What Investments Should Be
Made Now?
Long Run Transmission
Planning Under Uncertainty

PSERC

CERTS

Conpoariym roa fun

JOHNS HOPKINS

u N I vV E R § I T ¥

PSERC Webinar
April 22, 2014

Benjamin F. Hobbs

Director, JHU Environment, Energy, Sustainability & Health Institute
Theodore & Kay Schad Professor of Environmental Management, JHU
Chair, CAISO Market Surveillance Committee



Thanks to:

Funding agencies:

*  Consortium for Electric Reliability Technology
Solutions (CERTS) with funding provided by
the U.S. DOE

* NSF

* U.K. Engineering & Physical Sciences
Research Council

Collaborators:

*  Francisco Munoz, Jean-Paul Watson (Sandia)

* Saamrat Kasina, Jonathan Ho, Pearl Donohoo
(JHU)

* Adriaan van der Weijde (U. Amsterdam)

* Richard Schuler (Cornell)



Outline

1. Introdupt/uo
‘K,‘ / '\& ;‘

2. Model Overvlg

&__}.;,_-4; A
3. Results‘;xﬂ\
4, Dealmg}wﬂoh Lgr

5. Conclufloq‘s

\ ;
{ K



1.1 Introduction

Solar Resources (NREL) Wind Resources (NREL) U.S. Transmission System
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Generation &
Transmission Cost
(MISO 2010)
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Regional Generation
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Transmission Investments



1.2 The Challenge of Variability

January December
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Solar in Arizona :
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— Need to capture true economic value of renewables!

* System-wide analysis of transmission & generation investments

* Improve time resolution of operations subproblems




1.3 More Challenges

* Hyper uncertainty in long run:

Fuel Costs *  Carbon Tax * RPS
Demand Growth *  Demand Response *  Distributed Generation
Technology Costs * PEV

- Need multi-scenario transmission planning

 Unbundled transmission & generation markets

*  Transmission takes longer to build

*  Price signals guide gen investment —> Need anticipative transmission planning

—>We need practical methods that can handle:
* Variable renewables
* Long-run uncertainties
* Response of generator siting & operations
* Large networks & Kirchhoff’s Laws




1.4 The New Paradigm

“(C)apturing long-term benefits of transmission investments requires processes
more akin to integrated resource planning in order to evaluate ‘long-term resource
cost’ benefits (such as)... the ability to build new generation in lower-cost locations
... (in order to) find lower-cost combinations of transmission & generation

investments to satisfy policy requirements”
(Pfeifenberger & Hou, 2012)

“Anticipative” planning in practice:
®* FERC Order 1000 — Transmission Planning and Cost Allocation (FERC, 2013)

® California ISO (Awad et al. 2010)

® Eastern Interconnection States Planning Council (2013) “Co-optimization”
White Paper



1.5 Transmission Planning in

Practice

Commercial tools used by ISOs and RTOs:

* SIEMENS PSS-E
 ABB GridView Dispatch optimization, not investment (O’Neill et al. 2012)

*  Ventyx PROMOD IV

* PSR NETPLAN } Optimizes network
Load/VER variability, but no long run uncertainties

Treatment of uncertainty and hedging strategies:

*  MISO Multi-Value Projects (MISO 2010)
* CAISO Least-Regrets Approach
“The ‘least regrets’ approach (evaluates)... a range of plausible scenarios made up of

different generation portfolios, and identif(ies) the transmission reinforcements found
to be necessary in a reasonable number of those scenarios” (CAISO 2012)
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2. Model Overview, Realistic Test-Case: WECC 240



2.1 Multi-Stage Stochastic

Transmission Planning

Stage 1:
“Today’s
Choices”

Investments in:
*  Transmission
* @Generation

Scenarios of

Stage 2:
“Tomorrow’s
Choices”

m—
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Uncertainty

m—

$ Fuels * |nvestments in

Load growth trans / gen
Technology * Operations
Policies

Assumptions:

Aligned generation and
transmission objectives

- Nodal pricing + Perfect Competition

Generation

- No unit commitment constraints/costs

Demand

- No demand response

Renewable targets met in most

efficient way



Multi-Stage Stochastic
Transmission Planning |l

2.2

“Today’s Uncertainty “Tomorrow’s
Choices” -Choi&"
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« Constraints include:
-Kirchhoff’'s Laws
-Generator and transmission capacity / operating restrictions
-Siting restrictions

