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Abstract. Analyses of investments that are irreversible and have uncertain benefits 
should consider the option of delaying a decision. For instance, the benefits of many water 
resource projects could change if global warming occurs. The magnitude of that warming 
is uncertain, and delaying projects until more information is available might be optimal. 
We examine whether this is true for construction of an outflow control structure for Lake 
Erie. Using Bayesian Monte Carlo (BMC)-based decision analysis, we find that 
considering climate uncertainty does make a difference. Climate change beliefs, in the 
form of prior distributions over transient climate scenarios, can affect the optimal strategy: 
in particular, climate change makes delaying construction more attractive. The option 
value of deferring the decision to build is as high as $20 million. Ignoring the possibility of 
climate warming can inflict an expected penalty as large as 20% of the cost of the control 
structure. We also compare climate risks to uncertainties in stage-damage curves and find 
that they are approximately of equal importance. 

1. Introduction 

Traditional economic analyses of water resources projects 
calculate the net benefits of construction now versus not mak- 

ing the investment at all. However, according to the new theory 
of investment [Dixit and Pindyck, 1994], evaluations of invest- 
ments characterized by irreversibility, uncertainty in future re- 
wards, and flexibility in timing need ro explicitly consider the 
full cost of exercising the option of making the investment, 
which includes the foregone benefit of delaying a commitment. 
Trigeorgis [1997] notes that operating and investment flexibility 
can be viewed as "real" options which, like financial options, 
involve discretionary decisions with no obligations to acquire 
or exchange an asset for a specified alternative price. The real 
options include deferral, expansion, contraction, abandon- 
ment, and other alterations of capital investment. Such options 
have a definite value that should be considered when apprais- 
ing projects under uncertainty. For example, an optimal deci- 
sion concerning a project may often be to wait until new in- 
formation is obtained or better economic conditions occur; but 
this benefit of delaying construction now is ignored in most 
project analyses [U.S. Water Resources Council (USWRC), 
1983]. The value of the option of waiting (or "quasi-option 
value" [Coggins and Ramezani, 1998]) should be added to the 
net benefits of the "do nothing" alternative [Brealey and Myers, 
1992] and can often change the decision. 

This paper presents an application of the new theory of 
investment to a proposal to construct a control structure at the 
outlet of Lake Erie, one of the LaurentJan Great Lakes of 
North America. The purpose of such a structure would be to 
lessen fluctuations in lake levels; high levels cause erosion and 
flooding, while low levels impose costs on shipping and result 
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in hydropower losses [International Joint Commission (IJC), 
1993a]. Because the commitment of capital for such a structure 
is irreversible and postponeable, and its future benefits are 
subject to climate change and other uncertainties, it is suitable 
for an options analysis. The possibility of delay until we get 
further information regarding climate change is a real option 
whose value should be considered in project evaluation. 

Option values have previously been calculated for other 
Great Lakes projects under climate change uncertainty, includ- 
ing shore protection [Chao and Hobbs, 1997] and wetlands 
restoration [Bloczynski et al., 1999]. However, those analyses 
used a simple first-order Markov process to characterize un- 
certainties in Lake Erie levels and considered only one climate 
warming scenario. The present study more realistically char- 
acterizes climate and lake level uncertainties by applying a 
more sophisticated lake levels model for the entire Great 
Lakes and including several alternative warming scenarios. 
The previous studies also assumed relatively simple analytical 
cost functions; here a detailed simulation model calculates 
seven categories of economic benefits and environmental im- 
pacts. 

Recently, the International Joint Commission (IJC) con- 
ducted a multiyear, multimillion dollar study to analyze the 
Lake Erie control proposal [IJC, 1993a]. The analysis assumed 
that past net basin supplies (NBS) to the lakes will repeat in 
the future. Uncertainties in climate, other possible NBS sce- 
narios, and flexibility in timing were not considered. This paper 
attempts to include these issues in the evaluation so that we 
can appropriately evaluate the option of delaying construction. 
We also calculate the expected value of including climate 
change uncertainty (EVIU) and the expected value of perfect 
climate change information (EVPI). This enables us to answer 
the following question: Are climate change uncertainties rele- 
vant to decisions about the Lake Erie control structure? Al- 

though there are many studies of the water resource impacts of 
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possible global warming, few studies have carefully addressed 
whether such impacts should affect today's water investment 
decisions [Chao and Hobbs, 1997; Hobbs et al., 1997; Rogers, 
1997]. 

A Bayesian Monte Carlo (BMC)-based framework is used 
to address these issues. To our knowledge this is the first time 
that the BMC technique has been combined with sequential 
decision tree analysis for obtaining optimal management strat- 
egies. Like any Bayesian decision analysis, our framework com- 
bines information on user beliefs (coded as subjective proba- 
bilities), user values (here, weights on various objectives), and 
evidence (possible future NBSs) to define optimal decision 
strategies [Morgan et al., 1990]. At each future decision stage, 
beliefs concerning the likelihood of various climate change 
scenarios are updated based on the observ. ed NBS. The Case 
Western Reserve University Great Lakes Hydraulic, Socio- 
Economic and Environmental Impact Simulation Model 
(CWRU Impact Model) is used to quantify the benefits [Chao 
and Wood, 1998; Venkatesh, 1996]. To assess the importance of 
climate change compared to other uncertainties, we compare 
the EVPI and EVIU for climate change with values associated 
with uncertainty in shoreline (flooding and erosion) stage- 
damage curves. We conclude that under our assumptions, cli- 
mate change and shoreline damage uncertainties are of com- 
parable importance in terms of the expected penalty suffered if 
they are disregarded. It is possible, however, that other uncer- 
tainties that we have not examined, especially political and 
economic ones, might be more important. 

This paper is organized as follows. First we discuss the Great 
Lakes levels management problem (section 2). Then in section 
3 we summarize the BMC-based approach used in section 4 to 
analyze the proposed Lake Erie control structure. Conclusions 
about the robustness of the analysis and the usefulness of the 
methodology for other water investment problems conclude 
the paper (section 5). 

2. Lake Erie Levels Management and Climate 
Change 

The Great Lakes contain roughly 20% of the world's supply 
of fresh surface water. Their drainage basin includes highly 
industrialized states and provinces in the United States and 
Canada. This basin's population relies on the lakes for drinking 
water, transportation of goods, waste disposal, electricity, food, 
and recreation. Because of their large size and low outflows 
(less than 1% of their volume per year), the lakes are sensitive 
to the effects of pollution. The large size of watershed results 
in spatial variation in physical characteristics such as climate, 
soils, and topography. Lake Superior is the largest lake, while 
Lake Erie is the smallest by volume among the Great Lakes. 
The upper lakes (Superior, Michigan, and Huron) ultimately 
drain into Lake Erie through St. Clair River, Lake St. Clair, 
and Detroit River. Lake Erie discharges into Lake Ontario 
thorough the Niagara River, while Lake Ontario flows through 
the St. Lawrence River into the Atlantic Ocean. 

In the mid 1980s, after nearly two decades of above average 
precipitation, the Great Lakes (excluding Lake Ontario) 
achieved their highest levels of this century. This caused mil- 
lions of dollars of flooding and erosion damages along the 
lakes' shorelines [Grima, 1993; IJC, 1993a]. In response to this 
concern the governments of Canada and the United States 
asked the IJC to study methods of alleviating the adverse 
consequences of fluctuating lake levels. 

