

www.eprg.group.cam.ac.uk

The problem, Cont.

- Transmission planning
 - Generators respond: multi-level
 - Decisions can be postponed: multi-stage
 - Uncertainties & variability: stochastic
- Important questions:
 - Optimal strategy under uncertainty?
 - Value of information? (EVPI)
 - Cost of ignoring uncertainty? (ECIU)
 - Option value of being able to postpone?

Deterministic planning can't answer these!

• Stochastic can!

Decision making under uncertainty

-----Previous Work------

Mathematical Schematic

Some assumptions

2

- Alignment of generation and transmission objectives
 - e.g., nodal pricing + perfect competition
- Generation
 - Constant variable costs
 - No start-up costs, min run levels, 'lumpy investment'
 - No ramping constraints
- Demand:
 - No short-term demand flexibility, demand-side management
- Renewables targets met in most efficient way

Data sources

- Regional wind output: Neuhoff et al. (2007)
- Hydro output: Duncan (2010)
- Regional demand data: National Grid
- BritNed Flows: Parail (2010)
- Maximum build limits: Various
- Regions + trans. constraints: NG 7-year statement (2009)
- Transmission losses: own calculations
- Investment alternatives + costs: KEMA (2009)
- Generation costs: NEA and IEA (2005), US DOE, own calculations
- Scenarios: Various (Discovery, LENS, Redpoint, etc.)

www.eprg.group.cam.ac.uk

Scenarios

	flexNet (
	Gen. inv. cost	Var. gen cost	Trans. inv.	Demand	CO2	Others
			cost		price	
Status Quo		CCGT/OCGT/DG: +		+	+/-	No RT
Low cost DG	DG:	CCGT/OCGT: -		+	++	RT: +
		DG:				Nuclear replacement only
Low Cost	Renewables :	CCGT/OCGT/DG: ++			+++	RT: +++
Large Scale						
Green						
Low Cost	Conventional: -	CCGT/OCGT/DG: -		++	+	No RT
Conventional						
Paralysis	All except	CCGT/OCGT/DG: +	Onshore: +++	++	++	RT: +
	offshore: +++		Others +			Nuclear replacement only
Techno+	All : -	CCGT/OCGT/DG: +	-	++	++	RT: ++

Making networks fit for renewables ...

www.eprg.group.cam.ac.uk

SUPERGEN

Value of perfect information

- How much average savings if we knew which scenario would happen?
 - 1. Solve stochastic model
 - 2. Solve deterministic model for each scenario
 - 3. Compare objectives (1) and (2)
- Results:
 - For gen & transmission: £3,729M (3%)
 - For trans alone: £101M (0.1%)

Cost of ignoring uncertainty

- How much would costs go up if we naively plan for one scenario but other scenarios can happen?
- 1. Solve stochastic model
- 2. Solve naïve (deterministic) model for each scenario
- 3. Solve stochastic model, imposing first-stage transmission decisions from step 1
- 4. Compare objectives (1) and (3)

Making networks fit for renewables ... www.eprg.group.cam.ac.uk

Cost of ignoring uncertainty

17

Scenario planned for

Status Quo Low Cost DG Low Cost Large Scale Green Low Cost Conventional Paralysis Techno+ *Average* ECIU (Transmission) (Present worth) £432M 🙆 £0 📀 £29M 🙆 £196M 🗐 £221M 🙆 £0 \bigcirc £146M = 0.12% of expected costs (stochastic solution)

Option value of waiting

- How much would costs go up if we had to make all decisions now?
- 1. Solve stochastic model
- 2. Solve stochastic model, imposing same transmission expansion plan for all scenarios
- 3. Compare objectives (1) and (2)

References

- E. O Crousillat, P. Dörfner, P. Alvarado, and H. M. Merrill, "Conflicting Objectives and Risk in Power System Planning," *IEEE Trans. Power Systems*, vol. 8, pp. 887-893, 1993.
- N. Duncan, "",2010.
- S. -E. Fleten, A. M. Heggedal, and A. Siddiqui, "Transmission Investment under Uncertainty: The Case of Germany-Norway," presented at the 1st International Ruhr Energy Conference, Essen, Germany.
- K. W. Hedman, F. Gao, and G. B. Sheble, "Overview of Transmission Expansion Planning Using Real Options Analysis," in *Proc. IEEE North American Power Symposium*, 2005.
- J. Hyung Roh, M. Shahidehpour, and L. Wu, "Market-Based Generation and Transmission Planning With Uncertainties," *IEEE Trans. Power Systems* vol. 24, pp. 1587-1598, 2009.
- KEMA "Assessment of overall robustness of the transmission investment proposed for additional funding by the three GB Electricity Transmission Owners", 2009.
- London Economics, London, "Economic Evaluation of the Path 15 and Path 26 Transmission Expansion Projects in California".
- National Grid, "Seven-Year Statement", 2009.

Making networks fit for renewables ... www.eprg.group.cam.ac.uk

References (cont'd)

23

- NEA and IEA, "Projected Costs of Generating Electricity 2005 Update", Nuclear Energy Agency and International Agency, OECD, Paris, France, 2005.
- K. Neuhoff, J. Cust, L. Butler, K. Keats, H. Hoexter, A. Kreckzo, G. Sinden, and A. Ehrenmann, "Space and Time: Wind in an Investment Planning Model". *EPRG Working Papers 0603*, 2006.
- G. C. Oliveira, S. Binato, and M. W. Pereira, "Value-Based Transmission Expansion Planning of Hydrothermal Systems Under Uncertainty," *IEEE Trans. Power Systems*, vol. 22, pp. 1429-1435, 2007.
- M. Oloomi Buygi, M. Shahidehpour, H. M. Shanechi, and G. Balzer, "Market Based Transmission Planning Under Uncertainties," *Proc. 2004 Int. Conf. on Probabilistic Methods Applied to Power Systems*, pp. 563-568.
- V. Parail, "Can Merchant Interconnectors Deliver Lower and More Stable Prices? The Case of NorNed," EPRG Working Papers 0926, Nov. 2009.
- V. Parail, "Properties of Electricity Prices and the Drivers of Interconnector Revenue", 2010.
- E. E. Sauma, and S. S. Oren, "Proactive Planning and Valuation of Transmission Investments in Restructured Electricity Markets," *Journal of Regulatory Economics 30*, pp. 261-290, 2006.