-Emissions caps, renewable portfolio standards



2.3 WECC 240-bus Test Case:

2023 + 2033 Investments

WECC 240-bus system:
(Price & Goodin, 2011)

140 Generators (200 GW)
448 Transmission elements
21 Demand regions

Legend

o Substations

Transmission Lines

2 : "‘f - O Wind Resources
Interconnections Resource Classification
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2.4 Stage 2 (2023) Scenarios

Focus: Environmental policy & fuel prices

U.S. Carbon Cap & Trade Differentiated State RPS 33% WECC-wide RPS
* 2020 CO, < 85% 2005 levels * Each state requires >75% from * Efficient REC trading
* 2030 CO, < 55% 2005 levels in-state resources * High fuel prices
* Low fuel prices * Average fossil fuel prices
Experiments

* Single Scenario Planning (Deterministic)
* Stochastic Approach
* Heuristics for Stage 1 (2023) Transmission Builds:
1. Heuristic| : Build lines needed in each & every scenario } “Least-regrets” or
“Multi-Value Projects”

2. Heuristic Il : Build lines needed in “most” scenarios (at least 2)
3. Heuristic lll: Build all lines } “Congestion-free”
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3. Results



3.1 Results

15t Stage (2023) Transmission Investments: Backbones

Approach B19 B37 B56 B68 B72 B73 B74 B92 B95 B125 B133 B136 B137 B143) B151 B157 |B168 B169 B201 B202 B218 B222 B237 B238
D-Carbon 1 1 1 1 1 2 2 1 2
D-33% WECC 1 1 1 2 1 1 1 1 1 1 2
D-State RPS 2 1 1 2 2 1 1 1 2
Heuristic | 1
Heuristic Il 1 1 1 1 1 2
Heuristic Il 2 1 1 1 1 1 2 2 1 2 1 1 1 2 1 1 1 1 1 2 2 2
Stochastic 1 1 2 1 2 1 1 1 1 1 1 2
| —————————————
* Flexible plans are not best in
any single scenario!

2023 Interconnections to Renewable Hubs * Heuristics can do worst of all!

Approach 12 15 16 I8 19 110 111 114 120 123 124 125 126 Deterministic-Carbon

D-Carbon 1 Deterministic-33% WECC

D33%WECC 1 4 1 31 1 2 1 1 1 1 1 Deterministic-State RPS
D-State RPS 2 2 1 1 1 1 1 Heuristic |
Heuristic | 1 Heuristic Il |
Heuristic Il 2 2 1 1 1 1 Heuristic Il
Heuristiclll 1 4 1 1 1 1 1 1 1 1 1 ]
- Stochastic
Stochastic 141311 1 1 1 1 1 , ,

0 200 400 600 800 1,000
E(Cost), Present Worth [SB]
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3.3 Deterministic 2023 Results:

Plan 1: U.S. WECC Carbon Cap

San Francisco Bay Area

New Generation Carbon Case
(MW) added capacity
0-1300
@ 1400-7000
@ 7100- 14000
Backbone Carbon Case

Interconnection Carbon Case

e Gen added near
demand
* Low renewables




3.4 Plan 2: State RPS Case

San Francisco Bay Area

New Generation RPS Case
(MW) added capacity

O 0-1600

@ 1700 -5700

@ 5800- 13000
Backbone State RPS Case

Interconnection State RPS Case

* High renewable

penetration
* Mainly el

. . QY
California

{ X , Q

* Why? California
has highest state
RPS




3.5 Plan 3: WECC 33% Case

San Francisco Bay Area

New Generation WECC 33 Case
(MW) added capacity
0 - 2000

@ 2100-7000
@ 7100-12000
Backbone WECC 33 Case

Interconnection WECC 33 Case

* High renewable
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3.6 Stochastic 2023 Plan

New Generation Stochastic

(MW) added capacity
0-1700 MW

@ 1800 -6100 MW
@ 6200 - 16000 MW
Backbone Stochastic

Interconnection Stochastic

* High renewables
* Generation
closer to
California
* Unique stochastic
lines

San Francisco Bay Area
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3.7 Costs of Stage 1 Transmission

Plan

Costs of Alternative 2023 Transmission Plans Under Each of 3 Scenarios

1,100
1,000 4 = <=— Plan 1: C Cap n . .
,l (E(COSt)=$7ZSB) 3 TI'GHSMISSIO"
900 S 2023 Plans
/’ - .
/ /. - Plan 2: State RPS Based on
800 A+ (>6678) o ..
iyt Deterministic
Y Y 4 0
200 Plan 3: 33% WECC RPS IVIOdeIS
(5654B) ;
Note: Gen Stage 1 decisions
— consider all 3 scenarios
600 - T @myemm Stochastic Plan
(5636B)
500 | |
. . S=1: S=2: S$=3:
Scenarlos S. C Cap State RPS 33% WECC RPS