Options for decreasing the impact of varying levels include 
shoreline management (e.g., protective structures and manda- 
tory setbacks) and discharge control structures. The latter are 
the subject of this paper. Lake Superior's outflow into Lake 
Huron is presently governed by control structures in the St. 
Mary's River. Lake Ontario's outflow to the St. Lawrence 
River is also regulated [International St. Lawrence River Board 
of Control (ISLRBC), 1963]. In the course of the IJC Phase II 
study, both three-lake plans (including a new control structure 
to regulate Lake Erie) and five-lake plans (two new structures, 
one for Erie and the other for Lakes Huron and Michigan) 
were formulated [IJC, 1993b]. The three-lake plans turned out 
to be more viable than the five-lake options and are the subject 
of this paper. The various three-lake plans differed in terms of 
their capacity to alter the natural outflow of Lake Erie. The 
focus of the IJC study, and therefore this paper, is upon a 
structure that could alter flows by 50,000 feet3/s (1400 m3/s). 
On the basis of interviews with U.S. Army Corps of Engineers 
personnel, we assume the following operating rule: The natural 
outflow is lowered by 50,000 feet3/s if Lake Erie's level falls 
below 173.95 m, while an equal amount is added to the natural 
release if the level rises above 174.05 m. The goal is to dampen 
year-to-year variations in Lake Erie levels. 

By decreasing the likelihood of high lake levels, flooding and 
erosion damages are anticipated to diminish. Simultaneously, 
increasing lake levels during droughts will increase hy- 
dropower production on the Niagara River and decrease nav- 
igation costs by allowing ships to carry more cargo. Also, we 
project that the probability of anoxia occurring in the Lake 
Erie central basin will fall, based upon a model of El Shaawari 
[1984]. On the other hand, decreased lake fluctuations will 
harm shore wetlands because high levels are needed to keep 
woody terrestrial plants from invading, while low levels are 
required for germination of emergent wetland vegetation. 

These benefits and costs of a Lake Erie control structure 

would be affected by climate change. Global warming would 
increase evapotranspiration and possibly precipitation, likely 
leading to decreased NBSs and lake levels. Net basin supply to 
a lake is defined as P - E + R, where P is precipitation on 
the lake surface, E is evaporation from the lake surface, and R 
is runoff from the basin. In calculating NBS for a lake, the 
lake's discharge as well as inflows from upstream Great Lakes 
are excluded, since lake outflows are decision variables and 
NBS is uncontrolled and climate dependent. Our Great Lakes 
model (based upon that of Croley [1990]) maintains mass bal- 
ances for each lake, accounting for inflows from upper lakes, 
NBS, changes in storage, and outflows. 

Croley [1990] and Hartmann [1990] used runoff models, op- 
erational regulation plans, and hydraulic routing models of 
outlet and connecting channel flows to estimate NBSs and 
water levels in Great Lakes under alternative steady state cli- 
mate scenarios. Such scenarios assume a constant concentra- 

tion of greenhouse gasses over time. They also assumed that 
the last 30 years (1951-1980) of rainfall and temperature were 
representative of 1 x CO2 conditions (i.e., preindustrial green- 
house gas conditions). To obtain a 2 x CO2 precipitation and 
temperature scenario (which is anticipated to occur by some- 
time in the next century), they adjusted upwards or downwards 
the historical daily temperatures and precipitation at each 
point within the watershed by the annual average difference 
between general circulation model (GCM) 1 x CO2 and 2 x 
CO2 results for the nearest GCM grid cell centroid. The steady 
state GCM climate scenarios they considered included those 
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Figure 1. Bayesian Monte Carlo simulation-based two-stage decision tree. 

from the Oregon State University, Goddard Institute of Space 
Studies, and General Fluid Dynamics Laboratory (GFDL) 
GCMs. After inputting the historical and modified (2 x CO2) 
temperatures and precipitation in their runoff and routing 
models, they estimated that mean lake levels could fall be- 
tween 0.4 and 2.5 m, depending on the lake and the GCM 
scenario. Mortsch and Quinn [1996] summarize these and other 
projections of hydrologic impacts in the Great Lakes region. 

Such changes could have important economic and environ- 
mental impacts. Some of them include reduced hydropower 
generation, diminished shoreline inundation and erosion costs, 
water quality deterioration, and fishery changes [Smith and 
Tirpak, 1990]. As a result, a control structure might provide 

fewer flood and erosion control benefits under climate warm- 

ing; however, by raising lake levels, its hydropower, navigation, 
and water quality benefits might increase. Below, we analyze 
whether considering the possibility of these changes could af- 
fect the decision to build such a structure. 

3. Modeling Procedures 
3.1. Summary of Decision Framework 

We pose the investment problem with the option of delay as 
a two-stage decision process, with 20 years between the deci- 
sion stages (Figure 1). Venkatesh [1996] also considered trees 
with additional decision stages along with trees with less than 
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Table 1. Percentage Change in NBS for the Great Lakes 
and Three GCMs After 70 Years 

ANBS•, % 

Lake j MPI GFDL UKMO 

Superior -39.6 7.1 16.38 
Michigan-Huron -38.4 - 12.6 -28.1 
St. Clair -35.9 -8.8 -24.1 
Erie -79.8 -40.3 -55.5 
Ontario -21.5 -3.9 -3.52 

20 years between decision points. The general conclusions con- 
cerning the relevance of climate uncertainties and the value of 
delaying a decision are unchanged by those assumptions. 

In stage 1 (year 0) of Figure 1, there are two choices: build 
a control structure on Lake Erie ("3 Lake"), which would be 
implemented by year 10, or do nothing and continue regulating 
just Lakes Ontario and Superior ("2 Lake"). This decision may 
depend on degree of belief in various climate scenarios, as 
reflected in prior probabilities. Consistent with the Bayesian 
philosophy, these priors represent a particular user's degree of 
belief in the scenarios, which may be based on empirical data, 
modeling results, or just guesswork; the tree then calculates the 
implications of those beliefs for the optimal strategy. The 
model can be easily rerun for alternative assumptions. A range 
of possible NBS time series are considered by the model 
through the planning horizon of 80 years. We assume that 
discounting renders any benefits negligible after that time. 

If the decision at time zero is to do nothing, then the deci- 
sion is revisited after 20 years, which is stage 2 of the process. 
During the intervening period, NBSs can be observed and 
inferences drawn as to whether the regional climate is chang- 
ing. The inference process consists of applying Bayes' law to 
the prior probabilities, yielding posterior probabilities of the 
climate scenarios. Upon the basis of those probabilities, either 
two-lake regulation is continued or a three-lake plan is imple- 
mented. The evaluation at that time is based on the expected 
benefits under a range of possible NBSs over the remaining 60 
years. 

