Stochastic L .
on deterministic solutions?

Solution better

by ~$300M Q “Robust” Solutions?
JHU E2?SHI

Next: WECC 240-bus test system

(Based on Price and Goodin, 2011)

m  Multiple circuits; bubble constraints; ramp limits

m Single scenario: 500 hr/yr, 4M vars
m Total Gen: 223,690 MW
' 2
* 579 generators in California, 418 rest of WECC ]HU E SHI
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Cooptimizing Transmission, Gen & DR:
COMPETES Market Model

(Hobbs et al. 2004; Lise, Hobbs, Hers, 2008)

Munoz, Ozdemir, Hobbs (in progress):

m Successive LP
e Continuous transmission capacity
e Linearized dc

m DR: elastic demand
m 500K Variables
.. IRENE 40 project

ti\To be integrated with GASTALE gas
/)model (Lise & Hobbs, 2010)
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COMPETES Future 2020
Existing  —
New {until 2020} ——

P

COMPETES Transmission Convergence
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8 minutes per iteration
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Effect of Kirchhoff’s Voltage Law

Linearized DC vs. Pipeline/Transport

"-';:%\f\/‘)/
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Demand Response

m Use Gauss-Seidel iteration
e Update load with prices from last iteration (demand curves)

m 100 hr test case 2050 (100k variables), 10 sec/iteration
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- Can make a large difference in gen miX (esonghe, Hobbs, Beliman 2012)
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Comparison (100 h/yr case)

MW of transmission investments

M Pipeline

M Linearized dc

m Linearized dc+ DR
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Conclusions

= 3 ? . We can:
&

 Cooptimize gen & transmission
— For regional policy analysis
« Model DR
* Do least-regret planning:
— Transmission as insurance
.. And it matters!

« Examples: WECC, UK, EU
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Appendix: WECC Model Formulation
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7. Thermal Limits fa < R < X JHU E2SHI




