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1.1 Introduction

Solar Resources (NREL) Wind Resources (NREL) U.S. Transmission System

 

Zone Scenario 
Generation and 
Transmission Cost
(MISO 2010)

Transmission Investments

Optimal:
Combination of Local &
Regional Generation

The Challenge of Variability

Load in Canada

Load in California

Wind in New Mexico

January December

Solar in Arizona

Need to capture true economic value of renewables!

• System‐wide analysis of  transmission and generation investment alternatives

• Improve time resolution of operations subproblems

‐> Traditional methods (e.g. load duration curves) only asymptotically valid
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1.3 More Challenges

• Hyper uncertainty:

• Fuel Costs

• Demand Growth

• Technology Costs

• Carbon Tax

• Demand Response

• PEV

• RPS

• Distributed Generation

• Unbundled Electricity Market

• Trans & gen planning separated

• Transmission takes longer to build

• Price signals guide gen investment

We need practical methods that can handle:
• Large‐scale networks
• Renewable variability
• Long‐run uncertainties
• Generators’ response
• Kirchhoff’s Laws 

1.4 The New Paradigm

“(c)apturing long‐term benefits of transmission investments requires processes more akin to 
integrated resource planning in order to evaluate ‘long‐term resource cost’ benefits (such 
as)… the ability to build new generation in lower‐cost locations (and to)… find lower‐cost (or 
higher‐value) combination of transmission and generation investments to satisfy policy 
requirements, such as (renewable portfolio standards)” (Pfeifenberger and Hou, 2012)

“Proactive” or “anticipative” planning in practice:

• FERC Order 1000 – Transmission Planning and Cost Allocation (FERC, 2013).

• California ISO (Awad et al. 2010).

• Eastern Interconnection States Planning Council (EISPC), “Co‐optimization” studies 
(EISPC, 2013).



1.5 Transmission Planning in 
Practice

• Commercial tools used by ISOs and RTOs:

• SIEMENS PSS‐E

• ABB GridView

• Ventyx PROMOD IV

• Treatment of uncertainty and hedging strategies:

Simulation, not optimization tools (O’Neill et al. 2012)

• PSR NETPLAN Topology optimization capabilities, stochastic operations (e.g., hydro)
Deterministic for regulatory conditions, economic drivers

• MISO Multi‐Value Projects (MISO 2010)

• CAISO Least‐Regrets Approach 

“The “least regrets” approach can be summarized as evaluating a range of plausible scenarios 
made up of different generation portfolios, and identifying the transmission reinforcements found 
to be necessary in a reasonable number of those scenarios.”  (CAISO 2012)
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2.1 Multi‐Stage Stochastic 
Transmission Planning

“Today’s
Choices”

• Transmission
• Generation

Uncertainty

• $ Fuels 
• $ Technology
• Policies 
• Imports

• Aligned generation and 

transmission objectives

- Nodal pricing + Perfect Competition

• Generation

- No unit commitment constraints/costs

• Demand

- No demand response

• Renewable targets met in most 

efficient way

Assumptions
“Tomorrow’s
Choices”

• Transmission
• Generation
• Operations

Multi‐Stage Stochastic 
Transmission Planning  II

“Today’s
Choices”

Uncertainty “Tomorrow’s
Choices”

MIN     C1X1 + scenarios S PS *  C2X2,S

A1,1 X1 < B1
A2,1,S X1 + A2,2,SX2,S < B2,S ,S

2.2

• Constraints include:

- Kirchhoff’s Laws

-Generator and transmission capacity / operating restrictions

-Siting restrictions

-Emissions cap, renewable portfolio standards



2.3 WECC 240‐bus Test Case

WECC 240‐bus system:
(Price & Goodin, 2011)

140 Generators (200 GW)
448  Transmission elements
21  Demand regions
28  Flowgates

Renewables data (Time series, GIS)
(NREL, WREZ, RETI)

Backbones

Interconnections

54 Wind profiles
29 Solar profiles
31 Renewable Hubs (WREZ)

Candidate Transmission Alternatives 
Maximum number of circuits per corridor:

2 for Backbones
4 for Interconnections to Renewable Hubs

Scenarios2.4

• Focus on environmental policy and fuel prices

• Experiments

• Scenario Planning (Deterministic)

• Stochastic Approach

• Heuristics:

1. Heuristic I : Build lines needed in all the scenarios

2. Heuristic II : Build lines needed in “most” scenarios (at least 2)

3. Heuristic III : Build all lines

“Least‐regrets” or
“Multi‐Value Projects”

“Congestion‐free”

33% WECC‐wide RPS

• 33% WECC‐wide RPS
• Efficient REC markets
• High fossil fuel prices

Differentiated State RPS

• State RPS
• >75% from in‐state resources
• Average fossil fuel prices

Carbon Cap & Trade

• 17% below 2005 levels by 2020
• 45% below 2005 levels by 2030
• Low fossil fuel prices
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Results3.1

Approach B19 B37 B56 B68 B72 B73 B74 B92 B95 B125 B133 B136 B137 B143 B151 B157 B168 B169 B201 B202 B218 B222 B237 B238

D‐Carbon 1 1 1 1 1 2 2 1 2

D‐33% WECC 1 1 1 2 1 1 1 1 1 1 2

D‐State RPS 2 1 1 2 2 1 1 1 2

Heuristic I 1

Heuristic II 1 1 1 1 1 2

Heuristic III 2 1 1 1 1 1 2 2 1 2 1 1 1 2 1 1 1 1 1 2 2 2

Stochastic 1 1 2 1 2 1 1 1 1 1 1 2

Approach I2 I5 I6 I8 I9 I10 I11 I14 I20 I23 I24 I25 I26

D‐Carbon 1

D‐33% WECC 1 4 1 3 1 1 2 1 1 1 1 1

D‐State RPS 2 2 1 1 1 1 1

Heuristic I 1

Heuristic II 2 2 1 1 1 1

Heuristic III 1 4 1 3 1 1 2 1 1 1 1 1 1

Stochastic 1 4 1 3 1 1 2 1 1 1 1 1

First‐Stage Transmission Investments: Backbones

Interconnections to Renewable Hubs

Flexible plans are 
suboptimal in retrospect!!