We consider four climate scenarios in this tree, consisting of 
one 1 x CO2 scenario (no climate change, which the IJC called 
the "basis of comparison," or BOC) and three transient sce- 
narios. The latter scenarios are obtained from the Max Planck 

Institute (MPI), GFDL, and United Kingdom Meteorological 
Office (UKMO) GCMs (Intergovernmental Panel on Climate 
Change (IPCC), Climate change scenarios: Projections for 
IPCC Working Group II assessment, edited by S. Greco et al., 
working document, Washington, D.C., 1994) (hereinafter re- 
ferred to as IPCC, 1994). We assume that the user can quantify 
their prior (year 0) degree of belief in each scenario by a 
subjective probability. We also assume that it is appropriate to 
update these probabilities by Bayes' law, and that the best 
source of information are the observed NBSs themselves, 
rather than other climate variables. This is because the im- 

mense uncertainties involved in downscaling GCM scenarios 
to regional climate and hydrological impacts [Leavesley, 1994; 
Rogers, 1994] mean that even if global climate warming was 
concluded to be definitely underway, the implications for Lake 
Erie would still be highly uncertain. However, more general 
formulations are possible in which several variables can be 
monitored simultaneously, if their correlations are considered. 

The Bayesian model of Bloczynski et al. [1999], for example, 
includes both NBS and the results of international studies of 

climate change in the updating process. 
Each of the transient GCM outputs consist of a set of dif- 

ferences between monthly averages (over a 10-year period) of 
precipitation and temperature for the eighth decade of simu- 
lation and the starting decade. Using the IPCC (1994) proce- 
dure and methods described 'in section 3.3, we downscaled the 
precipitation and temperature changes and estimated NBS 
values for each of the five lakes' basins. The resulting impact of 
each of the climate scenarios upon NBS after 70 years is shown 
in Table 1. We will assume that in intervening years that the 
expected NBS for each lake changes linearly from year 0 to 
year 70 under those scenarios. 

At the end of each branch of a decision tree is the payoff for 
a particular combination of a decision and NBS sequence. 
Here, payoff is annualized net benefit (dollars per year), de- 
fined as a weighted sum of economic and environmental ob- 
jectives. The tree in Figure 1 shows the average value across 
NBS realizations for a particular decision and climate scenario. 

3.2. Bayesian Monte Carlo Analysis 

The heart of Bayesian analysis is the use of observations or 
other information (e.g., expert judgment) # to revise a prior 
distribution P( 0 ) of a "state of nature" 0 (model parameter or 
some other uncertain quantity), yielding a posterior distribu- 
tion P(O/#) [Clemen, 1996]. Bayes' law is used to make that 
calculation: 

P(O/g) = P(g/O)P(O)/P(g) 

where 

P(g) is the unconditional probability of observing g, 

P(g) = •oP(g/O)P(O) 

(1) 

and P( g/0 ) is the conditional probability of observing g, given 
state of nature 0. If 0 is a continuous quantity• then an integral 
is substituted for the summation in (2). In our case, g consists 
of an observation over the first 20 years of whether the NBSs 
have been low, medium, or high, while 0 are alternative climate 
scenarios (no change (BOC), GFDL, MPI, or UKMO). Bayes- 
ian analysis has previously been widely used to estimate water 
system parameters. By embedding Bayesian analysis within 
decision trees such as Figure 1, it can be used to optimize water 
system control and design [e.g., Davis et al., 1979; Krzysztofow- 
icz, 1983]. Bayesian analysis has been recommended as a suit- 
able approach for updating beliefs regarding climate change, 
evaluating water resource development strategies under cli- 
mate uncertainty [Krzystofowicz, 1994; Hobbs, 1997; Hobbs et 
al., 1997; M.B. Fiering and P. Rogers, Climate change and 
water resources planning under uncertainty, draft report, In- 
stitute for Water Resources, U.S. Army Corps of Engineers, 
Fort Belvoir, Virginia, 1991], and analyzing climate change 
prevention strategies [e.g.,Arrow et al., 1996]. However, a prac- 
tical difficulty in applying Bayesian analysis has been the need 
for tractable methods to calculate P(g/O) and P(O/g). Often, 
simplifications are made. For instance, Chao and Hobbs [1997] 
and Bloczynski et al. [1999] assume that Lake Erie levels (one 
of their sources of information g) follow a first-order Markov 
process, given the climate scenario 0. This permitted them to 
use stochastic dynamic programming (SDP) to determine the 
optimal timing for shore protection investments and wetland 
rehabilitation, given uncertainties in lake levels and climate 

(2) 
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change. However, Slivitzky and Mathier [1994] have found that 
more complex models better represent NBSs for the Great 
Lakes. For instance, Rassam et al. [1992] model annual NBS 
for each of the five Great Lakes by a shifting-means process 
that accounts for both persistence over time and correlations 
among the lakes. A multivariate annual-monthly model is used 
to disaggregate annual values for each lake into monthly val- 
ues. Analytical expressions for P( #/0 ) are not possible in that 
case, and the state space becomes too large for a SDP (as state 
variables would be required for each lake, along with an addi- 
tional set of state variables specifying the probability of each 
possible mean in the shifting mean model). 

Bayesian Monte Carlo (BMC) analysis, first introduced by 
Hornberger and Spear [1980] and Spear and Hornberger [1980] 
and further developed by Dilks et al. [1992], offers a practical 
alternative when complex stochastic process models underlie 
the P(#/0). The approach is as follows. Simulation is used to 
quantify P(#/0) by assuming a value of 0 and then making 
random draws of the other variables and noting the resulting 
distribution of #. This is repeated for all values or a sample of 
0. The outcomes of the simulations can be used directly as the 
distribution P(#/0) under the assumption that each outcome 
is equiprobable, as we do below; or an analytical form of 
P(#/0) can be fit to the results. Then, given actual observa- 
tions of #, the prior P(0) can be updated numerically by 
Bayes' law. 

Dilks et al. [1992] apply the BMC technique to a model of 
river dissolved oxygen to determine posterior distributions for 
nine uncertain parameters, such as reaeration rate. Pat- 
wardhan and Small [1992] use BMC analysis to evaluate un- 
certainties associated with the predictions of sea level rise and 
the role that observed data and research plays in reducing this 
uncertainty. Brand and Small [1995] present BMC methods for 
updating uncertainty in the predictions of an integrated envi- 
ronmental health risk assessment model. Dakins et al. [1996] 
employ BMC analysis to compute how much a sampling pro- 
gram would reduce uncertainties in PCB concentrations. 

Patwardhan and Small [1992] and Dilks et al. [1992] stress 
that the basic challenge is the development of a likelihood 
function for the observed model outputs. They also state that 
the technique's weakness is its computational requirements. 
Our case study reinforces these points. 

