Co-optimization of Transmission and Supply Resources

Funded by the National Association of Regulatory Utility Commissioners

Project Team:

Andrew Liu, Purdue University (lead) Benjamin Hobbs & Jonathan Ho, Johns Hopkins University James McCalley & Venkat Krishnan, Iowa State University Mohammad Shahidehpour, Illinois Institute of Technology Qipeng Zheng, Central Florida University NARUC Liaisons: Bob Pauley and Doug Gotham

Eastern Interconnection States' Planning Council Meeting Chicago, Aug. 26-27, 2013

Outline

- 1. Project Overview
- 2. Uses of Co-optimization
- 3. Benefits of Co-optimization
- 4. Example Methodology Review
- 5. Institutional & Data Issues
- 6. Recommendations

1. Overview

<u>Goal</u>: Provide EISPC with a comprehensive overview of cooptimization modeling: applications, benefits, state-of-theart, and institutional issues.

<u>Co-optimization</u>: simultaneous evaluation of two or more classes of investments within one optimization problem

- Such as G&T; G&T & gas pipelines; G&T & DR.

Why of interest? Traditional planning: generation-first, then design transmission to facilitate generation plan

- But transmission affects economics of plant siting, and vice versa
- Better solutions (economically, environmentally) may be identified by searching (optimizing) generation and transmission simultaneously.

Deliverable: White paper covering 15 tasks

Task	Project Tasks
1	Review strengths/limits of current resource planning models
2	Identify benefits of co-optimization models
3	State of the art of co-optimization models
4	Detail the incremental data requirements
5	Identify benefits of incremental data
6	Information from planning coordinators required to run co-optimization models
7	Advantages/disadvantages of approaches to co-optimization
8	Establish validation protocols
9	Computing requirements
10	Time requirements for model development/initial validation
11	Confidentiality concerns
12	Uncertainty modeling
13	States' role in developing databases & utilization of co-optimization models
14	Co-optimization models in the public domain
15	Recommendations for next steps

Methods:

- Literature reviews
- Discussions with Planning Coordinators, vendors
- Small & large co-optimization applications

3

2. Uses of Co-optimization: Vertically Integrated Utilities

- Planning generation, transmission & other resources together to minimize total cost of power delivered
 - Within subarea of service territory:
 - alternatives at circuit level for serving load pocket
 - Over entire service territories:
 - planning for renewables interconnection
 - Interconnection of different service territories:
 - alternatives at interface level for economic power exchange
- IRP for all resources (storage, demand, gen, transmission)

Uses of Co-optimization: Unbundled Markets

- "Anticipatory Transmission Planning": Grid planning anticipating how generation investment & dispatch may react:
 - Within subarea of service territory:
 - how load pocket reinforcement affects incentives to site plants inside pocket
 - Over entire service territory:
 - how grid affects incentives for remote vs. nearby renewable development
 - Over entire market or between markets:
 - how interconnections affect trade, competition, & incentives for plant mix & siting
- Guide capacity market design to evaluate mixes of resources (gen, storage, DR, transmission) & fuel needs

3. Benefits of Co-optimization

- Benefits of co-optimizing T with G (and other resources):
 - 1.Co-optimization detects substitutability between wider array of resources
 - > Lowers overall cost of serving load \rightarrow consumer benefits
 - > Offers more flexibility to respond to locational restrictions
 - 2. Disregarding how T affects G siting & dispatch is unrealistic, increases likelihood of inefficiently sited investments
 - So co-optimization can lower the risk of stranded G & T assets
 - 3. Provides insights on G's sensitivity to T investment
 - > Contributes to using T to achieve economic & environmental goals
 - > Values all of the benefits of T
- Cost savings from co-optimization are illustrated with:
 - > Simple 3-4 bus examples
 - > 13 region models of the US

A Simple Example (One of Seven)

GENTEP Model (IIT) GENCOs (TRANSCOS) DISCOs List of Candidates Planning Problem Co-optimization of Generation Transmission, and Microgrid Initial Plan Short-term Operation (Feasibility Check) Feasibility Cu Feasible Plan Economic Operation (Optimality Check) ptimality Cut Annual Reliability Cut Optimal Plan Annual Reliability Subproblem

Generation-Only Planning

- Min investment + operations costs of generation
- Subject to fixed grid

Transmission-Only Planning

- Min transmission investment + generation operations costs
- Subject to fixed generation siting pattern

Co-optimization

 Min investment + operations costs of generation & transmission 7

US Hypothetical Example (1): Gen-Only vs Co-optimization

ISU Co-optimization Model: 13 US regions • Build, dispatch thermal & renewable resources by region · Select inter-regional transmission capacity • Subject to natural gas pipeline capacities, gas costs 100% **Illustrative Results** 95% • Normalized (Maximum cost = 100%) 90% • Gen-only: Considers existing grid 85% • Largest savings from co-80% optimization: \$46B/yr MOSHY renewab