Results3.2
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First Stage Generation Investments: Deterministic vs Stochastic Solutions

No heuristic decision 
rule to approximate 
stochastic solution

~max

~min

~mean

• Gen added near 
demand

• Low penetration 
of renewables

• Carbon cap only 
within US

Results: Carbon Cap Case3.3



Deterministic Solution 2: State RPS

• High renewable 
penetration

• Mainly 
California

• Why? California 
has highest state 
RPS

Results: State RPS Case3.4

Deterministic Solution 3: WECC 33% RPS

• High renewable 
penetration

• High quality 
distant resources 
accessed

• Favors 
population 
centers

Results: WECC 33% Case3.5



Stochastic Solution

• Hi renewables
• Generation 

closer to 
California

• Unique 
stochastic lines

Results: Stochastic Solution3.6

Results Summary3.7

Approach
First‐Stage Transmission Investments [$B]

E(System 
Costs) across 
scenarios

[$B]
Backbones Interconnections Total

D‐Carbon 4.0 0.1 4.1 728.2 

D‐33% WECC 6.1 9.3 15.4 653.6

D‐State RPS 7.2 4.1 11.3 667.0

Heuristic I 0.3 0.1 0.4 951.4

Heuristic II 2.4 3.9 6.3 679.1

Heuristic III 14.7 9.5 24.2 644.5

Stochastic 5.6 9.2 14.8 636.2

Economic Performance of Investment Strategies

• Expected Value of Perfect Information (EVPI) = $45.4 Billion

• Value of Stochastic Solution (VSS) = $46.7 Billion

• WECC 10‐Year Regional Transmission Plan:

• Estimates of $20 Billion in transmission investments to meet demand 
forecasts and renewable targets by 2020.
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4. Conclusions

• Scenario Planning is a weak tool for decisions under uncertainty
• Deterministic plans don’t account for flexibility

• Heuristic  planning rules can perform worse than myopic 
deterministic plans

• Value of Stochastic Solution ~3 times the cost of transmission.

• Bounding & decomposition approaches are practical for improving 
granularity in operations



Questions?
Francisco Munoz:
francisco.munoz@jhu.edu

Benjamin Hobbs:
bhobbs@jhu.edu
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An Engineering-Economic Approach to
Transmission Planning Under Market and

Regulatory Uncertainties: WECC Case Study
Francisco D. Munoz, Student Member, IEEE, Benjamin F. Hobbs, Fellow, IEEE, Jonathan L. Ho, Student

Member, IEEE, and Saamrat Kasina, Student Member, IEEE

Abstract—We propose a stochastic programming-based tool
to support adaptive transmission planning under market and
regulatory uncertainties. We model investments in two stages,
differentiating between commitments that must be made now
and corrective actions that can be undertaken as new information
becomes available. The objective is to minimize expected trans-
mission and generation costs over the time horizon. Nonlinear
constraints resulting from Kirchhoff’s voltage law are included.
We apply the tool to a 240-bus representation of the Western
Electricity Coordinating Council (WECC) and model uncertainty
using three scenarios with distinct renewable electricity man-
dates, emissions policies, and fossil fuel prices. We find that the
cost of ignoring uncertainty (the cost of using naive deterministic
planning methods relative to explicitly modeling uncertainty)
is on the same order of magnitude as the cost of first-stage
transmission investments. Furthermore, we find that heuristic
rules for constructing transmission plans based on scenario
planning can be as suboptimal as deterministic plans.

Index Terms—Planning, Uncertainty, Stochastic Programming,
Decision Analysis, WECC, Renewable Portfolio Standards.

NOMENCLATURE

Sets and Indexes:
B Buses, indexed b, p.
Bj Buses within reliability region j.
FG Flowgates, indexed a.
G Generators, indexed k.
Gb Generators at bus b.
Gi Generators at zone i.
H Hours, indexed h.
GR Renewable generators.
GC Candidate generators.
GI Intermittent generators.
GNI Non-intermittent generators.
L Transmission lines, indexed l.
LE Existing lines.
LC Candidate lines.
Ωl Pair of nodes connected to line l.
S Scenarios, indexed s.
T Periods, indexed t, u, and v.
J Reliability regions, indexed j.
R Regions with renewable mandates, indexed i.

The work reported in this article was partially supported by U.S. DOE
CERTS Reliability and Markets program, NSF grants EFRI-RESIN 0835879,
OISE 1243482 and ECCS 1230788, and the Fulbright Foundation.

F. D. Munoz, B. F. Hobbs, J. Ho and S. Kasina are with The Johns Hopkins
University (e-mail: francisco.munoz@jhu.edu, bhobbs@jhu.edu)

E Regions with CO2 limits, indexed e.
Parameters:
CAP t

e,s Carbon emissions limit.
CXt

l,s Capital cost of line.
CY t

k,s Capital costs of generator.
δ Discount rate.
Dt

b,h,s Forecasted demand.
ELCCk Effective Load Carrying Capability factor.
EMk Carbon emissions rate.
Fl Line capacity.
FGa Flowgate limit.
h∗ Peak demand hour.
Ml Large positive number.
MCt

k,s Generation marginal cost.
NCt

s Noncompliance penalty.
ps Probability of scenario s.
Φb,l Element of node-line incidence matrix.
Ψa,l Element of flowgate-line incidence matrix.
RMj Reserve margin requirement.
RPSt

i,s Renewable obligation.
Sl Line susceptance.
Vt Period length.
V OLL Value of loss load.
Wk,h Hourly capacity factors for wind and solar.
Yk Maximum resource potential.
Y 0
k Installed generation.
Y Rt

k Retirement of generation capacity.
Variables:
xtl,s Transmission investment decision.
ytk,s Generation new build.
gtb,k,h,s Generation.
rtb,h,s Load curtailment.
nti,s Noncompliance of renewable target .
f tl,h,s Power flow.
θtb,h,s Phase angle.

I. INTRODUCTION

ELECTRICITY transmission networks are large intercon-
nected systems used to ensure the reliable and economic

delivery of power from generators to consumers. Recently, the
National Academy of Engineering recognized electrification
as ”the single most significant engineering achievement of the
20th Century” [1]. With an installed capacity of 1,100 GW and
more than 160,000 miles of high-voltage transmission lines,

Ben
Typewritten Text
IEEE TPWRS, in press
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the U.S. electricity system serves approximately 130 million
customers with annual revenues totaling over $350 billion in
2010. Transmission comprises 10% of the total system assets
of $800 billion [2].