We use BMC analysis to compute the posterior probability 
of climate change by developing a likelihood function for the 
NBSs for years 1-20 based on Monte Carlo sampling using the 
model of Rassam et al. [1992]. Then using the prior distribution 
of the climate scenarios and this likelihood function, we com- 
pute the posterior probability of each scenario. Having devel- 
oped the posterior distribution, we can fold back the decision 
tree (Figure 1) to compute the Bayes optimal decision. Figure 
2 summarizes the steps to be undertaken in this analysis; in the 
remainder of this section, and in section 4, we describe the 
methods used in each step and their results. Steps 1 and 2 
(section 3.3) generate synthetic NBS series assuming no cli- 
mate change and then introduce climate warming into these 
traces. Step 3 (section 3.4) uses the NBS traces generated in 
steps 1 and 2 to obtain net benefits for each alternative using 
the CWRU Impact Model. Step 4 (section 3.5) classifies the 
NBS traces generated in step 3 as low, medium, or high, the 
categories used to calculate posterior probabilities of the cli- 
mate scenarios. In step 5 (section 4.1) the probabilities and net 
benefits developed in steps 3 and 4 are plugged into a decision 
tree, yielding an optimal strategy, given the user's beliefs and 

Step 1. Generate synthetic Basis-of- 
Comparison NBS (without climate change) 

I Step 2. Introduce Climate Change ] trend into synthetic NBS traces 

Step 3. Use each NBS trace to drive Hydraulic, Economic, & 
Environmental models to obtain net benefits of each alternative 

I Step 4. Classify NBS traces as Low, Medium or High, I and calculate prior and posterior probabilities 

I StepS'Insertbenefitsintøtwøstagedecisiøntreetø I obtain optimal decision strategy and its expected worth 

Step 6. ComputeEVPI, EVIU, 
and option value of waiting 

[ Step7. Repeat Steps S,6for a two stage decision ] problem under shoreline damage uncertainty 

Figure 2. Flow chart of the analysis. 

values. Step 6 uses the tree to compute EVPI, EVIU, and the 
option value of waiting (sections 4.2-4.4). Finally, in step 7, a 
similar analysis is undertaken for shoreline damage uncertain- 
ties, permitting an assessment of the importance of climate 
uncertainty compared to another planning uncertainty (section 
4.5). 

3.3. Net Basin Supply Scenario Generation (Steps 1 and 2) 

In the first two steps we generate a sample of monthly NBS 
for each lake for 90 years under each climate scenario 0. Let 
NBS0h = {NBSohjt; j = Superior, Michigan-Huron, St. 
Claire, Erie, Ontario; t = 1, 2, ..., 1080} be the h th (h = 
1, 2, ..., No) sample time series of monthly NBS (in cubic 
meters) under climate scenario 0 (0 = BOC, MPI, GFDL, 
UKMO). In step 1 the "no climate change" NBSs (NBSBoc•) 
are generated using the method of Rassam et al. [1992]. In that 
model random annual NBSs are generated for each lake, ac- 
counting for autocorrelations and between-lake correlations; 
then the annual NBSs are disaggregated to monthly values. 
The randomness in NBS stems from natural variability in rain- 
fall and evapotranspiration. A variety of distributions are used 
for each lake and time period, including normal, lognormal, 
and gamma. The model includes a Markov shifting-mean rep- 
resentation to account for persistence in the historical record. 
In our analysis, NBoc = 100 samples of NBS were drawn for 
that scenario. In the BMC method, each of the samples is 
assumed to be equiprobable; that is, P(z = NBSBoc•/0 = 
BOC) = 0.01. An example of a Lake Erie BOC NBS trace is 
shown as the upper line in Figure 3. 

The creation of hydrological scenarios under changed cli- 
mate conditions (step 2) is controversial and rightfully so. Our 
procedure is an attempt to be transparent, uncomplicated, and 
to yield plausible NBSs. Some assumptions of the procedure 
are as follows: 

1. The downscaling procedure for mean temperature and 
precipitation changes used by Croley [1990] is appropriate. 

2. The response of expected annual NBS to the transient 
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Figure 3. Example of NBS trace generated for Lake Erie under 1 x GO 2 conditions and the corresponding 
2 x CO2 and transient traces (MPI downscaling results). 

scenarios' changes in mean precipitation and temperature in 
year 70 are similar in nature to the responses Croley [1990] 
calculated for three steady state GCM 2 x CO2 scenarios. This 
assumption may exaggerate the impacts of climate warming 
upon NBS, since groundwater and soil moisture storage means 
that there are lags in the hydrologic system's response to cli- 
mate shifts. That would imply that transient responses are less 
than the steady state responses Croley [1990] calculated. 

3. The mean annual NBS in each year changes linearly 
between the year 0 mean and the estimated year 70 mean. This 
assumption is adopted for simplicity and because no particular 
nonlinear assumption is more plausible. 

The resulting method for obtaining NBS0h for 0 = MPI, 
GFDL, UKMO can be briefly summarized as follows. First, 
GCM precipitation and temperature scenarios are downscaled 
to each lake. Second, statistical relationships based on work by 
Croley [1990] are used to infer the impact of downscaled 2 x 
CO2 temperature and precipitation changes upon mean annual 
NBS. Third, 2 x CO 2 NBS traces corresponding to each 
NBSBo½& (e.g., the dotted line in Figure 3) are generated 
using statistical relationships between Croley's [1991] 1 x CO2 
and 2 x CO2 NBS scenarios. Finally, each transient scenario's 
NBS in each month over the time horizon (the middle line in 
Figure 3) is obtained as a convex combination of the generated 
1 x CO2 and 2 x CO2 NBS scenarios, with the weight given to 
the 2 x CO2 scenario increasing linearly over time. These 
calculations are explained further in the appendix. 

3.4. Net Benefit Calculation for Each NBS Realization and 

Decision (Step 3) 

The next step is to calculate how well each possible decision 
performs for each NBS sample NBS0h. Let dk designate one 
particular decision sequence. Thus, in the decision tree of 
Figure 1, there are three possible sequences: d• = {two-lake 
regulation all years}; d 2 = {two-lake years 1-30, three-lake 
regulation chosen in year 20, implemented for years 31-80}; 
d3 = {three-lake adopted year 0, implemented in year 11}. 
The purpose of this step is estimate the net benefits attached to 

the end points of Figure l's tree. These are the annualized net 
benefits B(NBSoh, dk) for each NBS sample and decision 
sequence. 

B(NBSoh , d•:) is computed using the CWRU Impact Model. 
We assume that we are already 10 years into global warming at 
the time of the study. Thus the first 10 years of simulated NBS 
are disregarded. Since there are 400 samples and three deci- 
sion sequences, the impact model was run 1200 times for years 
11-90. The cost considered is the expense of implementing the 
three-lake plan; the benefits are expressed by seven social and 
environmental indices. These include value of hydropower 
from Great Lakes and St. Lawrence facilities (dollars per year), 
erosion and inundation damages estimated from stage-damage 
curves (dollars per year), avoided shore protection costs (dol- 
lars per year), navigation costs based on the effect of levels on 
loadability of ships (dollars per year; based on the model of 
Keith .[1989]), wetlands (by lake) (meters of vertical extent 
between landward upper edge and lakeward lower edges [IJC, 
1993c]), and expected oxygenated hypolimnion in the Lake 
Erie central basin (cubic meters). 

To compute annualized values, present worths were first 
obtained based on an interest rate of 5% and then multiplied 
by the appropriate capital recovery factor. Annualized capital 
and operation and maintenance costs are then subtracted to 
yield net annualized benefits. The assumed 5% real rate is 
close to the 8 5/8% nominal rate used for water planning by the 
federal government at the time of analysis, given an inflation 
rate of 3%. The effects of alternative rates (2% and 10%) were 
examined by Venkatesh [1996]; the lower rate had the predict- 
able effect of increasing the maximum investment that could 
be justified, and the higher rate had the reverse effect. Trigeor- 
g/s [1996] notes that traditional decision tree analyses similar to 
the one we use in this paper generally use a single risk-adjusted 
discount rate. Using such a rate can distort decisions since 
asymmetric claims on an asset do not have the same riskiness 
as the underlying asset itself. This is because the flexibility 
embedded in future decision nodes changes the payoff struc- 
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ture and risk characteristics of an actively managed asset and 
thus invalidate the use of a constant discount rate. Neverthe- 

less, we use a constant real discount rate in this analysis be- 
cause large government water projects do not have a complete 
market for risk (i.e., complete hedging opportunities do not 
exist) and thus it is operationally difficult to compute such a 
rate. Furthermore, the federal government itself computes net 
benefits of projects using a single discount rate. 

