Upstream v. Downstream CO₂ Trading in Electricity Markets: What is the Cheapest Way to Sustainability?

Benjamin F. Hobbs

Electricity Policy Research Group, University of Cambridge Dept. Geography & Environmental Engineering, The Johns Hopkins University Market Surveillance Committee, California Independent System Operator

EEM '10, Madrid, June 2010

Thanks to EPSRC FlexNet, US NSF, & CAISO for funding, and to Jim Bushnell (Iowa State U.), Frank Wolak (Stanford U.), Yihsu Chen (U. Calif.-Merced), & Andrew Liu (Purdue U.) for their collaboration

UNIVERSITY OF | Electricity Policy CAMBRIDGE | Research Group

OHNS HOPKINS

Outline 1. Who should be responsible for reducing carbon emissions? Three proposals for carbon markets Which is cheaper? Provides more incentive for conservation? 2. Method: Equilibrium models of electricity & carbon markets 3. Analytical results 4. Examples Simple Western US

Example: The California Debate

California AB32:

- CO₂ to be reduced to 1990 levels by 2020 Debate: "Point of Compliance" for CO₂

- I.e., Who's responsible for "cap & trade"?
 - Power plants (sources)?
 - Load serving entities (LSEs) (for consumers)?
- Elsewhere, source-based dominates
 - Allocate allowances to power plants, & trade

 Total emissions ≤ cap
- <u>Load</u>-based proposed for California
 - Mean emissions of LSE power purchases ≤ cap Chooper (Synapse Energy, 2007)?
 - Motivates more chargy conservation (NRDC)?
 - Result in less CO₂ "leakage"?
- Concerns over effects on power trade motivated GEAC, CO₂RC
 - Generation Emission Attribute Certificates: Power plants sell power and emissions attributes separately to LSEs
 - CO₂Reduction Credits: LSEs pay power plants to reduce emissions

Gov. Schwarzenegger is joined by international leaders with a consistent record of addressing the global threat of climate change, New York Governor George Patki and other environmental and industry leaders at a bill signing for A8 32 on Treasure Island in San Francisco on Tuesday, September 27, 2006.

Analytical Conclusions

(B. Hobbs, J. Bushnell, & F. Wolak, *Energy Policy*, in press)

Power prices:

- Uniform in <u>source</u>-based system: $p_A = p_B$
- Differentiated in <u>load</u>-based system
 - Higher for cleaner generation
 - $p_i = p_0 p_{CO2}^* E_i$ where p_0 = market price of zero-emissions power

- Differentiation endangers efficiencies of PJM-like spot markets

- Single price markets chase clean power out to bilateral markets
- Attract only dirty power, possibly a risk to reliability

All other variables identical:

- Primal quantities (MWh, tons)

- Source-based p_{CO2} = LSE's shadow price of emissions

Proof:

- Source based $\{p_0 - p_{CO2}^* E_i, p_{CO2}; g_A, \mu_A; g_B, \mu_B; d_A, d_B, \lambda\}$ satisfy equilibrium conditions of source-based (and vice versa)

UNIVERSITY OF | Electricity Policy CAMBRIDGE | Research Group

JOHNS HOPKINS

Analytical Conclusions

- "Load side carbon cap is likely to cost California consumers significantly less than supply side cap--Potentially billions of \$/yr." ("Exploration of Costs for Load Side and Supply carbon Caps for Camona, t.P. Biewald, Synapse Energy, Inc., Aug. 2007)
 - By discriminating among suppliers and paying loss for dirty power, LSEs can expropriate all profit increases due to emissions trading
 - Contrary to speculation, generator profits & net costs to consumers <u>same</u>
 - ... If allowances are auctioned to generators ($Allow_A = Allow_B = 0$), and consumers get proceeds ($Allow_{Con} = E_{max}$)
 - ...and if no damage to spot markets
- Two sources of emissions trading profits
 - **1.** Emissions allowance rent = $E_{max} * P_{CO2}$
 - 2. Rents to clean generation occur if regulation increases gross margin on sales:

$$(p - C_i - p_{CO2}E_i) > (p^{NoReg} - C_i)$$

Load-based only transfers the first to consumers

Load-Based Market: Example

Incentives for Energy Efficiency

• Does Load-Based Trading give greater incentives for conserving energy?