Historically, transmission investments were driven by load
growth, remote siting of large thermal plants, and opportunities
for inter-system exchanges of economy energy and reserves.
Today, transmission is also seen as a key enabler of renewable
energy integration, since the best renewable resources are
often far from load centers and the existing grid. Considerable
investment will be needed in the coming decade. WECC
estimates that $20 billion in foundational transmission invest-
ments are needed by 2020 in the western U.S. to meet load
projections and state Renewable Portfolio Standards (RPSs)
[3]. A similar study for California estimates that transmission
investments to meet just that state’s 33% RPS target by 2020
will cost approximately $16 billion [4], which is double the
annual cost of wholesale power in the CAISO market in 2011.

Complying with renewable goals at minimum cost to con-
sumers will require careful consideration of trade-offs between
the cost of transmission investments to remote resources and
the quality and diversity of those resources. In vertically
integrated markets, a central decision maker can, in theory,
select the optimal combination of generation and transmission
investments to meet demand and renewable mandates at min-
imum cost under the Integrated Resource Planning paradigm.
But such coordination is a challenge in restructured markets
where only transmission assets are centrally planned. Al-
though transmission planning has been traditionally ”reactive”
to generation investments (i.e. generation investments first,
transmission afterwards), transmission planning authorities in-
creasingly recognize two facts. First, transmission investments
influence the profitability of investment decisions concerning
generation, demand-side management (DSM) and other re-
sources, and therefore affect the siting of those investments.
Second, because large transmission projects can have longer
lead-times than natural gas-fueled and renewable power plants
and DSM, transmission commitments must be made before
generation is constructed. Therefore, ”(c)apturing long-term
benefits of transmission investments requires processes more
akin to integrated resource planning in order to evaluate
’long-term resource cost’ benefits (such as)...the ability to
build new generation in lower-cost locations (and to)...find
lower-cost (or higher-value) combination of transmission and
generation investments to satisfy policy requirements, such as
(renewable portfolio standards)”[5] [6]. This has resulted in
an ”anticipative” or ”proactive” philosophy being embodied in
FERC Order 1000 [7] and a growing interest among planning
authorities (such as the California ISO [8]) to use transmission
planning to steer the generation market towards potentially
better social outcomes compared to the old reactive approach.

Proactive or anticipative planning doesn’t come without
challenges though. Planning for long-lived infrastructure be-
fore it is needed involves making assumptions about the
timing, size and location of future generation investments,
which will depend strongly on network characteristics as
well as on highly uncertain market and regulatory conditions
(e.g. technology and fuel costs, environmental regulation, and

renewable mandates). Disregarding any of these features can
result in myopic plans and the risk of stranded transmission
assets [9] [10] [11].

Methods now used in transmission planning studies have
two limitations. First, planners usually rely on detailed produc-
tion cost modeling tools and Monte Carlo simulation to assess
the economic performance of a set of pre-defined transmission
and generation configurations (e.g., PSS-E [12], GridView
[13], and PROMOD IV [14]). However, these commercial
packages lack topology optimization capabilities and cannot
suggest potentially better transmission configurations [15]
[16]. The few commercial packages that can optimize topology
(e.g., NETPLAN [17]) account for neither the generators’
responses to transmission investments nor uncertainties in
market and regulatory conditions.

A second limitation arises from using scenario planning to
cope with uncertainty. In scenario planning, several scenarios
are defined that represent alternative future economic and
regulatory conditions, and then a separate plan is developed
separately for each scenario using either deterministic net-
work optimization or a production costing-based comparison
of pre-defined plans. Then investments that are attractive
in all or most scenarios are identified as robust. Examples
of such planning approaches are the Multi-Value Projects
by the Midwestern ISO (MISO) [18], and the least-regret
investments by California ISO (CAISO) [19]. The underlying
assumption of these approaches is that investments needed
for all or most scenarios provide a hedge against uncer-
tainty and, thus, correspond to the projects that should be
developed now. However, it has been proven theoretically
that optimal stochastic investment strategies (i.e., ones that
minimize probability-weighted costs across scenarios) cannot
in general be constructed by such heuristics. Stochastic optima
are rarely optimal for any individual scenario, and may include
projects that would not be in the deterministic optimal plan
for any particular scenario [20] (an example is shown later
in this paper for WECC.) For instance, a somewhat more
expensive route for a circuit between two buses might keep
more options open later for additional circuits in that corridor
or connections to other circuits; the cost of this additional
adaptability must be suboptimal for any particular scenario,
but could be worthwhile under uncertainty. For these reasons,
scenario planning and heuristics are limited for planning under
uncertainty.

In this paper we propose a model for adaptive transmis-
sion planning that takes into account generators’ response,
Kirchhoff’s Voltage Law (parallel flows), and uncertainty. We
also include recourse or ”wait-and-see” investment decisions,
since in reality not all decisions must be made today, as
some can be delayed until there is more information available.
We apply our approach to a 240-bus representation of the
WECC adapted from [21] to illustrate the insights that can
be gained. Uncertainty is modeled with three scenarios with
diverging environmental policies and fuel costs. We compare
the economic performance of the optimal stochastic solution
with deterministic investment strategies as well as heuristic
rules used in current transmission planning studies. We also
calculate the Expected Value of Perfect Information (EVPI)
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and the Expected Cost of Ignoring Uncertainty (ECIU, equal
to the expected loss from using deterministic rather than
stochastic programming). We find that in this case they both
have the same order of magnitude for the WECC case study,
and that the ECIU is approximately three times the cost of
transmission investments in the first-stage.

The rest of the paper is organized as follows. In Section
II we review the existing literature on multi-stage transmis-
sion planning under uncertainty, considering the response of
generator investment and operations. Our two-stage stochastic
transmission planning model is formulated in Section III.
In Section IV we describe our case study and assumptions
regarding candidate renewable resources and scenarios. In
Section V we present our results and discuss the limitations
of the current approaches. Finally, we offer conclusions in
Section VI.

II. LITERATURE REVIEW

Transmission planning using optimization is an active re-
search area [22]. Initial approaches to finding cost-effective
transmission plans were based on linear programming [23].
However, due to scale economies, transmission capacity addi-
tions are better represented with discrete variables instead of
continuous ones [24]. This is an advantage if power flows
are modeled using a linearized dc approximation [25], since
Kirchhoff’s Voltage Laws for candidate transmission lines can
be enforced with linear disjunctive constraints instead of non-
linear ones [26] [27] [28]. The resulting problem is formulated
as a mixed integer linear problem and solved with commercial
MIP solvers ([29], [30], [31] and [32]).