An additive value function with linear single attribute value 
functions is used to combine the economic and environmental 

benefits into a single benefits index [Chankong and Haimes, 
1983]. We chose not to include risk attitudes via nonlinear 
functions [Keeney and Raiffa, 1993] for four reasons. First, the 
linear model is simple. Second, there is evidence that water 
planners have more confidence in additive value functions than 
more complex approaches [Hobbs et al., 1992]. Third, Hobbs et 
al. [1992] and others have found that changes in weights usu- 
ally affects decisions more than risk attitudes in multiattribute 
analyses. This result was confirmed here; when risk averse 
(convex) utility functions are used instead of linear functions, 
the decisions are unchanged unless the functions are highly 
nonlinear. Fourth, the U.S. government is officially risk neutral 
in planning •tudies [USWRC, 1983]. 

The weights for the value function were chosen by 16 Great 
Lakes managers using a direct rating procedure [Chao et al., 
1999]. The weights converted each impact into dollars. The 
weights assigned to the various economic impacts often dif- 
fered from each other because of intangibles or credibility 
problems associated with some of those impacts. 

3.5. Calculation of Probabilities for Tree (Step 4) 

The first step in developing the probability distributions in 
Figure 1 involves classifying NBS traces (generated using the 
above convex combination procedure) for years 1-20 as either 
# = "low," # = "medium," or # = "high." The high NBS 
category includes NBS traces where there is clearly no decreas- 
ing trend. The low NBS category includes NBS traces which 
follow a distinctly declining trend. An intermediate category 
includes more ambiguous NBS. We decided to divide the NBS 
traces into only three categories instead of four or more in 
order to ensure sufficient sample sizes in each category. Addi- 
tional categories would require more computational effort. 

The classification of NBS could be based on average NBS 
over that period, but that would overweight early NBS (when 
climate change should not be reflected much in the NBS) and 
underweight later NBS (when climate change should most 
clearly manifest itself). Instead, we used a simplistic Bayesian 
method to classify the traces based on whether a decreasing 
trend is detected [Venkatesh, 1996]. This simple procedure 
differs from the Bayesian procedure used to update the prob- 
abilities in Figure l's tree; the latter is explained below. 

Below, we develop the various probability distributions 
shown in Figure 1. Let P( 0 ) equal prior probability of climate 
scenario 0; P(CC) equal prior probability of climate change, 
E0=MPI, GFDL, UK1VIO P(0); and No,g equal number of NBS 
traces from scenario 0 classified as class g. Here, Eg No,g = 
100, the total number of NBS samples for each scenario. 
Using the above notation, we can compute the decision tree 
probabilities as follows. The conditional probability of observ- 
ing g, given a scenario 0, is No,g/100, assuming that samples 
are equiprobable. Then Bayes' law (1) can be used to obtain 
the posterior probability of each scenario P(O/g). 

For instance, in Figure 1 we assume that P(BOC) = 1/2 and 

P(MPI) = P(GFDL) = P(UKMO) = 1/6. We chose these 
probabilities on the basis of results from our workshops [Chao 
et al., 1999]. Our 50:50 priors reflect the considerable disagree- 
ment that was present among the workshop participants con- 
cerning the likelihood of significant global warming. The equal 
probabilities given to the three GCM scenarios of climate 
change are justified by Laplace's rule: If there is no informa- 
tion that justifies differentiated probabilities, assume equal 
likelihood. In an actual application, each user would carefully 
elicit prior probabilities for each scenario, undertake the anal- 
ysis, and then perform sensitivity analyses. The decision ana- 
lytic framework that we have developed permits convenient 
exploration of the implications of different people's beliefs. 

Continuing with the example, the classification of NBS re- 
sulted in 17% of the 100 BOC traces being labeled as "low" 
(i.e., P(low/BOC) = 0.17), as were 76% of the MPI traces, 
29% of the GFDL traces, and 46% of the UKMO traces. Using 
(2) to combine this information with the prior probabilities 
allows calculation of P(low), the overall probability of observ- 
ing•a low NBS; the result is 0.34. Finally, Bayes' law gives the 
posterior probabilities, given g = low. For instance, P(BOC/ 
low) = 0.25, indicating that observation of diminished NBSs 
implies that the likelihood of no climate change is less than 
thought initially (P(BOC/low) < P(BOC) = 0.5). 

4. Decision Analysis Application 
We now guide the reader through single- and two-stage 

decision analyses (steps 5-7). The data assumptions are sum- 
marized in Table 2. A critical assumption is the investment cost 
of three-lake regulation, $375 million. This is actually well 
below the projections of the IJC, which exceeded $1 billion, 
including shore protection works along the St. Lawrence River 
to prevent damages from more variable flows. Such costs were 
well in excess of conceivable benefits of the project, and, the 
IJC rejected the plan. However, for the purpose of this article, 
which is to illustrate the calculation of option values and how 
climate uncertainties could matter in a decision, we use a lower 
cost in order to make the decision more interesting. We note 
that some managers have argued that smaller control struc- 
tures that were not fully considered by IJC [1993a] have more 
favorable economics [Chao et al., 1999]; consequently, our 
conclusions concerning the importance of climate change 
might be relevant to analyses of those options. 

4.1. Strategy Optimization (Step 5) 

We discuss here the effects of climate change uncertainty on 
decisions and net benefits under single- and two-stage analysis 
under the assumptions defined in Table 2. In a single-stage 
case the decision made in year 0 is once and for all. In the 
two-stage case (Figure 1) we can revisit the decision after 20 
years in case the strategy to wait is chosen at t = 0. The 
difference in the expected benefits of the two cases is used to 
quantify the quasi-option value of waiting. • 

4.1.1. Single-stage analysis. In a single-stage problem we 
would either build the structure now or never. In this analysis 
we see several trends. First, the MPI scenario's net benefits are 
lower than others because it is the most extreme warming 
scenario. Its NBS scenarios are the lowest, causing losses of 
hydropower and increases in navigation costs. Second, three- 
lake regulation is slightly more beneficial under BOC (no cli- 
mate change) and more so under the MPI scenario (which, as 
Table 1 indicates, represents extreme climate change). But 
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Table 2. Base Case Assumptions 

Problem Attribute Assumption 

Number of stages considered in analysis 
Uncertainties 
Value of information indices 

Three-lake plan 
Number of NBS traces 

Prior probability of climate change 
Prior probability of a particular GCM- 

based climate change scenario 
Stage length 
Time for construction of structure 
Interest rate 

Payoff 
Investment cost 

O and M cost 

single and two stages considered separately 
climate change, net basin supply 
EVPI and EVIU 

50,000 feet3/s * 
100 each of BOC, MPI, GFDL, and UKMO 
P(CC) = 1/2 
P(MPI) = P(GFDL)= P(UKMO)= 1/6 

20 years for two-stage case 
10 years 
5% (real) 
annualized net benefits in $M 
3755M 
3.1$M/yr 

*Fourteen hundred cubic meters per second. 

under the moderate climate change scenarios (GFDL, 
UKMO), two-lake is preferred. This seemingly odd nonmono- 
tonicity occurs because under the intermediate scenarios, lake 
levels drop enough to moderate the shoreline damages that 
occur under BOC but not so much as to incur the large navi- 
gation costs that are inflicted by MPI. 

