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Overview

e Problem: Lack of demand response in operations &
planning models
* Representing price responsive consumers

* Operations: Unit commitment
— Effect of DR on dispatch
— Effect of wind ‘must take’ requirements
» Neither economically nor environmentally desirable
* |nvestment: Capacity expansion
— Effect of DR on optimal wind investment
— Effect of X-price elasticity
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General context

“Supply follows demand”
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What is the problem?

Unit commitment & generation investment models assume fixed
short-run loads
They neglect opportunities for:

* improved dispatch & investment
* renewables integration

What do we need?

Models accounting for price responsive consumers
We quantify:

e changes in decisions
e efficiency benefits
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Representing behavior of

price responsive consumers

Constructing an elastic short-term demand curve:
1. Solve cost minimizing model, given initial demand levels DEM,

2. Obtain weighted average electricity price P,
3. Add own-price elasticity to (P,, DEM,)

* Direct response

4. Add X-price elasticity
* Load shifting

Pricea Pricea Pricea

D
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Demand functions in

optimization models

If we have symmetry in X-effects:

Welfare maximization model
Objective: MAX welfare
= consumer + producer surplus
= demand curve integral - cost
Subject to: system power balance

operational constraints
(installed reserve margin)

Three computational methods tested

1. Quadratic program (Samuelson, 1952)
— Symmetry required of X-elasticity effects

2. Complementarity (Cottle, Pang, Stone, 1992)

— Doesn’t require symmetry
— Cannot readily handle binary variables

3. PIES iterative piecewise linearization (Hogan, 1975)
— Can handle asymmetry & binary variables
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Overview

Problem: Lack of demand response in operations &
planning models

Representing price responsive consumers

Operations: Unit commitment
— Effect of DR on dispatch
— Effect of wind ‘must take’ requirements
» Neither economically nor environmentally desirable

Investment: Capacity expansion
— Effect of DR on optimal wind investment
— Effect of X-price elasticity
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Unit commitment model for

wind dominated system

3000 - |
e
2000 -
E e
"’& )
1000 - e . / ]
s [ g3 141 lermizised R e T
—— Wind power irjeclion
0 T T T 1 1 | | 1 1
3 10 15 20 25 30 35 40 43

Min Cost = Cost of fuel + emissions + startups + wind curtailment
Or Max Welfare = Demand curve integral — Cost  (own elasticity only)
s.t. System power balance

Ramping constraints

Capacity restrictions

Minimum run levels

Start-up

Minimum on- and down-time
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Unit commitment results:

Uniform price, fixed demand
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Unit commitment results:

Demand response (own elasticity = -0.2)
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Giving wind absolute priority makes JHU

neither economic nor environmental sense

e EU ‘must take’ rules; -$150 bids (or lower) likely in US CAISO
— Can increase both costs and emissions

e Minimizing wind spill increases fuel costs & CO, (relative
to dispatch under 0€/MWh wind bid)

- 17% reduction in spill possible
- Per MWh of spill reduction:
» 0.71ton CO, increase (+1.5% total CO,)
» 49 € cost increase (+1.3% total cost)
* Assumes:
- No demand elasticity
- Fuel dominates startup costs
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Overview

Problem: Lack of demand response in operations &
planning models

Representing price responsive consumers

Operations: Unit commitment
— Effect of DR on dispatch
— Effect of wind ‘must take’ requirements
» Neither economically nor environmentally desirable
Investment: Capacity expansion
— Effect of DR on optimal wind investment

— Effect of X-price elasticity
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Generation capacity expansion

 Key tradeoffs:

More wind penetration requires more ramp capability
Baseload capacity less rampable
Demand response could provide

e Gen expansion models: often lack ramp and demand-response

Need these features to optimally integrate renewables

—  Effect of adding ramp limits upon optimal mix:
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P & Q effects of
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JHU

Demand response in investment planning
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Effect of X-elasticity upon investment mix Y

Capacity [GW]
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Cross elasticity




Conclusion

e Models should account for responsive consumers
— Ideally: both own- and X-elasticities
— Welfare max or equilibrium calculation rather than cost
minimization
e Short-term response yields
— Reduced gen investment + operation costs
— Enhanced value for variable wind power
e Future work:
— Account for both long- and short-run elasticity

— Account for uncertain forecasts, lags between commitments and
outcomes
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