There is also a broad literature on transmission planning
under uncertainty (e.g., [33], [34], [35], [36]). However, most
of it focuses on single-stage (or open loop) planning, assuming
that all investment decisions must be made today, and ignoring
the option of delaying commitments until more information is
available. A number of studies have quantified option value
by considering later decision [37]. But these studies have
usually been of individual transmission investments, without
considering alternatives elsewhere in the network. Multi-stage
network planning models have been proposed in [38], [39]
and [40], but the former studies take generation investments as
exogenous, therefore ignoring interactions of transmission and
generation investments. Game-theory approaches, on the other
hand, can account for market power and generators’ responses
[10], but network optimization based on such methods is
computationally intractable for real-world applications.

Recently, [40] proposed a two-stage stochastic transmission
planning approach that takes into account generators’ re-
sponse, but applied to a small, seven-bus, radial representation
of the UK ac transmission system, and only considered dc
or radial ac links, thus ignoring the parallel flow impacts of
Kirchhoff’s Voltage Law. Here we improve [40] by extending
the formulation to include ac transmission lines and flowgate
constraints. We also model the effect of having differentiated
state renewable mandates and the effect of the geographical
definition of renewable certificate markets on the optimal
configuration of transmission and generation investments. Our

model is applied to a network that is two orders of magnitude
larger than the one in [40], and employed to compare the
performance of heuristic rules that are commonly utilized
in current transmission planning studies (e.g. MISO [18]
and CAISO [19]) to the optimal stochastic plan. No such
comparison was made in [40], even though heuristics are
increasingly used in practice.

III. MODEL DESCRIPTION

We model transmission and generation investment decisions
in two stages, each followed by market operations (see Figure
1). The two stages are divided into three periods, one before it
is known which scenario will occur, and two after uncertainty
is revealed. Investment decisions made in one period do not
become available until the beginning of the following period.

Investments 1 Operations 2 

Investments 2 Operations 3 

T=1 T=2 T=3 
Scenarios 

Fig. 1. Timeline

Power flows are modeled using a linearized dc approxi-
mation [25]. Generation intermittency and load variations are
modeled by including a sample of hours chosen so that the
averages, standard deviations, and correlations of wind and
load across different locations are well approximated. As in
[40], we assume perfect competition and nodal pricing; as a
result, the generation market equilibrium can be simulated by
minimizing the present worth of total investment and operating
costs, which is the same objective we assume for transmission
planners. Because the objectives are consistent, the bilevel
transmission planning-generation market planning problem
can be reduced to a single combined transmission-generation
optimization model.1 Thus, our model is mathematically
equivalent to an Integrated Resources Planning approach [42],
except that in a deregulated market, generation investments
represent the optimal market response to the transmission
planner strategy, rather than a result of an integrated plan.
Other examples of ”co-optimization models”, which consider
how generation investments react to transmission investment,
include [43] [44] [45] [46].

We assume that demand can always be met at cost V OLL
and ignore the possibility of lines or generation outages, which
should be analyzed using a probabilistic production cost sim-
ulation. The focus of this article is on transmission additions
that are motivated by economics: resource investment and
operating cost savings, and the need to develop least-cost
strategies to achieve renewable integration and other policy
goals (as in FERC Order 1000 [7]). Although reliability is,
and will remain, an important driver of some transmission
additions, these economic factors are the primary drivers

1The conditions for equivalence of market equilibria to the solution of a
single optimization model are discussed in [41].
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behind large interregional transmission proposals today.2

Objective Function: We define investment costs for a single
scenario, before uncertainty is revealed, in t = 1 and for
multiple scenarios, after uncertainty is revealed, in t = 2, as
the sum of transmission and generation investments:

Its =
∑
l∈LC

CXt
l,sx

t
l,s +

∑
k∈GC

CY t
k,sy

t
k,s (1)

Operating costs Ot
s for periods t = 2, 3 and scenario s

account for generators operating costs OCt
s, and penalties

OP t
s for load curtailments and noncompliance with renewable

targets. To maintain a manageable model size, we simulate
market operations for a single year at the beginning of periods
2 and 3, and assume that they represent operations for the
remaining years in each period.3

OCt
s =

Vt∑
v=1

(
1

1 + δ

)v−1∑
h∈H

∑
k∈G

MCt
k,sg

t
k,h,s (2)

OP t
s =

Vt∑
v=1

(
1

1 + δ

)v−1

[∑
b∈B

V OLL rtb,h,s +
∑
i∈R

NCt
sn

t
i,s

]
(3)

Ot
s = OCt

s +OP t
s (4)

The cost-minimization problem is then defined as:

min I1 +
∑
s∈S

ps

[(
1

1 + δ

)V1

(I2s +O2
s) +

(
1

1 + δ

)V1+V2

O3
s

]
(5)

Constraints. The above objective is optimized subject to:

Kirchhoff’s Current Law:

∑
l∈L

Φb,lf
t
l,h,s +

∑
k∈Gb

gtk,h,s + rtb,h,s = Dt
b,h,s ∀b, h, s (6)

Kirchhoff’s Voltage Law for existing and candidate lines,

2Transmission additions that are primarily motivated by improvements in
reliability require a different set of techniques. When assessing the reliability
implications of new transmission, reliability metrics such as the ”one day
in ten year” loss of load expectation (LOLP) or the expected energy not
served (EENS) are relevant [47]. They are generally modeled in industry
practice using probabilistic simulations considering, for instance, line outages,
generator forced outages, the full distribution of load, and wind variability.
Examples of such simulation models include Concorda MARS [48] and
CRUSE [49]. Such modeling has not yet been integrated in economic
optimization models for transmission but is an important topic for future
research.

3Here we define the model for a full year (H=1..8760). A sample of hours
can be used instead by weighting each sampled hour’s variables by |H|

8760
in

Equations 2, 3, 15, and 16.

respectively:4

f tl,h,s = Sl(θ
t
b,h,s − θtp,h,s) ∀(b, p) ∈ Ωl, l ∈ LE , h, s, t (7)

|f tl,h,s − Sl(θ
t
b,h,s − θtp,h,s)|

≤Ml(1−
t∑

u=1

xul,s) ∀(b, p) ∈ Ωl, l ∈ LC , h, s, t (8)

Note that the right hand side is equal to zero if a line is built,
but otherwise is a very high number so that the constraint
doesn’t bind [26] [29].
Thermal limits on existing and candidate lines:

|f tl,h,s| ≤ Fl ∀l ∈ LE , h, s, t (9)

|f tl,h,s| ≤ Fl

t∑
u=1

xul,s ∀l ∈ LC , h, s, t (10)