On folding back the single stage decision tree (shown by 
Venkatesh [1996]), the optimal strategy is not to build a struc- 
ture on Lake Erie. The optimal expected annual worth of net 
benefits is 878.9 million dollars per year ($M/yr). The invest- 
ment cost for three-lake regulation that would result in a tie 
between three-lake and two-lake regulation is 322 $M under a 
50:50 prior for climate change. We also calculate this break- 
even cost for other prior probabilities. The dotted line in Fig- 
ure 4 shows that as the chance of climate change increases, the 
one-stage break-even investment cost decreases. The area be- 
low the dotted line represents the build-now decision, while 
that above represents the choice to never build. This result 
occurs because moderate climate warming (the GFDL and 
UKMO scenarios) would give some of the same shore protec- 
tion benefits that three-lake regulation would provide. The 
decision is therefore sensitive to the decision maker's prior prob- 
ability of climate change, that is, climate uncertainty matters. 

Two-lake regulation's expected benefit exceeds three-lake 
regulation's by only 878.87 - 876.76 - 2.11 $M/yr. This dif- 
ference may seem insignificant because the overall magnitude 
of benefits is so high. However, the bulk of those benefits are 
$1.2 billion per year of hydropower sales; implementation of 
three-lake regulation affects them by just a fraction of 1%. In 
contrast, the flooding and erosion costs that the public are so 
concerned about are on the order of 40-80 $M/yr; three-lake 
regulation cuts them by 14% under BOC, while global warming 
can cause as large as a 45% decrease. From this perspective the 
differences between alternatives are important. 

As a sensitivity analysis, the prior probabilities in the above 
single stage analysis can be easily manipulated. For instance, 
let us assume that P(MPI) = P(BOC) = 1/2 and P(GFDL) = 
P(UKMO) = 0. In that case, three-lake regulation instead has 
an annual benefit 4.9 $M greater than two-lake regulation, 
mainly because of the navigation benefits of maintaining 
higher lake levels. 

4.1.2. Two-stage analysis. This analysis includes the ad- 
ditional option of waiting 20 years (Figure 1, Table 2). At the 
end points of Figure 1, rather than showing B(NBSoh , dk) for 
each trace (which would result in the display of 1200 values), 

we show the expectation Zh6g (1/No,a)B(NBSoh, dk) for 
each of the far right chance nodes. If the decision is postponed, 
then we can use the additional information acquired during 
our wait (20 years of NBS data) to update our prior probability 
of climate change. As explained in section 3, Bayes' law is used 
to compute the posteriors, which involves classifying the 400 
NBS traces into three groups (low, medium, and high), as 
shown in the figure. 

The optimal two-stage strategy is found by folding back 
Figure l's tree. The solution is to wait at t = 0 and implement 
three-lake regulation only if NBSs decline enough to indicate 
that lake levels are likely to drop because of climate change 
(# = low). In that case P(BOC/#) falls to 0.25 (compared to 
its 0.5 prior), and the likelihood P(MPI/#) of the high- 
navigation cost MPI scenario has climbed to 0.38 (from its 
0.167 prior). This model appears to justify Lake Erie regula- 
tion in order to raise lake levels and decrease navigation ex- 
penses. The optimal annual benefits under waiting is 879.90 
$M/yr, which is 3.2 $M/yr more than building immediately. 

Analogous to the single-stage analysis, we have computed 
investment break-even thresholds for which the "to build" de- 

cision changes "to wait," and then further "to never build" for 
a range of prior probabilities of climate change. To ease com- 
parison with the single stage results, Figure 4 shows the invest- 
ment break-even threshold for the two-stage case as continu- 
ous lines. The figure reveals that under most values of the 
probability of climate change P(CC), adding the option of 

Capital Cost 
(US) 

•i wait under 2 stage, build now under I stage wait under 2 stage, never build under I stage 
lOOO 

750 1 Never Build 
ß 

500 

250 

0 

0 0.2 0.4 0.6 0.8 1 

Prior P(Climate Change) 

Figure 4. Decisions in year 0 as a function of investment cost 
and probability of climate change under single- and two-stage 
analysis. 
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Figure 5. Sensitivity of EVPI with respect to probability of climate change and investment cost. 

delay reduces the investment break-even cost for immediate 
construction, while increasing the break-even level for never 
building. The region between yields a "wait" decision. Part a of 
that region corresponds to investment cost and probability 
values for which waiting (under the two stage analysis) is sub- 
stituted for building immediately (in the one stage case), while 
part b represents values where there is now a positive proba- 
bility of building later instead of never building. The graph 
shows that the break-even thresholds, and hence the decisions, 
significantly depend on the user's belief in climate change. This 
implies that for costs in that range, climate change should be 
explicitly considered by planners. 

4.2. Expected Value of Perfect Climate Information (Step 6) 

EVPI is the difference between the expected payoff given 
that the decision makers know before choosing whether cli- 
mate change will occur and the expected payoff given that they 
perform no experimentation [Clemen, 1996; Smith, 1992]. Al- 
though perfect information is impossible, EVPI gives an upper 
bound to the value of imperfect information for the problem 
and may therefore allow some research to be ruled out on cost 
grounds alone. 

We now calculate the value of perfect information with 
respect to whether or not climate change is occurring. To ease 
its calculation, we construct a decision tree that shows that we 
know whether or not the climate is changing before a decision 
needs to be made. However, before choosing, we do not have 
any further information on which climate change scenario 0 
will happen, or what the NBSs will be. The expected net ben- 
efits under perfect information concerning whether or not 
BOC will occur are 879.37 $M/yr. EVPI is computed by sub- 
tracting the expected net benefits of the prior (single stage) 
analysis (878.87 $M/yr) from the expected value under perfect 
information (879.37 $M/yr). EVPI is therefore 0.50 $M/yr, for 
a present worth (PW) of 9.9 $M (at 5%/yr interest). If instead 
perfect information is assumed for which specific climate sce- 
nario 0 is occurring, EVPI grows to 1.97 $M/yr (38 $M PW). 
Compared with the investment of $375 M, these values may 

appear low; but compared to the 2-3 $M/yr differences among 
alternatives in the one- or two-stage analysis, they are signifi- 
cant. 

EVPI is sensitive to both the prior probability of climate 
change and investment cost. Figure 5 shows that at a low 
investment cost, EVPI is zero because the decision is to build 
whether or not climate change is believed to be likely. At a high 
investment cost EVPI is again zero because the decision not to 
build is made irrespective of climate change beliefs. Between 
these extremes, perfect information about climate change can 
make a difference in decisions, and therefore EVPI is positive. 