*  “Value of Stochastic Solution”

= Reduction in E(Cost) from stochastic planning ~ $47B
* Cf. WECC 10-Year Regional Transmission Plan:

* ~S20B in transmission to meet 2020 demand & renewable targets
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4. Dealing with Large Problems



4.1 Dealing with Large Problems

* Good LP approximations of Unit Commitment MILPs
* Pre-screening of Transmission Alternatives

*  Decomposition Approaches



4.2 A Problem: Too Many Options

A Solution: Reduce # Options with St. Clair Screening Model

Corridor

Distances (mi) Max Corridor

Investment Rating (MW)

Curve

3.
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(kV) Linear Continuous St. Clair
Optimization | Investmen Curve
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I n o o ‘ Scenario | .
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(P. Donohoo, MIT Ph.D. Thesis; Donohoo, Webster, Perez-Arriaga, PES General Meeting, 2013)



YScerarios with Carridor Developed

100

0 ©
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Screening Model:

Reduced # Options

~
o

e Across 1500 runs of the WECC
240 bus LP model, only <5% of
corridors are ever chosen

* Safely ignore the other 95%?

1 2 3 -
Percentage of Corridors

50,000

4 5

40,000

30,000

20,000 -

10,000 -

0 -

m P

95% Reduction 97% Reduction
| (629) (1.081)

Corridors Lines

m Pre-Screened Set ™ Screened Set



4.4 Another Problem: Too Many

Operating & Long-Run Scenarios

E.g., WECC 240 with 100 scenarios: No feasible solution after 1 day
A Solution: Decomposition

Benders Decomposition: Alternate between:
- “Master” design problem (gives lower bound)
- Operations simulation (gives upper bound)
lteration tightens bounds, converges (eventually....) to optimum

Accelerate Benders by Tightening Master Problem Lower Bound:

1) Create k partitions of space of load/VER realizations space Q

2) Add deterministic operating problem for each partition to Benders master problem
3) Iterate in usual Benders fashion

low resolution high resolution

E[Sl] E[S,] E.g. 8760
E[€] c o o observations of
E[S,] E[S,]| E[S;] hourly demand and
capacity factors

E(C) < EC) < EEC) < ses < EQC)



Faster Benders Convergence

4.5 with New Constraints
(17 Bus Problem)
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4.6 Decomposition by Progressive @ Nt

Laboratories

Hedging (F. Munoz/J.-P. Watson)

Subproblem 1  Subproblem 2 Subproblem 3

Progressive Hedging enforces

Investments Investments Investments - L :
Scenario 1 Scenario 2 Scenario N non-anticipativity constraints
Operations Operations Operations One 1% Stage investment plan for
Scenario 1 Scenario 2 Scenario N all scenarios

Progressive Hedging (Rockafellar/Wets):
* Converges if problem convex, good heuristic for mixed-integer problems
* Available: PySP package of Pyomo (Sandia NL)
* Used to solve large stochastic Unit Commitment problems

Improvements:
* Accelerate convergence through variable fixing and/or slamming, e.g.:
e Fixvariable if line is needed in all scenarios
e All alternatives considered only in first iterations
* New lower bounds from dual decomposition (S. Ryan, lowa State)

In Practice:
* WECC-240 and 100 scenarios: CPLEX = No feasible solution after 1 day of CPU time
PH - 20 iterations/15 min yields 1.5% optimality gap



4.7 Goals of Sandia Effort @ Nt

Laboratories

* Execute stochastic transmission and generation expansion planning
at scale, on real-world data sets

- Stochastic models are needed,
- But no commercial software available for stochastic investment

planning
* Produce solutions in tractable run-times, with bounds

* Develop scenario selection algorithms for execution on commodity
workstations, not just supercomputers
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5. Conclusions



5 Conclusions

* Scenario Planning has a major shortcoming:
Deterministic plans don’t account for flexibility

* Heuristic planning rules can perform worse than myopic
deterministic plans

* Value of Stochastic Solution can be ~2X the cost of transmission
* Can solve very large problems (e.g., more scenarios, operating
conditions) with
—> screening

- bounding/decomposition

* Next: Demos for WECC and other systems with realistic data
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