Flowgates. We assume that the capacity of interfaces be-
tween neighboring systems are defined as a fraction of the
aggregated capacity of the lines, so the constraints can be
updated depending on reinforcements to existing corridors:∑
l∈L

Ψa,lf
t
l,h,s ≤FGa

[∑
l∈LE

|Ψa,l|Fl

+
∑
l∈LC

t∑
u=1

|Ψa,l|Fl x
u
l,s

]
∀a, h, s, t (11)

Maximum generation:

gtk,h,s ≤Wk,h(Y 0
k +

t∑
u=1

[yuk,s − Y Ru
k ]) ∀k, h, s, t (12)

Installed reserve margins: We enforce installed reserve mar-
gins in predefined reliability areas. Intermittent generators are
included using Effective Load Carrying Capability Factors
(ELCCs).∑
k∈GNI∩Gj

(Y 0
k +

t∑
u=1

yuk,s) +
∑

k∈GI∩Gj

ELCCk(Y 0
k +

t∑
u=1

yuk,s)

≥ (1 +RMj)
∑
b∈Bj

Dt
b,h,s h = h∗ ∀j, s, t (13)

Generation resource constraints that limit construction in each
region:

t∑
u=1

ytk,s ≤ Yk ∀k ∈ GC , s (14)

Renewable Portfolio Standards that place a lower bound on
renewable energy output in a defined region, accounting for

4An ideal choice of Ml is equal the maximum angle difference times the
susceptance of candidate line l. Thus, if the line is not built, the left-hand-
side of equation (8) is unconstrained. Values of M above this minimum
would still enforce constraint (8), but can cause numerical difficulties in
branch-and-bound algorithms [31]. Here we only consider reinforcements
to the trunk transmission system and radial interconnections, therefore, the
maximum angle difference is bounded by the maximum power flow in any
line connecting buses b and p. Bounds for candidate lines that create new
loops in the system, or that interconnect initially disconnected systems, can
be computed by solving shortest- or longest-path problems, respectively [29].
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Fig. 2. WECC 240-Bus System

credits that are allowed to be imported from other regions:∑
k∈GR∩Gi

∑
h∈H

gtk,h,s + nti,s ≥ RPSt
i,s

∑
k∈Gi

∑
h∈H

gtk,h,s ∀i, s, t

(15)

Emissions constraints that limit total emissions of CO2 within
defined areas:∑
k∈Ge

∑
h∈H

gtk,h,sEMk ≤ CAP t
e,s ∀e, s, t (16)

Nonnegativity and integrality:

gtk,h,s, y
t
k,s, n

t
i,s, r

t
b,h,s ≥ 0 ∀k, b, h, i, s, t (17)

xtl,s ∈ {0, 1} ∀l, s, t (18)

IV. CASE STUDY: WECC 240

The WECC 240-bus test-case is a network reduction of the
synchronized western North American interconnection [21].
It consists of 240 buses, 448 transmission elements, and 157
aggregated generators with a total installed capacity of 224
GW. The model also includes limits for 28 flowgates that are
normally enforced during operations in the WECC. Since the
original WECC 240 test-case was created to replicate present
market operations, it lacks information about candidate renew-
able resources or transmission alternatives that is necessary to
test our transmission-planning approach.

For this example, we assume a ten-year lag between
decisions to build transmission and generation, and project
completion. Therefore, we model investment decisions at the
beginning of years 2013 and 2023 (period 1, V1 = 10). Market
operations are modeled between years 2023 and 2033 (period
2, V2 = 10), and between years 2033 and 2063 (period 3,
V3 = 30).

Here we describe our main assumptions in adapting this
test-case for the long-term transmission planning study.

TABLE I
CANDIDATE GENERATION

Overnight Fixed Variable Heat
Technology Capital O&M O&M Rate

Cost Cost Cost [MMBtu
[M$/kW] [$/kW] [$/MWh] /MWh]

Coal CCS 4,579 63.21 9.05 12.0
CCGT 978 14.39 3.40 7.1
CCGT CCS 2,060 30.25 6.45 7,5
CTGT 665 6.70 9.87 9.8
Hydro 3,500 15 6 -
Wind 2,438 28 0 -
Solar PV 5,400 22 0 -
Biomass 3,860 103 5 12.5
Geothermal 4,141 84 9 -

A. Generation Assumptions

We use projections of both capital and fuel cost data from
the Energy Information Administration (EIA) [50]. Capital
costs of new generation (CX) include both overnight capital
costs and the sum of the discounted fixed operation and main-
tenance costs. We use a geographic information system (GIS)
to spatially analyze renewable resource potential from the
Western Renewable Energy Zones study [51] and the Renew-
able Energy Transmission Initiative in California [52]. Wind
generation variability is represented using 54 spatially aggre-
gated hourly profiles from NREL’s Western Wind Resources
Database [53]. Similarly, solar intermittency is included in 29
regions with hourly profiles generated using NREL’s PVWatts
tool [54]. In terms of conventional generation, we assume
that no new nuclear or large hydroelectric power plants are
going to be built in the WECC. EPA’s new carbon pollution
standard makes it difficult to build new conventional coal
power plants [55], so we only allow for new coal generation
that has CCS technologies. We retire 11,752 MW of once-
through cooling power plants in California and 1,572 MW in
the rest of the WECC, as projected in the WECC 10-Year
Regional Transmission Plan [3]. Table I summarizes the costs
for candidate generators.

We impose installed reserve margins of 12% within 8
different regions of the WECC. Intermittent generators are
included in reserve margins with derated capacities using
typical ELCC values. Finally, we assume that hydroelectric
operations will be consistent with those in the WECC 240
profiles for the year 2004. Operations of hydroelectric power
plants are constrained by both the technical characteristics of
the power plants and by environmental constraints specific
to each basin. Flexible dispatch of hydropower, as well the
introduction of other energy storage technologies, can be used
to provide energy, capacity, and ancillary services [56] [57],
all of which could result in potential savings in transmis-
sion and generation infrastructure and improve the economics
of renewable generation. Capturing these benefits, however,
would require chronological simulation of operations and
consideration of multiple scenarios of hydrological conditions
[58] [59], both of which are beyond the scope of this article,
but should be the subject of future research.
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B. Transmission Assumptions

The original WECC-240 test case does not include ratings
for all transmission elements. For unconstrained lines, we
approximate thermal limits based on line lengths, voltage
levels, and St. Clair line loadability curves [60]. However,
we assume that all transformers are unconstrained, since their
capital costs are relatively low compared to transmission
upgrades. Based on the Western Renewable Zones Study, we
group candidate resources into 31 renewable hubs distributed
throughout the WECC that require new transmission capac-
ity to deliver power to the existing grid. Consequently, we
consider two types of transmission upgrades: backbones and
interconnections. Trunk reinforcements are capacity additions
parallel to existing corridors, while interconnections are radial
links from initially disconnected renewable hubs to the nearest
existing high voltage buses. For illustration purposes, we limit
the availability of rights-of-way to a maximum of two new 500
kV circuits for the trunk system, and four for interconnections.
This assumption can be relaxed to include more alternatives of
different voltage levels, but at the expense of a larger model.