Now we turn to the effect of belief in climate change. When 
the prior probability of climate change is 0 or 1, EVPI is zero 
as perfect information, by definition, contributes no new infor- 
mation. The maximum EVPI of 1.5 $M/yr (PW of 29 $M, 
about 10% of the investment) occurs at P(CC) = 0.5. 

4.3. Expected Value of Including Climate Change 
Uncertainty (Step 6) 

EVIU equals the difference between the expected benefits 
of (1) a decision based on a probabilistic decision analysis and 
(2) a decision that ignores uncertainty but is evaluated under 
the probability distributions used in the decision analysis [Mor- 
gan et al., 1990]. Thus EVIU is the expected value of the extra 
information obtained by incorporating uncertainty in the de- 
cision process; for a rational decision maker it is nonnegative. 
A mathematical definition for the single stage problem is as 
follows [Morgan et al., 1990]. Let 0• be the value of state of 
nature i assumed in the decision process when ignoring uncer- 
tainty. For continuous 0, this might be taken as E(0); here, 
however, we assume it is 0• = BOC. Note that if instead Oi• 
is assumed to be, say, MPI, a different EVIU results. Let d i• be 
the optimum decision when ignoring uncertainty: 

d ½u = {mlNeB(0iu , d)}-' (3) 

where { }-z is the decision strategy that solves the problem 
within the brackets. Then 
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Figure 6. Expected value of including climate change uncertain• as a function of investment cost and the 
probabili• of climate change. 

gvIu --- E[B ( O, d • ) ] - E[B (0, d iu) ] (4) 

where d* equals {MINdE[B(0, d)]}- •, the optimal decision 
under uncertainty. We can extend this definition to multistage 
problems by defining d as a set of contingent actions. 

If the prior probability of climate change P(CC) is naively 
assumed to be zero, then the optimal decision d iu in either the 
single or two stage tree is to implement three-lake regulation 
immediately. (Note that to make this calculation for the two 
stage analysis, the P(#) in Figure 1 would have to be recalcu- 
lated.) An annualized worth of 884.50 $M would then be (in- 
correctly) anticipated. However, upon implementing d in in 
Figure 1, but assuming P(CC) = 0.5, the expected annual 
worth of net benefits of d iu is correctly calculated as 876.76 
$M. In contrast, the optimal strategy d* under P(CC) - 0.5 in 
Figure 1 is to wait at time 0; the resulting optimal annual 
benefits is 879.90 $M. Thus under this scenario, EVIU is 3.14 
$M/yr (879.90-876.76). Its present worth is 61.5 $M, com- 
pared to the investment cost of 375 $M. Hence in this case the 
value of including climate uncertainty is significant. 

Figure 6 displays the sensitivity of EVIU with respect to 
investment cost and P(CC). We note under the lowest or 
highest investment costs, EVIU is zero, as the decision d iu 
obtained when ignoring climate uncertainty is the same as the 
d* from the BMC-based decision analysis. But for costs be- 
tween these extreme values, decisions change and EVIU can 
be positive. EVIU can be as high as 8.8 $M/yr; the PW of that 
value, 173 $M, is almost half the investment cost. Note also 
that EVIU grows as P(CC) increases. This is because at P(CC) 
- 0, the naive assumption of no climate change is actually the 
true situation, so EVIU is zero. The steepness of the curve with 
respect to P(CC) in Figure 6 indicates that if a user believes 
that climate change has a significant probability, ignoring that 
possibility can be costly. 

4.4. Option Value of Waiting (Step 6) 

Traditional project analyses assume that the project must be 
built now or never, ignoring the possibility of waiting until 
more information or more favorable conditions are obtained. 

But rejecting a project keeps the door open for reconsidering 
it later (as, indeed, the IJC has done more than once with Lake 
Erie regulation in recent decades). This lost quasi-option value 

or opportunity cost should be added to the value of the "do 
nothing" option. As a result, the decision may change. 

In our example we can compute the worth of the real option 
of waiting by comparing the optimal net benefits of the single- 
stage problem (section 4.1.1) with those of the two-stage prob- 
lem (section 4.1.2). Thus the value of the option of waiting for 
20 years and then making a decision is 1.03 $M/yr (879.90- 
878.87), which has a PW of 20.1 $M. This option value would 
grow if additional decision stages are included, as shown by the 
three-stage analysis by Venkatesh [1996]. 

4.5. Comparison with Shoreline Damage Uncertainty (Step 7) 

Climate change is not the only uncertainty water planners 
must deal with. For protection of the Presque Isle, Pennsylva- 
nia, beach along Lake Erie, Chao and Hobbs [1997] found that 
climate uncertainties had less influence on the decision than 

interest rate and investment cost uncertainties but more influ- 

ence than uncertainties in the rate of climate change, construc- 
tion period length, or escalation of sand nourishment costs. 
(For an early study of the importance of a variety of uncer- 
tainties in water planning, see work by James et al. [1969].) A 
major (and controversial) uncertainty in the IJC studies of 
Lake Erie regulation concerns the stage damage curves used to 
determine shore and flooding damages. Reduction of those 
damages would be the largest source of regulation benefits in 
Lake Erie, yet the methods and data used to derive the curves 
have been criticized [e.g., Yoe, 1992]. We therefore perform an 
EVPI, EVIU, and option value analysis for shoreline uncer- 
tainties; the magnitude of those values compared to those 
obtained above for climate help us judge the significance of 
climate uncertainty. In future work, additional comparisons 
could also be made with other sources of uncertainty, including 
political and economic ones (as done by Chao and Hobbs 
[1997]). 

We assume that damage uncertainties at year 0 are such that 
there is a 1/3 chance that stage-damage curves will be 50% 
lower than their expected value, a 1/3 probability that they will 
equal their expected value, and a 1/3 chance of the damages 
being 50% greater than expected. We further assume that if 
the IJC waits 20 years before making a decision concerning 
lake regulation, all uncertainty would be erased (i.e., the deci- 
sion could be made under perfect information). We set up the 
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decision trees required for the EVPI, EVIU, and option value 
analyses, analogous to those for the climate uncertainties. Cli- 
mate uncertainties were excluded from the trees by assuming 
e(•OC) = •. 

The resulting EVPI, EVIU, and option value under stage 
damage uncertainty are 5.09, 2.22, and 2.22 $M/yr respectively. 
The analogous figures for climate change uncertainty, calcu- 
lated above, are 0.50, 3.14, and 1.03 $M/yr. Thus the results are 
ambiguous. Although the cost of ignoring uncertainty is larger 
for climate change than for shoreline damage, EVPI and op- 
tion value are smaller. We therefore conclude that the two 

uncertainties are of roughly equal importance, implying that 
climate change is as deserving of attention as other uncertain- 
ties. 

5. Conclusions 

Bayesian Monte Carlo simulation-based decision analysis is 
a practical methodology for computing an optimal strategy for 
the Great Lakes levels management problem under climate 
change uncertainty. An important benefit of the approach is 
that it permits use of sophisticated models of stochastic hy- 
drology and multiple economic and environmental impacts. 
The method has been used to quantify the option value of 
waiting for better information on climate, value of perfect 
information, and the value of explicitly including climate un- 
certainty. We have found that climate uncertainties can alter 
water decisions being made now and that climate uncertainties 
can be as important as other uncertainties. These results are 
broadly consistent with those of Chao and Hobbs [1997], who 
found that climate beliefs mattered in a Lake Erie shore pro- 
tection decision, and those of Fisher and Rubio [1997], who 
concluded that greater climate uncertainty increases optimal 
reservoir size. 