US Hypothetical Example (2): Gen-Only vs Trans-Only vs Two Types of Co-optimization

4. Example Review: Some Tools for Co-optimizing T&G

Model Name	Developer	Trans Investments	Optimizer	Sectors
COMPETES	Energy Research Centre of the Netherlands	AC/DC Continuous	LP (iteratively solve linearized DC model)	Electric
Stochastic Transmission Planning Model	JHU	AC Binary	MILP (non-iterative) / Bender's decomposition for large problems	Electric
NETPLAN	NETPLAN ISU Pipes Continuous		LP (simultaneous multi- period optimization)	Electric, Fuel, Transportation
Iterative gen-trans Co- optimization	ISU	AC/DC Binary/Continuous	Iterative LP (gen.) & MILP (trans.) / Bender's decomp. for large problems	Electric
Meta-Net	LLNL	Pipes Continuous	Market equilibrium model	Electric, Fuel, Transportation
ReEDs	ReEDs NREL P		LP (multi-stage multi-period optimization)	Electric
GENTEP	IIT	AC/DC Binary/Continuous	MILP / Benders decomposition	Electric (including microgrids), Gas
Prism 2.0 EPRI		Pipes Continuous	General equilibrium economy model	Electric, Fuel, Transportation
PLEXOS	Energy Exemplar	DC	LP	Electric (Gas under development)
REMix German Aerospace AC/DC Center DLR Continuous		LP (static investments at begining, yearly operations optimized for multi-years)	Electric/Heat	

Advantages/Disadvantages of Modeling Choices

CHOICES	PROS	CONS
AC model	High P & Q model fidelity	Requires NL solver - excessive computation
DC model	Can use linear solver; good P fidelity	No Q-V information.
Pipes	Highest computational efficiency	No impedance effects, poor model fidelity
Hybrid	Obtain benefits of each choices	More complex modeling involved

Optimizer

CHOICES	
Non-iterative	
Iterative	
Linear continuous	
Linear mixed integer	

Uncertainty

CHOICES Deterministic

Component outages

Parametric uncertainty in conditions (e.g. demand, fuel prices, variable gen) "Large" uncertainties (e.g., \$4 N gas vs. \$10 N gas, CO₂ tax or not, 0.5% demand growth vs. 3% demand growth)

Evaluation Periods

CHOICES Single evaluation period/ single optimization period Multiple evaluation periods/ single optimization periods/ Multiple evaluation periods/ multiple optimization periods

End Effects

CHOICES	
Truncation	
Salvage value	
Primal equilibrium	
Dual equilibrium	

13

Uncertainty

Types of Uncertainties	Examples
Market	Capital costsFuel costs
Weather, climate	Wind speedSolar irradiation
Consumption	 Load growth and shape DR/DGs/Microgrids PHEV charging
Technologies	Outage ratesNew builds/RetirementsFuture cost reductions
Regulatory uncertainties	New reliability standardsEnvironmental policies

> Methods exist for modeling:

- Short-run variability
- Long-run uncertainties

> Considering these yields:

- More <u>geographically dispersed</u> <u>investment</u> to take advantage of diversity
- Hedging by investing in generation types, corridors that offer more <u>flexibility</u>

Issues: Model size, data

- New algorithms
- Improved computers

5. Institutional & Data Issues: Example Conclusions

1. Incremental data

- E.g., Fine resolution load & generator characteristics/costs
- Build on existing databases

2. Incremental effort

- Significant, but data would benefit other planning activities
- Computational effort higher, but continuing improvements in hardware make possible

3. Confidentiality / Public domain

- Confidentiality obstacle to data sharing
- Public domain tools encourage transparency/feed-back/wider involvement; might be misused or slow down process
- Proprietary models may encourage innovation

4. State Roles

- Regulatory oversight: e.g., ensure important objectives reflected in models
- Cooperate to create data repositories

6. Recommendations

High potential benefits of co-optimization: of same magnitude as transmission investment itself

EISPC should initiate development & application of cooptimization tools for long-term systems planning

- Although research-grade co-optimization tools exist, none have all desired features → Investment would be needed to:
 - ✓ create commercial-grade software
 - ✓ build/maintain databases
- Planning Coordinators or States should collaborate with research groups to apply existing tools to quantify benefits of co-optimization in realistic settings, providing:
 - ✓ more precise estimates of co-optimization benefits
 - ✓ more information on effort required by co-optimization, and insights obtainable

15