C. Scenarios

Environmental policies and renewable mandates in the U.S.
vary greatly among states. While California, for example, has
a stringent renewable goal of 33% by 2020, neither Wyoming
nor Idaho now have renewable mandates [61]. Furthermore,
some states allow Load Serving Entities (LSEs) to meet a
fraction of the state mandates using out-of-state renewable
generation through Renewable Energy Certificates (RECs),
which are tradable financial instruments created from elec-
tricity generated from qualifying renewable resources [62].
Although there is currently neither a national nor a WECC-
wide REC markets, their implementation would relax the
geographic heterogeneity between state RPS goals and result
in renewable generation investments in the most cost-effective
locations [63]. In contrast, a shift in the focus of future envi-
ronmental regulation from state renewable mandates towards
carbon emissions limits would give generators fewer incentives
to invest in renewables and would, instead, promote the use
of clean conventional generators, especially in our scenario of
low natural fuel prices.

For illustration purposes, we develop three scenarios that
represent uncertainty in regulatory and market conditions. 5

Although load growth and technology costs are also important
sources of uncertainty, here we assume they are constant across
all scenarios. We also assume that load patterns will be the
same as in 2004, although changes in load shapes, due to,
e.g., demand response and electric vehicles, can change the
optimal transmission and generation investment plans [65]
[66] [67] [68]. Multiple scenarios for load growth and load
shapes can be included in additional scenarios as in [40],

5The scenarios defined in our study are only used to illustrate an application
of our methodology and do not constitute an attempt to represent the full
range of scenarios that might be used in an actual application (e.g. MISO
[18] and CAISO [19] studies), which is the reason why we treat parameters
independently. In real-world studies, scenarios can be defined by managers
and stakeholders using techniques for expert elicitation. Since Royal Dutch
Shell’s primary use of scenarios in 1960’s, a number of systematic approaches
have been proposed and applied to develop sets of scenarios [64].

TABLE II
SUMMARY OF SCENARIOS

Scenarios
State RPS 33% WECC Carbon

Probability 1/3 1/3 1/3
Natural Gas prices
[$/MMBtu]

2023 5.01 6.81 3.96
2033 6.06 7.82 4.81

Coal prices
[$/MMBtu]

2023 1.89 2.38 1.51
2033 2.02 3.14 1.34

Total renewable goals
[TWh/Y ear]

2023 229 336 0
2033 290 417 0

Emissions limits
[MMTCO2/Y ear]

2023 No limit No limit 292
2033 No limit No limit 183

Certificate trading ≤25% of state goals Yes Yes

while demand management can be included as a resource
and decision variable in the model, but at the expense of
computational efficiency. The three scenarios, assumed equally
likely, are defined as follows:
• State RPS: This is the reference case. We assume that

renewable goals remain as projected and differentiated by
state [61], but allow 25% of each state’s RPS to be met
with out-of-state resources. The fuel prices we use are
average projections from the EIA.

• 33% WECC: This is an analog to the scenario modeled
in [69]. In this case there is a strong pressure on renew-
ables with a 33% WECC-wide RPS goal together with
high fuel prices. Unlike the State RPS scenario, here we
assume the existence of an efficient WECC-wide REC
market allowing renewable generation to be built in the
most cost-effective locations.

• Carbon: In this scenario, environmental regulation fo-
cuses on carbon emissions reductions instead of renew-
able mandates, and fuel prices are lower than average
projections. We set emissions limits based on the Wax-
man/Markey bill that passed the U.S. House of Repre-
sentatives in 2009, which sets carbon reduction targets of
17% below 2005 levels by 2020 and of 42% below 2005
levels by 2040 [70].

V. RESULTS

All model runs reported in this article were done in the
AIMMS 3.12 modeling language using the CPLEX 12.4 solver
on a 32-core workstation with 112 GB of RAM. In order to
keep the model size small, we simulated market operations
using a sample of only 10 hours and ignored ramping limits,
which resulted in a model with 110,000 variables (2,040
binary variables for transmission investments) and 240,000
constraints for the stochastic case. The solution time to solve
the deterministic equivalent of the stochastic formulation of
the problem was of 2.5 hours, and of 1 hour for the deter-
ministic cases. Larger transmission networks, more scenarios,
or more granular representation of operations, however, will
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increase the size of the problem significantly, and the approach
of solving a single deterministic equivalent might then be
computationally prohibitive. Decomposition might then be the
most practical approach to solving these problems. Examples
of alternative decomposition-based solution methods include
Benders decomposition [29], which divides the problem into
a master or investment problem and subproblems, and Pro-
gressive Hedging [71], which relies on scenario decomposition
instead. These alternative methods were, however, unnecessary
for the WECC model described here. As in [29], we first
relaxed all the disjunctive constraints and used that solution
as a starting point for the full formulation. We stopped
computation once we reached a MIP gap of 1%. To ensure
electricity load and renewable energy targets are met, we used
a high noncompliance penalty of 500 $/MWh.

A. Planning Based on Deterministic Scenario Models

Scenario planning is a common practice in industry when
important investment decisions must be made under uncer-
tainty. By developing a set of scenarios that represent the
uncertain future, decision makers can analyze different invest-
ment strategies for each scenario, and also assess the perfor-
mance of other investment strategies resulting from heuristic
planning procedures. Here we find the optimal deterministic
plan for each scenario s∗ by setting its probability p∗s to
1 and removing all constraints for s 6= s∗. Tables III and
IV summarize the optimal first-stage transmission investment
strategies for different planning approaches. Note that for the
33% WECC scenario, it is optimal to build multiple lines to
access distant renewable hubs, while for the Carbon scenario
it is cost-effective to build only one such line and instead meet
emissions targets using a combination of near-load renewable
resources and natural gas generators. The minimum system
costs for each deterministic scenario (CPIs∗) are $565.5 Bil-
lion for State RPS, $711.9 Billion for 33% WECC, and $495.0
Billion for the Carbon scenario. We refer to the probability-
weighted sum of these costs as the Expected System Costs
under Perfect Information (EC|PI), which provides a lower
bound upon the expected cost under uncertainty for any actual
strategy:

EC|PI =
∑
s∈S

psCPIs∗ = $590.8 Billion (19)

However, the minimum cost under perfect information is
overly optimistic, since, in reality, other scenarios for which
the deterministic plans are suboptimal can still occur.