However, climate uncertainty is not always important. For 
instance, Bloczynski et al. [1999] and Rogers [1997] found that 
for coastal wetlands restoration and for sizing and timing of 
water supply additions, respectively, climate uncertainties did 
not influence present choices. This is also true for the three- 
lake regulation option considered by IJC [1993a], whose cost 
was so large that the proposal was uneconomic even under the 
most optimistic conditions. Therefore no blanket statement 
can be made about the relevance of climate change to today's 
water management problems. Hobbs et al. [1997] proposed a 
screening procedure designed to identify whether climate 
change might be important in water planning and for choosing 
an appropriate method to include climate uncertainties, if sig- 
nificant. If climate change is potentially relevant, then a frame- 
work similar to this paper's can be used to quantify manager 
and stakeholder values along with their beliefs concerning the 
likelihood and magnitude of climate change, and then show the 
potential implications of those judgments for the optimal strat- 
egy. 

Appendix: NBS Generation Under Alternative 
Climate Scenarios 

In this appendix we detail the method outlined in section 3.3 
for generating a sample of monthly NBS, NBSoh (see work by 
Venkatesh [1996] for details). The procedure is summarized in 
the following four steps. 

A1. Precipitation/Temperature Downscaling 

For each 0, obtain the mean change in annual precipitation 
APoj,7 o and annual average temperature A Toj,7 o for each lake 

j's basin for the year 70 by downscaling the GCM results for 
that year by the procedure of IPCC [1994]. For instance, for 
Lake Erie, the downscaled MPI results are APoj,7o = -3,25% 
and AToj,7 o = +3.55øC. 

A2. Effect Upon Expected NBS 

For three GCM models, Croley [1990] shows values of an- 
nual Apj (in percent of annual precipitation) and A Tj (in 
degrees celsius) and the resulting percentage change in mean 
NBS, A%NBSj, for each lake j obtained using a set of water- 
shed models for the Great Lakes. For each lake j, we fit the 
following linear relationship to those results: 

A % NBS• = 13v•AP• + [3VA rj (A1) 

The R 2 were over 0.9 in every case other than the smallest lake, 
St. Clair. As an example, for Lake Erie,/3vj is 2.04 %/% and 
/3:r• is -19.7%/øC. We then inserted the previously calculated 
APoj,? o and AToj,? o in (3) to project A%E(NBSoj,?o), the 
percent change in expected NBS for that lake in the year 70 
under scenario t9. For instance, the downscaled MPI results just 
given, when inserted in (A1), result in an 80% decrease in 
NBS, most of which is due to the temperature increase. In 
contrast, the less severe GFDL results yield only half as much 
of a decrease. Assuming a linear trend in mean NBS, the 
expected change in NBS A%E(NBSojt) for years between 0 
and 70 can be calculated as 

A%E(NBSoit) = (t/840)A%E(NBSoi,7o), V j, t 
(A2) 

0 = MPI, GFDL, UKMO 

with t measured in months. This presumes that A %E (NBSoj,o) 
= 0; that is, in month 0 there has been no departure from the 
historical mean. The implication of (A2) for the MPI scenario 
is that expected annual NBS would decrease by about 1%/yr. 

A3. Generate 2 x CO2 Sample NBS Traces 

A straightforward way of obtaining 2 x CO 2 hydrological 
scenarios is to take a historical sequence of precipitation and 
temperature, modify that sequence according to the projected 
changes in average annual precipitation and temperature, and 
then run the modified sequence through a runoff model. This 
sensible approach was taken by Croley [1990, 1991] for NBS in 
the Great Lakes. Rogers and Harshadeep [1994] observed that 
such predictions of NBS under 2 x CO2 conditions can often 
be accurately represented as simple linear functions of NBS 
under 1 x CO2 conditions. We found that was true for NBS 
simulations based on the Canadian Climate Centre (CCC) 
GCM 2 x CO2 scenarios and the methods of Croley [1990]. 
Croley [1991] reported historical NBS for the five Great Lakes 
and simulated 2 x CO2 NBS for the same period obtained by 
adjusting the daily temperature and precipitation records by 
the annual mean Apj and A Tj from the CCC GCM. From his 
historical and corresponding 2 x CO2 data, we fit linear equa- 
tions of the form 

NBS2xco2,/t = aim + big NBSHistorical,j t (A3) 

for each month rn = 1, 2, ..., 12 and lake j. R 2 was above 
0.9 for nearly all months, confirming the observation by Rogers 
and Harshadeep [1994]; thus our statistical models are a rea- 
sonable approximation of Croley's hydrological downscaling 
process. For example, for June in Lake Erie, ajm = --39.5 
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mm/month and b•m = 0.72 mm/mm (where NBS is measured 
in mm/month). 

We then inserted our 100 BOC NBS samples NBSBoch in 
(A.3), obtaining an estimate NBS2xco2, h of the corresponding 
NBS time series that Would have been obtained under the CCC 

scenario assumptions and downscaling procedure used by 
Croley [1990]. An example of such a NBS series for Lake Erie 
is shown as the bottom NBS series in Figure 3. 

A4. Generation of Transient NBS 

NBS traces NBS0h for the climate change transient scenarios 
0 were then obtained as a convex combination of the BOC and 

estimated 2 x CO2 samples, NBSBoch and NBS2x½% h for 
each sample h, lake j, and non-BOC scenario 0: 

NBSohjt-' Aojt NBS2xco2,hjt + (1 -- Xojt) NBSBochjt, •[ h, j, t 

0 = MPI, GFDL, UKMO (A4) 

where the weight Xoi t is based on how close a given year's 
expected NBS E(NBSoit) (based upon the adjustment calcu- 
lated in (A.2)) is to E(NBS2xco2,•t) relative to E(NBSBoc•t), 
where .the latter two expectations are calculated by averaging 
over all the samples: 

X Oj t •- A % E ( NBSojt) / A % E ( NBS2xco2,jt) 

= A %E(NBSojt)/[(E(NBS2xco2,jt) 

- E(NBSBocjt))/E(NBSBocjt)], Vj, t 

0 = meI, GFDL, UKMO (A5) 

As time t proceeds, X oTt increases (since (A2) implies that 
A%E(NBSoTt) is increasing in magnitude), and the transient 
scenario NBS will move away from the BOC NBS and more 
closely resemble the 2 x CO2 NBS. Fighre 3 illustrates this 
process' the transient trace is between the 1 x CO2 and 2 x 
CO2 traces, and approaches the latter over time. 

Since 100 samples of NBSBoch were created for the no 
climate change scenario, the above four-stage procedure yields 
100 samples of NBSoh for each transient scenario 0 = MPI, 
GFDL, UKMO, giving a total of 400 samples. Additional 
traces would be desirable in order to increase the precision of 
the expected cost estimates, but the computational intensity of 
the stochastic NBS model and impact simulation models pre- 
cluded larger samples in our study. This is a drawback of 
BMC-based decision analysis, as others have noted [Dilks et al., 
1992; Patwardhan and Small, 1992]. 
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