– "Paint target on LSE's back"

- Not in California
 - Utilities required to invest in energy efficiency if: Energy Efficiency Investment Cost < Avoided Cost of Energy * Energy Savings
 - In both load- and source-based systems, the "avoided cost of energy" (dual variable to the load constraint) is the <u>same</u> = p_{g} in the load-based case = \$100/MWh
- But if conservation also tightens LSE emissions constraint $E_A d_A + E_B d_B \leq D^* E_{Ratemax}$ then Load-Based weakens incentive
 - LSE saves \$100/MWh in energy costs, but pays \$60 more in CO₂ control costs

 Conservation saves just \$40/MWh UNIVERSITY OF | Electricity Policy CAMBRIDGE | Research Group

Decoupling Proposal: CO₂ Reduction Credits

Concern with differentiating power by emissions

- Harms spot-market type power market
- CO₂RCs and GEACs proposals to have consumers buy power & emissions separately
- CO₂RCs: Plants sell 2 commodities to consumers:
 - Power is metered
 - CO₂RCs are generated by power plants based on monitored emissions
 - Plant *i* generates $(K-E_i)g_i$
 - K is a high "default" emissions rate
 - LSEs/consumers must buy (K- E_{ratemax})D CO₂RCs
- Variant: GEACs (sell MWh denominated GEACs, differentiated by emissions rate)

Analytical Conclusions: CO₂RC

- CO₂RC is economically equivalent to source-based trading with the following (sometimes odd!) characteristics:
 - Uniform power price for all producers: $p_A = p_B$
 - Producer output is subsidized:
 - For each MWh generated, get K free allowances
 - *K* is a high "default" emission rate > *E*_{ratemax}
 - Decreases MC of power production, causing price of power to fall
 - Too many allowances: $\Sigma_i Kg_i > \Sigma_i E_{ratemax} g_i = E_{ratemax} D$
 - .: Consumers must pay generators for excess allowances, & "retire" them
 - Consumers pay generators ($K-E_{ratemax}$) $p_{CO2}D$
 - Profits, Total consumer payments, amounts generated the same as original Source-Based
 - Independent of default K
 - If zero price elasticity
- Basic source-based trading simpler avoid LSE transaction costs

Numerical Simulation with Power Imports

Y.Chen, A. Liu, and B. Hobbs, "Economic & Emissions Implications of Load-based, Source-based and First-seller Emissions Trading Programs under AB32", *Operations Research*, in review)

- California imports 20% of power...and 50% of its power-based CO₂ emissions
- 3 California proposals (load, source, "first-seller"):
 - Do they lead to different emissions permits and whole electricity prices?
 - Do they yield different generator profits and consumer costs?
 - How do they compare in terms of contract-shuffling and CO₂ leakage?
- Method: Mixed complementarity model of equilibria in energy, transmission, emissions markets

Results: Electricity Sales

Results: Contract-shuffling

Contract shuffling: re-arrangement of electricity imports contracts results in *apparent*, but not *real* emissions reductions

BC₀: emissions of B & C | *no cap* BC₁: emissions of B & C | *policy*

 I_0 : emissions import to A | *no cap* I_1 : emissions import to A | *policy*

%shuffling= 100%(1- Δ BC/ Δ I)

	3 Approaches
%Shuffling	100%

All emissions "reductions" associated with imports are imaginary

UNIVERSITY OF | Electricity Policy CAMBRIDGE | Research Group

JOHNS HOPKINS

Conclusion: Comparison of Systems

- If economic rent of allowances is retained by consumers, three proposals are economically equivalent (nodal prices, consumer costs, social welfare, etc)
 - E.g., auction allowances in Source-based system, proceeds go to consumers
 - Load-based more complex, can endanger spot power markets
- All proposals subject to CO₂ leakage & contract shuffling
- US Federal Legislation needed!