In Table V we summarize the costs of first-stage trans-
mission investments in backbones and interconnections, as
well as the performance of different first-stage transmission
investment strategies. We estimate expected system costs for
deterministic approaches (ECDSs) by imposing their first-
stage transmission investment decisions onto the stochastic
model, which is then free to choose second-stage investments
that differ among the scenarios, but assuming that generators
still take uncertainty into account in the first-stage. Because
the first stage decisions are constrained in this manner, the
objective function must be no better than that for the full

stochastic model, since the latter is free to choose the first stage
decisions to minimize cost. Note that of the three deterministic
alternatives, the D-33% WECC is the one requiring the highest
investment in transmission in the first stage, but these are the
investments that will result in the lowest expected system costs
when tested against all scenarios (see out-turn scenarios in
Table V). In contrast, planning the grid using the D-Carbon
strategy results in high regrets, compared to the system costs
under perfect information, if the out-turn scenarios are 33%
WECC or State RPS

A common practice today in transmission planning studies
is to construct investment strategies by combining determin-
istic results using heuristic rules. For example, one approach
used both at CAISO [19] and MISO [18] is to recommend
projects chosen by deterministic models in all or most sce-
narios. Here we emulate these approaches with two heuristic
rules for choosing lines to build immediately.
• Heuristic I: Select lines that are built in the first stage in

each and every scenario-specific deterministic model.
• Heuristic II: Select lines that are built in at least two out

of the three scenario-specific deterministic models.
A more ambitious approach followed by the Alberta System

Operator (ASO) is to plan for a congestion-free network
so that any possible scenario of generation investment is
accommodated [72]. Therefore, as a proxy for the ASOs
planning approach, we consider an additional heuristic:
• Heuristic III: Select any lines that are built in the first

stage of any scenario-specific deterministic model.
Table V shows that the heuristics modeled after the proce-

dures proposed by the CAISO and MISO actually do worse
than most plans created using traditional deterministic meth-
ods. In particular, Heuristic I yields higher expected costs than
planning myopically for any one deterministic scenario. This
is evidently because the marginal value of new transmission
is very high for the first few additions (because of avoided
noncompliance penalties), and that heuristic constructs the
fewest lines. Meanwhile, Heuristic II does better than planning
using the deterministic Carbon scenario, but still is worse
than the deterministic D-33% WECC and D-State RPS plans.
In contrast, Heuristic III (build all lines identified in any
scenario) gives lower expected system costs compared to any
of the deterministic plans or other heuristics. Note that this
advantage is not a necessary result, and depends on the data.
But III requires nearly twice as much first-stage transmission
investment as any other plan ($24.2B, Table V) and therefore
has a high risk of stranded assets. In sum, since scenario
planning as well as heuristics based upon scenario plans do not
attempt to identify network designs that optimize performance
across all scenarios simultaneously, they are a weak approach
for planning under uncertainty.

B. Optimal Stochastic Planning

In contrast, the model described in Section III provides a
single recommendation for transmission investment commit-
ments now (here, 2013, for implementation by 2023). Our
approach also models recourse (second-stage) decisions, which
are investments that should not start until 2023 when there
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TABLE III
FIRST-STAGE INVESTMENTS IN RADIAL INTERCONNECTIONS TO RENEWABLE HUBS

Approach / Corridor N I2 I5 I6 I8 I9 I10 I11 I14 I20 I23 I24 I25 I26

D-Carbon 1
D-33% WECC 1 4 1 3 1 1 2 1 1 1 1 1
D-State RPS 2 2 1 1 1 1 1

Heuristic I 1
Heuristic II 2 2 1 1 1 1
Heuristic III 1 4 1 3 1 1 2 1 1 1 1 1 1

Stochastic 1 4 1 3 1 1 2 1 1 1 1 1

TABLE IV
FIRST-STAGE INVESTMENTS IN TRANSMISSION BACKBONES

Approach / Corridor N 19 37 56 68 72 73 74 92 95 125 133 136 137 143 151 157 168 169 201 202 218 222 237 238

D-Carbon 1 1 1 1 1 2 2 1 2
D-33% WECC 1 1 1 2 1 1 1 1 1 1 2
D-State RPS 2 1 1 2 2 1 1 1 2

Heuristic I 1
Heuristic II 1 1 1 1 1 2
Heuristic III 2 1 1 1 1 1 2 2 1 2 1 1 1 2 1 1 1 1 1 2 2 2

Stochastic 1 1 2 1 2 1 1 1 1 1 1 2

TABLE V
FIRST-STAGE TRANSMISSION INVESTMENTS COSTS AND ECONOMIC PERFORMANCE OF PLANNING STRATEGIES. ALL COSTS IN BILLION USD.

First Stage Transmission Investments Out-turn Scenarios Expected
Approach Backbones Interconnections Total Carbon 33% WECC State RPS System Costs

D-Carbon 4.0 0.1 4.1 553.1 1,000.4 631,1 728.2
D-33% WECC 6.1 9.3 15.4 598.7 724.6 637.4 653.6
D-State RPS 7.2 4.1 11.3 558.6 857.0 585.4 667.0

Heuristic I 0.3 0.1 0.4 777.0 1,217.7 859.3 951.3
Heuristic II 2.4 3.9 6.3 574.0 853.8 609.8 679.1
Heuristic III 14.7 9.5 24.2 590.5 721.2 621.9 644.5

Stochastic 5.6 9.2 14.8 575.2 716.9 616.5 636.2

System Costs Under Perfect Information (CPIs) 495.0 711.9 565.5
(Both transmission and generation have perfect information)

is more clarity about market and regulatory conditions. This
is analogous to a Real Options approach, where the cost
difference between the first-stage transmission investments of
the stochastic plan and a reference strategy (e.g. a deterministic
or heuristic-based plan) constitute the price of the option,
which can be exercised later depending on the state of the
system [73].

