

VALUE OF SHORT-RUN DEMAND RESPONSE FOR INTEGRATING WIND: UNIT COMMITMENT & GENERATION EXPANSION MODELING WITH PRICE RESPONSIVE LOAD

Cedric De Jonghe Ph.D. Student, Energy Institute/Electa Branch, KU Leuven

Benjamin F. Hobbs Schad Professor, Dept. Geography & Environmental Engineering Director, Environment, Energy, Sustainability & Health Institute The Johns Hopkins University Chair, Market Surveillance Committee, California ISO

Ronnie Belmans Professor, Energy Institute/Electa Branch, KU Leuven

Thanks to Electricity Policy Research Group of Cambridge University and NSF

© K.U.Leuven – JHU

Overview

- Problem: Lack of demand response in operations & planning models
- Representing price responsive consumers
- Operations: Unit commitment
 - Effect of DR on dispatch
 - Effect of wind 'must take' requirements
 - » Neither economically nor environmentally desirable
- Investment: Capacity expansion
 - Effect of DR on optimal wind investment
 - Effect of X-price elasticity

JHU

IHU

What is the problem?

JHU

Unit commitment & generation investment models assume *fixed short-run loads*

They neglect opportunities for:

- improved dispatch & investment
- renewables integration

Models accounting for price responsive consumers We quantify:

- changes in decisions
- efficiency benefits

- *Problem:* Lack of demand response in operations & planning models
- Representing price responsive consumers
- Operations: Unit commitment
 - Effect of DR on dispatch
 - Effect of wind 'must take' requirements
 - » Neither economically nor environmentally desirable
- Investment: Capacity expansion
 - Effect of DR on optimal wind investment
 - Effect of X-price elasticity

© K.U.Leuven – JHU

Representing behavior of price responsive consumers

JHU

Constructing an elastic short-term demand curve:

- 1. Solve cost minimizing model, given initial demand levels DEM_o
- 2. Obtain weighted average electricity price P_o
- 3. Add own-price elasticity to (P_o, DEM_o)
 - Direct response
- 4. Add X-price elasticity
 - Load shifting

IHU

IHU

- EU 'must take' rules; -\$150 bids (or lower) likely in US CAISO
 - Can increase <u>both</u> costs and emissions
- Minimizing wind spill <u>increases</u> fuel costs & CO₂ (relative to dispatch under 0€/MWh wind bid)
 - 17% reduction in spill possible
 - Per MWh of spill reduction:
 - > 0.71 ton CO_2 increase (+1.5% total CO_2)
 - 49 € cost <u>increase</u> (+1.3% total cost)
- Assumes:
 - No demand elasticity
 - Fuel dominates startup costs

© K.U.Leuven – JHU

Overview

- Problem: Lack of demand response in operations & planning models
- Representing price responsive consumers
- Operations: Unit commitment
 - Effect of DR on dispatch
 - Effect of wind 'must take' requirements
 - » Neither economically nor environmentally desirable
- *Investment*: Capacity expansion
 - Effect of DR on optimal wind investment
 - Effect of X-price elasticity

Generation capacity expansion

IHU

- Key tradeoffs:
 - More wind penetration requires more ramp capability
 - Baseload capacity less rampable
 - Demand response could provide
- Gen expansion models: often lack ramp and demand-response
 - Need these features to optimally integrate renewables
 - Effect of adding ramp limits upon optimal mix:

Conclusion

- Models should account for responsive consumers
 - Ideally: both own- and X-elasticities
 - Welfare max or equilibrium calculation rather than cost minimization
- Short-term response yields
 - Reduced gen investment + operation costs
 - Enhanced value for variable wind power
- Future work:
 - Account for both long- and short-run elasticity
 - Account for uncertain forecasts, lags between commitments and outcomes

© K.U.Leuven – JHU

Bibliography

• For more information:

- C. De Jonghe, B.F. Hobbs, and R. Belmans, "Optimal Generation Mix with Short-term Demand Response and Wind Penetration," *IEEE Transactions on Power Systems*, accepted.
- _____, "Value of Demand Response for Wind Integration in Daily Power Generation Scheduling: Unit Commitment Modeling with Price Responsive Load," *IAEE North American Meeting*, Washington DC, Oct. 2011
- Cited literature:
 - R.W. Cottle, J. S. Pang, R. E. Stone. 1992. *The Linear Complementarity Problem*, Academic Press, Cambridge, MA.
 - W.W. Hogan, "Energy policy models for Project Independence," Computers & Operations Research, vol. 2, Dec. 1975, pp. 251-271.
 - P.A. Samuelson, "Spatial Price Equilibrium and Linear Programming," The American Economic Review, vol. 42, 1952, pp. 283-303.

IHU