By definition, the investment plan recommended using
our two-stage stochastic approach yields the lowest expected
system costs compared to both deterministic and heuristic
approaches (see Table V). The optimal stochastic solution
recommends only $14.8 Billion in transmission investments
in the first-stage, $9.4 Billion less than Heuristic III, and
results in expected system costs of $636.2 Billion (ECSS),
or $8.3 Billion less than Heuristic III. Note that the set
of transmission investments recommended by the stochastic
approach includes projects (B151 and B157) that would not
be chosen for any scenario under perfect information. In other
words, these two projects are suboptimal in retrospect for
any of the three scenarios; however, they are optimal in an
expected value sense since they are physical hedges that impart
more flexibility to the system than projects selected under the
deterministic approaches.

Besides the optimal strategy, we can also use the stochastic

approach to calculate two indices from the decision analysis
literature [74] of the economic consequences of uncertainty,
the Expected Value of Perfect Information (EV PI) and the
Expected Cost of Ignoring Uncertainty (ECIU ). The EV PI
provides an upper bound on the value of better forecasts for
the uncertain parameters, and is calculated as:

EV PI = ECSS − EC|PI = $45.4 Billion (20)

That is, this is the cost of the optimal stochastic solution
ECSS minus (the necessarily no worse) expected cost across
scenarios if generation and transmission planners could per-
fectly foresee which scenario would occur (EC|PI).

The ECIU is, on the other hand, a measure of the ex-
pected cost savings from using the stochastic approach for
transmission planning instead of a naive deterministic one,
but assuming that generators still consider all scenarios.6 It
is formally defined as the difference between the expected
performance of the deterministic solutions minus the expected
costs of the stochastic plan [74]:

ECIU =
∑
s∈S

psECDSs − ECSS = $46.7 Billion (21)

6A more detailed description of how to calculate EV PI and ECIU for
both transmission and generation, and transmission only is given in [40].
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VI. CONCLUSIONS

We describe a tool for transmission planning under gross
economic and policy uncertainty. It is formulated as a two-
stage stochastic mixed-integer linear program, and we solve
it with a commercial optimization package. It improves upon
[40] in that we model a system that is two orders of mag-
nitude larger with a meshed network in which Kirchhoff’s
Voltage Law as well as interface (flowgate) constraints are
considered. Using the WECC 240-bus test case and three
scenarios representing carbon and renewable policy uncertain-
ties, we compare the economic performance of transmission
strategies based on deterministic scenario planning, heuristic
combination of scenario plans, and stochastic optimization.
The transmission investments recommended by our stochastic
approach outperform the deterministic plans by $46.7B in the
expected value of the present worth of costs (ECIU ), and by
$17.4B compared to the best deterministic solution (D-33%
WECC), which is triple the cost of first-stage transmission in-
vestments in the stochastic solution. Thus, better transmission
planning can yield cost savings exceeding the cost of the lines
themselves.

Since deterministic approaches do not value flexibility [20],
heuristic rules that select lines based on the common elements
of deterministic scenario plans may perform no better than
deterministic strategies. Indeed, in our case study, they perform
worse. However, investing in all the lines found in the deter-
ministic solutions as a heuristic to hedge against uncertainty
can, in turn, yield lower expected system costs compared to
other heuristics, but requires nearly double the transmission
investment in the first stage and thereby posing a higher risk
of stranded transmission assets.

In contrast, stochastic planning explicitly considers the flex-
ibility of a system to adapt to uncertain developments. Plans
that incur extra costs for flexibility are unlikely to be found
to be optimal for any individual scenario, and so would be
overlooked in deterministic planning [15] [20]. As our results
illustrate, the optimal stochastic strategy not only differs from
all deterministic and heuristic solutions, but also includes line
additions not identified in any of the deterministic plans. Thus
stochastic transmission planning that considers optionality and
flexibility from the entire network’s perspective are needed.
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Aggressive development of renewable electricity sources will require significant expansions in transmission
infrastructure. We present a stochastic two-stage optimisation model that captures the multistage nature of
transmission planning under uncertainty and use it to evaluate interregional grid reinforcements in Great
Britain (GB). In our model, a proactive transmission planner makes investment decisions in two time periods,
each time followed by a market response. Uncertainty is represented by economic, technology, and regulato-
ry scenarios, and first-stage investments must be made before it is known which scenario will occur. The
model allows us to identify expected cost-minimising first-stage investments, as well as estimate the value
of information, the cost of ignoring uncertainty, and the value of flexibility. Our results show that ignoring
risk in planning transmission for renewables has quantifiable economic consequences, and that considering
uncertainty can yield decisions that have lower expected costs than traditional deterministic planning
methods. In the GB case, the value of information and cost of disregarding uncertainty in transmission plan-
ning were of the same order of magnitude (approximately £100 M, in present worth terms). Further, the best
plan under a risk-neutral decision criterion can differ from the best under risk-aversion. Finally, a traditional
sensitivity analysis-based robustness analysis also yields different results than the stochastic model, although
the former's expected cost is not much higher.
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1. Introduction

Over the last two decades, the electricity industry has seen several
important developments, each of which has impacted transmission
planning and increased uncertainty (Shahidehpour, 2004; Thomas
et al., 2005). Firstly, many electricity markets previously dominated
by a few large vertically integrated utilities have been restructured
so that generation investment and operations decisions are made by
individual, profit-maximising companies whose power is transmitted
on a grid run by an independent system operator. In these markets,
transmission and generation investment decisions are not made si-
multaneously by the same entity. Grid planning now has to account

for the independent reactions of the generation market (Awad et al.,
2010; Motamedi et al., 2010; Tor et al., 2008). Secondly, increasing
interregional and international trade in electricity meant that greater
amounts of electricity have to be transported further distances
(Pollitt, 2009). Thirdly, concern about climate change has led to in-
creased use of renewable sources of power, which are built in differ-
ent locations and whose availability is generally more intermittent
than conventional generators. Moreover, technological changes over
the next two decades could result in very different patterns of renew-
able development than today.

Until now, with a few exceptions (de la Torre et al., 1999), trans-
mission planners have relied upon deterministic transmission plan-
ning models, which are often run several times with different
assumptions to assess the robustness of the proposed decisions. How-
ever, such a deterministic robustness analysis may reveal that the op-
timal plan is highly sensitive to the assumptions, in which case no
unambiguous recommendation can be made; further, even if there
are investments that are seemingly optimal under all or most scenar-
ios, they may not constitute the optimal stochastic plan — i.e., the
plan that minimises expected cost over the range of possibilities.

Thus, in light of these developments, a new modelling framework
is needed, which satisfies three requirements. First, it should take into
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